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ABSTRACT 
In this paper, we consider a coupled time-fractional heat equations, one homogeneous and 
the other a non-homogeneous. Analytic solutions of the involved variables, the main and 
auxiliary, are presented with a special attention on the fractional order derivative α on the 
range of (0, 1]. The main variable may represent some density function while the auxiliary 
function plays the role of a source function. We consider the well-posedness of solution of 
the equation in the sense of Lipschitz and energy method. Scaling becomes important tools 
for the study of the solution near the singularity and larger numerical resolutions. We 
present the analytic solutions of the system using the method of Fourier and Laplace 
transforms, where one finds the solution in terms of a Green’s function, which is a scaled 
Mittag-Leffler’s function. The behaviour of the main and auxiliary variables is depicted 
using numerical approximation. 
Keywords: Caputo’s Fractional derivative, Laplace transform, Fourier transform, heat 
equations, well-posedness. 
 

 

INTRODUCTION 

Heat equation is famously known for the 
description of heat diffusion in a a certain region. 

The equation was firstly studied by the Josheph 
Fourier (1822), for instance see Cannon (1984) 

and Elsaid et al. (2016). As an evolution equation, 
the main function u(t, x) depends on the 

temporal-variable t. It appears in several areas of 

mathematics and application such as financial 
mathematics to model options, image analysis 

(Perona & Malik 1990) and in machine learning. 
Several analytic and numerical techniques are 

used in solving the heat equation including 

Fourier-Laplace methods, Crank-Nicolson (1947), 
... . These approaches are mostly applicable to 

the both homogeneous and non-homogeneous 
heat equations, where the latter is meant to 

represent heat problem with a source term.  
In this work, we intend to study the solution 

behaviour of the fractional time version of the 

non-homogeneous heat equation where the 
source term satisfies a homogeneous heat 

problem. This problem can be thought as a heat 

conduction problem where heat diffuses through 

two connected media with different diffusion 
coefficients. References on the integer and 

fractional heat diffusion problems are 
respectively Thambynayagam (2011) and 

Cosiglio (2019). 
Fractional time heat equation has received a 

significant attention in recent years in the area of 

fractional calculus. In Mclean (2011), regular type 
of solution to the time-fractional heat equation is 

studied. The evolution behaviour of the fractional 
diffusive wave equation considered in Cosiglio & 

Mainardi (2019). Several other additional results 

on the issue of time-fraction heat equations are 
available in Kochubei (2008), Li et al. (2015), 

Mainardi et. al. (2007), Mainardi et. al. (2008), 
Wilmott et. al. (1995), Zecova (2014), and the 

references therein. 
Here we are concerned in the analytic 

solutions to the system of fractional 
problem, for 0 < 𝛼 < 1, 

𝜕𝛼𝑢(𝑥, 𝑡)

𝜕𝑡𝛼
= 𝜈1

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
+ 𝜇𝑇(𝑥, 𝑡),     Ω = (𝐼, ℝ+) ⊂ ℝ × ℝ+               (1) 

𝑢(0, 𝑥) = 𝑓(𝑥),    𝑢(𝑡, 𝑥) = 0,       on  𝜕𝐼 for 𝑡 > 0,                                       (2) 
𝜕𝛼𝑇(𝑥, 𝑡)

𝜕𝑡𝛼
= 𝜈2

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
,   0 < 𝛼 < 1, 𝑥 ∈ 𝐼 ⊂ ℝ, 𝑡 > 0                             (3)  

𝑢(0, 𝑥) = 𝑓(𝑥),    𝑢(𝑡, 𝑥) = 0,       on  𝜕𝐼 for 𝑡 > 0                                        (4) 

http://dx.doi.org/10.4314/bajopas.v16i2.8 

 

 



 

 

BAJOPAS Volume 16 Number 2, December, 2023 

54 
 

where 𝜈1, 𝜈2 are the thermal diffusivity 

coefficients of two different media. By taking the 
domain 𝐼 = ℝ, it simply means that the influence 

of the actual boundaries is negligible. Moreover, 
the fractional-time derivative of a function 𝑓(𝑡) is 

𝐷𝑡
𝛼𝑓 ≔

𝜕𝛼𝑓

𝜕𝑡𝛼
 in Caputo’s sense, reads 

 

𝐷𝑡
𝛼𝑓(𝑡) =

{
 
 

 
 1

Γ(𝑚 − 𝛼)
∫

𝑓(𝑚)(𝜏)

(𝑡 − 𝜏)1+𝛼−𝑚
dτ

𝑡

0

,         𝑚 − 1 < 𝛼 < 𝑚

𝑓(𝑚)(𝑡),                                𝑚 = 𝛼

                       (5) 

 

This system of heat equation problem can be 
described as one which deals with heat transfer 

between two media of different thermal 
diffusivity coefficients. The behaviour of the heat 

flow in one media, the non-homogeneous heat 

equation, depends on the behaviour of the other, 
the homogeneous one. Or equivalently, the 

source of heat from one material depends on the 
heat transferred from the other material. 

WELL-POSEDNESS 
In this section, we consider the question of well-

posedness of the Cauchy problem. This is the 
case of existence, uniqueness and continuous 

dependence of solution on the initial data.  

Existence & Uniqueness. Let us first define 
fractional integral operator 𝐷𝑡

−𝛼. Since 

 

𝐷𝑡
−1𝑢(𝑡, 𝑥) = ∫𝑢(𝜏, 𝑥)d𝜏

𝑡

0

    then  𝐷𝑡
−𝛼𝑢(𝑡, 𝑥) =

1

Γ(𝛼)
∫(𝑡 − 𝜏)𝛼−1 𝑢(𝜏, 𝑥)d𝜏

𝑡

0

 . 

Expressing the heat equation, using the fractional-time derivative 𝐷𝑡
𝛼, we’ve 

                                                           𝐷𝑡
𝛼𝑢 = 𝜈1𝜕𝑥

2𝑢 + 𝐹(𝑡, 𝑥, 𝑇),                                                               (6) 
where 𝐹(𝑡, 𝑥, 𝑇) = 𝜇1𝑇(𝑡, 𝑥). Applying direct fractional-time derivative 𝐷𝑡

−𝛼 on both-sides to have 
𝑢(𝑡, 𝑥) − 𝑢(0, 𝑥) = 𝜈1𝐷𝑡

−𝛼(𝜕𝑥
2𝑢) + 𝐷𝑡

−𝛼(𝐹(𝑡, 𝑥, 𝑇))

=
𝜈1
Γ(𝛼)

∫(𝑡 − 𝜏)𝛼−1 𝜕𝑥
2𝑢(𝜏, 𝑥)d𝜏

𝑡

0

+
1

Γ(𝛼)
∫(𝑡 − 𝜏)𝛼−1 𝐹(𝜏, 𝑥, 𝑇)d𝜏

𝑡

0

 

By the Duhamel’s principle the solution reads 

 𝑢(𝑡, 𝑥) = 𝐷𝑡
−𝛼∫𝐾(𝑥 − 𝑦)𝐹(𝑡, 𝑦, 𝑇)d𝑦

ℝ

=
1

Γ(𝛼)
∫∫(𝑡 − 𝜏)𝛼−1𝐾(𝑥 − 𝑦)𝐹(𝑡, 𝑦, 𝑇)d𝑦d

ℝ

𝜏

𝑡

0

        (7) 

where 𝐾(𝑡, 𝑥) = 𝑡𝛼−1 𝐾(𝑥) and 𝐾(𝑥) are the heat kernel functions for the integrals with respect to  

𝑡 and 𝑥 respectively. Then, with the initial condition 𝑢(0, 𝑥) = 𝑢0(𝑥) = 𝑔(𝑥), equation (7) reads 

        𝑢(𝑡, 𝑥) =
1

Γ(α)
[∫ 𝐾(𝑥 − 𝑦, 𝑡)𝑔(𝑦)d𝑦

ℝ

+∫∫𝐾(𝑥 − 𝑦, 𝑡 − 𝜏)𝐹(𝜏, 𝑦, 𝑇)d𝑦dτ
ℝ

𝑡

0

]          (8) 

 

The result of existence of such solution is 
provided in Luchko (2009) where u is expressed 

in terms of Fourier series. In (Li et al. 2015), 
existence and uniqueness results for coupled 

diffusion systems were discussed using 

eigenfunction expansion. For more results on the 
existence and uniqueness of solution see Luchko 

(2009) and the references therein. 

Theorem 2.1. Suppose the IVP above has a 
continuous solution in  Ω̅ × [0, 𝑡∗] for 𝑡∗ > 0 and 
finite real number, then the solution is unique. 
To check for uniqueness, we assume there are 
two different solutions 𝑢1 and 𝑢2. We let 𝑣 = 𝑢1 −
𝑢2. Consequently, the system of the equations 

(1)-(4), as all the operators are linear, reduces to 
a single one-dimensional problem in 𝑣 only: 

 
𝜕𝛼𝑣(𝑥, 𝑡)

𝜕𝑡𝛼
− 𝜈1

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
= 0,    Ω × ℝ+ 

𝑣(0, 𝑥) = 0,     𝑣(𝑡, 𝑥) = 0,       on  𝜕Ω for 𝑡 > 0. 
The equation (3) in the system (1)-(4) is not considered, as the equation for v is independent of 
the temperature variable 𝑇(𝑡, 𝑥). By using the energy method, the mass of the solution is given as 

𝐽(𝑡) = ∫𝑣2

Ω

dΩ.  

The fractional-time derivative of J(t), using m = 1 in the general derivative form (5), yields 
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𝜕𝛼𝐽(𝑡)

𝜕𝑡𝛼
= 2∫ 𝑣 ⋅ (

𝜕𝛼𝑣

𝜕𝑡𝛼
)

Ω

dΩ = 2𝜈1∫ 𝑣 
𝜕2𝑣

𝜕𝑥2Ω

dΩ = 2𝜈1∫ 𝑣
𝜕𝑣

𝜕𝜂
d(𝜕Ω)

𝜕Ω

− 2𝜈1∫|∇𝑣|
2dΩ

Ω

. 

The last equality is obtained by applying Divergence theorem. Again, by the virtue of the relation that 
𝜕𝑡
𝛼𝑣 − 𝜈1𝜕𝑥

2𝑣 = 0 one gets 
𝜕𝛼𝐽(𝑡)

𝜕𝑡𝛼
= −2𝜈1∫|∇𝑣|

2dΩ
Ω

. 

 

Obviously, 
𝜕𝛼𝐽(𝑡)

𝜕𝑡𝛼
≤ 0 if 𝜈1 > 0 which has been the 

case considered in this paper. As a result, the J(t) 
is a nonincreasing function, with the fact that J(0) 
= 0 and J(t) ≥ 0 implies that J(t) ≡ 0. However, 

the integral ∫ 𝑣2 being nonnegative and 

continuous w.r.t. all its arguments, it then follows 
that v is identically zero for t ≥ 0. Thus 𝑢1 − 𝑢2 =
𝑣 = 0  or 𝑢1 = 𝑢2, thereby proving that the 

solution is unique. 

 

Continuous Dependence.   
Theorem 2.2. Suppose (6) is defined on and 
within ℝ+ × Ω. If f is continuous and u ∈ S(Ω), 
then, the Lipschitz condition is satisfied and the 
solution depends continuously on the initial data 
u(0, x). 
Proof. Suppose 𝑢 = 𝑢(𝑡, 𝑥) is a solution of the 

main fractional equation (1). Suppose further 
that 𝜕𝑥

2𝑢 is continuous on ℝ+ × Ω. Then, from the 

relation (in Fourier space) 

                                                     
𝑑𝛼𝑢̂(𝑡, 𝑘)

𝑑𝑡𝛼
= −𝜈1𝑘

2 𝑢̂(𝑡, 𝑘) + 𝐹̂                                                    (9) 

obtained by the Fourier transform ℱ(𝑢): = 𝑢̂ = ∫ 𝑢(𝑡, 𝑥)𝑒−𝑖𝑘𝑥d𝑥
ℝ

 of both sides of (6). Let us take the 

right-hand-side of (9) to be  𝐺̂ ≔ −𝜈1𝑘
2 𝑢̂ + 𝐹̂, so we have 

|𝐺̂1(𝑡, 𝑢1) − 𝐺̂2(𝑡, 𝑢2)| = |−𝜈1𝑘
2 𝑢̂(𝑡1, 𝑘) + 𝐹̂ + 𝜈1𝑘

2 𝑢̂(𝑡2, 𝑘 ) − 𝐹̂| ≤ 𝜈1𝑘
2|𝑢̂1 − 𝑢̂2|. 

As we can find Lipschitz’s constant 𝐿𝑐 ≔ 𝜈1𝑘
2 > 0, the Lipschitz condition is satisfied. To check for 

continuous dependence, suppose   𝑢̃̂ = 𝑢̂(𝑡̃, 𝑘) be a perturbation to the solution  𝑢̂ so that the 

perturbation of the corresponding initial data satisfies |𝑢̃̂0 − 𝑢̂0| ≤ 𝛿. Then, we want to show that 

|𝑢̃̂ − 𝑢̂| ≤ 𝛿, for δ small positive. By direct integration of (9), 

                                        |𝑢̃̂ − 𝑢̂| ≤ |𝑢̃̂0 − 𝑢̂0| + 𝐿𝑐∫
(𝑡 − 𝜏)𝛼−1

Γ(𝛼)

𝑡

0

|𝑢̃̂ − 𝑢̂|d𝜏                                            (10) 

Letting 𝑊(𝑡): = ∫
(𝑡−𝜏)𝛼−1

Γ(𝛼)

𝑡

0
|𝑢̃̂ − 𝑢̂|d𝜏 we have 

𝑑𝛼𝑊

𝑑𝑡𝛼
− 𝐿𝑐𝑊 ≤ 𝛿. 

Finding an integrating factor 𝐼(𝑡, 𝑘), we write 
𝑑𝛼

𝑑𝑡𝛼
[𝑊(𝑡) ⋅ 𝐼(𝑡, 𝑘)] ≤ 𝛿 ⋅ 𝐼(𝑡, 𝑘) 

where 𝐼(𝑡, 𝑘) = 𝐸𝛼,1(−𝐷𝑡
−𝛼(𝐿𝑐)) = 𝐸𝛼,1 (−

𝐿𝑐𝑡
𝛼

Γ(𝛼+1)
) is a Mittag-Leffler’s function. Upon integrating with 

respect to 𝑡𝛼, and noting that 𝐷𝑡
−𝛼[𝐸𝛼,𝛽(𝜆𝜏

𝛼)] = 𝑡𝛽−1[𝐸𝛼,𝛽(𝜆𝑡
𝛼) − 1]/𝜆, one gets 

𝑊 ⋅ 𝐸𝛼,1 (−
𝐿𝑐𝑡

𝛼

Γ(𝛼 + 1)
) ≤

𝛿

Γ(𝛼)
∫(𝑡 − 𝜏)𝛼−1𝐸𝛼,1 (−

𝐿𝑐𝜏
𝛼

Γ(𝛼 + 1)
) d𝜏

𝑡

0

= 𝛿𝐷𝑡
−𝛼𝐸𝛼,1 (−

𝐿𝑐𝑡
𝛼

Γ(𝛼 + 1)
)

≤
𝛿

−
𝐿𝑐

Γ(𝛼 + 1)

[𝐸𝛼,1 (−
𝐿𝑐

Γ(𝛼 + 1)
𝑡𝛼) − 1] = 𝛿

Γ(𝛼 + 1)

𝐿𝑐
[1 − 𝐸𝛼,1 (−

𝐿𝑐
Γ(𝛼 + 1)

𝑡𝛼)]  

Then,  

𝑊(𝑡) ≤ 𝛿
Γ(𝛼 + 1)

𝐿𝑐
[1 − 𝐸𝛼,1 (−

𝐿𝑐
Γ(𝛼 + 1)

𝑡𝛼)]. 

And the inequality (10) becomes 

|𝑢̃̂(𝑡, 𝑘) − 𝑢̂(𝑡, 𝑘)| ≤ 𝛿 + 𝐿𝑐 ⋅ 𝛿
Γ(𝛼 + 1)

𝐿𝑐
[1 − 𝐸𝛼,1 (−

𝐿𝑐
Γ(𝛼 + 1)

𝑡𝛼)] ≤
𝛿Γ(α + 1)

𝐸𝛼,1 (−
𝐿𝑐

Γ(𝛼 + 1)
𝑡max
𝛼 )

=: 𝜀, 

where 𝜀 = 𝛿Γ(α + 1)/𝐸𝛼,1 (−
𝐿𝑐

Γ(𝛼+1)
𝑡max
𝛼 ) for finite |𝑡| ≤ 𝑡max. This establishes the proof. 

By virtue of the Fourier inversion theorem for Schwartz functions, the proof above shows that the 
function 𝑢(𝑡, 𝑥) in the physical space depends continuously on the initial data 𝑢0(𝑥) = 𝑓(𝑥). 
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Furthermore, one concludes that the Cauchy 

problem (1)-(4) is well-posed having established 
the proofs of existence, uniqueness and 

continuous dependence. 
 

 

 
 

SELF-SIMILAR SOLUTION 

When a solution is known to exist, we may 
construct another solution through scaling. It is 

extremely important especially for solutions 
developing singularity, i.e., if u has the tendency 

to grow with no bound in either of space or time 

scale. A self-similar solution is constructed via the 
transformations 

𝑢 → 𝑢̃ = 𝜆𝑎𝑢(𝜆𝑏𝑡, 𝜆𝑐𝑥),     𝑡 → 𝑡̃ = 𝜆𝑎𝑡, 𝑥 → 𝑥̃ = 𝜆𝑐𝑥    for 𝑎, 𝑏, 𝑐 ∈ ℝ                        (11) 
where λ is refer to as scaling parameter. The time derivative term, for 𝛼 ≠ 𝑚,  using (11) transforms 

to 

𝜕𝛼𝑢(𝑡, 𝑥)

𝜕𝑡𝛼
=

1

Γ(𝑚 − 𝛼)
∫

𝑢(𝑚)(𝑥, 𝜏)

(𝑡 − 𝜏)1+𝛼−𝑚
d𝜏

𝑡

0

=
1

Γ(𝑚 − 𝛼)
∫

𝜆−𝑎𝑢̃(𝑚)(𝑥, 𝜏)

(𝜆−𝑏 𝑡̃ − 𝜆−𝑏𝜏̃)1+𝛼−𝑚
λ(1−𝑚)𝑏d𝜏̃

𝑡

0

       

This simplifies to  

                                                       
𝜕𝛼𝑢(𝑡, 𝑥)

𝜕𝑡𝛼
= 𝜆−𝑎+(𝛼−2𝑚+2)𝑏

𝜕𝛼𝑢̃(𝑡, 𝑥)

𝜕𝑡̃𝛼
                                                 (12) 

Similarly, for the second order spatial derivative we have 
𝜕 𝑢(𝑥, 𝑡)

𝜕𝑥
= 𝜆𝑐−𝑎

𝜕 𝑢̃(𝑥, 𝑡)

𝜕𝑥̃
,                                     

𝜕2 𝑢(𝑥, 𝑡)

𝜕𝑥2
= 𝜆𝑐−2𝑎

𝜕2 𝑢̃(𝑥, 𝑡)

𝜕𝑥̃2
                   (13) 

Combining the two results (12) and (13), the main equation (1) transforms to 

                                 𝜆−𝑎+(𝛼−2𝑚+2)𝑏
𝜕𝛼𝑢̃(𝑡, 𝑥)

𝜕𝑡̃𝛼
= 𝜈1𝜆

𝑐−2𝑎
𝜕2 𝑢̃(𝑡, 𝑥)

𝜕𝑥̃2
+ 𝜇 𝑇̃(𝑡, 𝑥)                      (14) 

The equation (14) stays invariant if 𝑎 = (𝛼 − 2𝑚 + 2)𝑏 and 𝑐 = 2𝑎. Consequently, if 𝑎 = 1 then 𝑐 = 2 
and 𝑏 = 1/(𝛼 − 2𝑚 + 2) for 𝑚 ∈ ℕ. The self-similar solution now becomes: 

                                                               𝑢̃(𝑥, 𝑡) = 𝜆 𝑢(𝑡̃, 𝑥̃) = 𝜆 𝑢 (𝜆
1

𝛼−2𝑚+2𝑡, 𝜆2𝑥)                               (15)  

where  𝑡̃ = 𝜆
1

𝛼−2𝑚+2𝑡 and  𝑥̃ = 𝜆2𝑥. The original function 𝑢 from the scaled solution (15) reads 

𝑢(𝑥, 𝑡) =
1

𝜆
 𝑢̃ (

𝑡̃

𝜆(𝛼−2𝑚+2)
−1 ,

𝑥̃

𝜆2
). 

The simulation of the solutions, especially, on 
high resolution are best improved through 
scaling. The amplitude 𝑢(x, t) and the relevant 

variables x, t are equally scaled appropriately. 
The advantage here is that one reduces 

computational cost while simulating the solution 

as accurately as possible. This is done by taking 
the value(s) of 𝜆 as sufficiently small or large as 

appropriate, see Elsaid et. al. (2016) for more. 

ANALYTIC APPROACH 
         We apply the Fourier-Laplace transform 

to the problem (1), however, we must solve the 
second equation first as the first equation 

involves the variable T. We take the Fourier 

transform of fractional derivative of function 

𝑢(𝑡, 𝑥) as ℱ(𝐷𝑡
𝛼𝑢)(𝑡, 𝑘) =

𝜕𝛼𝒖(𝑡,𝑘)

𝜕𝑡𝛼
. The problem is 

defined on the whole ℝ = (−∞,∞) so we can 

apply Fourier transform in space and Laplace 
transform in time. We impose the conditions that 
at the boundary T(x, t) = 0 as x →±∞ (i.e. 

temperature is negligible in the past or future in 
the region of study. In this regard, we are 

considering free temperature flow, negligible 

outside the region but accumulated inside the 
region of study.). Therefore, we apply the 

Fourier-Laplace transform technique to solve the 
problem (1). 

We first write the Fourier transform of the 
fractional time derivatives for T of the first 

equation by applying integration by parts to the 

right-hand-sides:

 

𝜕𝛼𝑻(𝑡, 𝑘)

𝜕𝑡𝛼
= ∫

𝜕𝛼𝑇(𝑡, 𝑥)

𝜕𝑡𝛼

∞

−∞

𝑒−𝑖𝑘𝑥d𝑥 = 𝜈2 ∫
𝜕2𝑇(𝑡, 𝑥)

𝜕𝑥2

∞

−∞

𝑒−𝑖𝑘𝑥d𝑥

= 𝜈2 [[𝑒
−𝑖𝑘𝑥

𝜕𝑇(𝑡, 𝑥)

𝜕𝑥
]
𝑥=−∞

∞

− (−𝑖𝑘) ∫
𝜕𝑇(𝑡, 𝑥)

𝜕𝑥

∞

−∞

𝑒−𝑖𝑘𝑥d𝑥] = −(−𝑖𝑘)𝜈2 ∫
𝜕𝑇(𝑡, 𝑥)

𝜕𝑥

∞

−∞

𝑒−𝑖𝑘𝑥d𝑥

= −(−𝑖𝑘)𝜈2 [[𝑒
−𝑖𝑘𝑥𝑇(𝑡, 𝑥)]−∞ 

∞ − (−𝑖𝑘) ∫ 𝑇(𝑡, 𝑥)

∞

−∞

𝑒−𝑖𝑘𝑥d𝑥] = (−𝑖𝑘)2𝜈2 ∫ 𝑇(𝑡, 𝑥)

∞

−∞

𝑒−𝑖𝑘𝑥d𝑥

= −𝑘2𝜈2𝐓(𝑡, 𝑘).                                                      (16) 
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where k is a wave-number and ℱ(𝑓(𝑥)) = ∫ 𝑓(𝑥)𝑒−𝑖𝑘𝑥
∞

−∞
𝑑𝑥 represents the Fourier-transform on (-∞, 

∞). According to the Caputo’s fractional derivative we write the Laplace transform w.r.t. time t as 

                      𝓛𝑡(𝐷𝑡
𝛼𝐓(𝑡, 𝑘)) = 𝑠𝛼  𝐓̂(𝑠, 𝑘) − ∑ 𝑠𝛼−ℓ−1

𝑚−1

ℓ=0

 
𝜕ℓ𝐓(𝑡, 𝑘)

𝜕𝑡ℓ
 |𝑡=0                        (17) 

To determine the index m, we note that 0 < α ≤ 1 and m - 1 < α < m, thus m must equal 1. We 

also then use the initial condition T(0, x) = g(x) with ℱ(𝑇(0, 𝑥)) = 𝐓(0,k), so that the equation (17) 

becomes 

𝓛𝑡(𝐷𝑡
𝛼𝐓(𝑡, 𝑘)) = 𝑠𝛼  𝐓̂(𝑠, 𝑘) − 𝑠𝛼−1𝐓(0, 𝑘). 

For the right-hand-side, we write the Laplace transform of the result (12) 

                                                −𝑘2𝜈2∫ 𝑒−𝑠𝑡𝐓(𝑡, 𝑘)d𝑡

∞

0

= −𝑘2𝜈2𝐓̂(𝑠, 𝑘).                                    (18) 

Therefore, the equation (1), using the result of equation (18), we have, in the Laplace domain: 

𝑠𝛼 𝐓̂(𝑠, 𝑘) − 𝑠𝛼−1𝐓(0, 𝑘) = −𝑘2𝜈2𝐓̂(𝑠, 𝑘). 
This can further be simplified to  

                                                     𝐓̂(𝑠, 𝑘) = {
𝑠𝛼−1

𝑠𝛼 + (𝑘2𝜈2)
} 𝐓(0, 𝑘)                                              (19) 

Next, we recall the relationship between the Mittag-Leffler function 𝐸𝛼,𝛽(𝑥) and Laplace transform ℒ: 

                    
𝑠𝛼−𝛽

𝑠𝛼 ∓ 𝜆
= ℒ(𝑥𝛽−1𝐸𝛼,𝛽(±𝜆𝑥

𝛼)),         𝜆 ∈ ℂ:   |𝜆𝑠−𝛼| < 1,                                     (20)    

and the Mittag-Leffler function 𝐸𝛼,𝛽(𝑥) is defined as 

                                                                  𝐸𝛼,𝛽(𝑥) =∑
𝑥ℓ

Γ(𝛼ℓ + 𝛽 )
                                                   

∞

ℓ=0

           (21) 

There, in comparison of the relation (20) with the term in the right hand-side of (19) we have β = 1. 

Thus, the Laplace inverse transform of (19) w.r.t. t is 
𝐓(𝑡, 𝑘) = 𝐸𝛼,1(−(𝑘

2𝜈2)𝑡
𝛼)𝐓(0, 𝑘). 

The inverse Fourier-transform of the above equation defined by 

𝑇(𝑡, 𝑥) = ℱ−1 (𝐸𝛼,1(−(𝑘
2𝜈2)𝑡

𝛼)) ⋆ ℱ−1(𝐓(0, 𝑘)) = ℱ−1 (𝐸𝛼,1(−(𝑘
2𝜈2)𝑡

𝛼)) ⋆ 𝑔(𝑥)

= ∫ 𝐺(𝑡, 𝑥 − 𝑦)𝑔(𝑦)d𝑦

∞

−∞

                                                                                      (22) 

where by definition 𝐺(𝑡, 𝑥) denotes a Green-function (aka fundamental solutions), such that 

              𝐺(𝑡, 𝑥) = ℱ−1 (𝐸𝛼,1(−(𝑘
2𝜈2)𝑡

𝛼)) =
1

2𝜋
∫ 𝐸𝛼,1(−(𝑘

2𝜈2)𝑡
𝛼)𝑒𝑖𝑘𝑥d𝑘

∞

−∞

,                 (23) 

where 𝒖(0, 𝑘) = ∫ 𝑓(𝑥)
∞

−∞
𝑒−𝑖𝑘𝑥d𝑘 corresponds to 𝑢(0, 𝑥) in the Fourier space and ⋆ represents 

convolution operation. The equation (23) is expressible in terms of 𝑊-function as found in (Mainardi 

et. al. (2010), Sec. 4.5) and Mclean (2011): 

𝑀𝛼(𝑥) ≔ 𝑊−𝛼,−1−𝛼(−𝑥) = ∑
(−𝑥)𝑛

𝑛! Γ(1 − (𝑛 + 1)𝛼)

∞

𝑛=0

=
1

𝜋
∑

(−𝑥)𝑛

(𝑛 − 1)!
Γ(𝑛𝛼)

∞

𝑛=0

sin(𝛼𝑛𝜋),              (24) 

since, originally, on the whole ℂ plane 

                  𝑊𝛼,𝛽(𝑧) = ∑
𝑧𝑛

𝑛! Γ(𝛼𝑛 + 𝛽)

∞

𝑛=0

,      𝛼 > −1,   𝛽 ∈ ℂ, 𝑧 ∈ ℂ,                               (25) 

using the identity Γ(𝑧)Γ(1 − 𝑧) = 𝜋/ sin(𝜋𝑧) showing that the two series are equal. Moreover, 

ℱ(𝑀𝛼(|𝑥|)) = 2𝐸2𝛼,1(−𝑘
2),        0 < 𝛼 < 1, 

yielding 

                                                      𝐺(𝑡, 𝑥) =
1

2√𝜈2𝑡
𝛼
𝑀𝛼
2
(
|𝑥|

√𝜈2𝑡
𝛼
).                                              (26) 

The solution is, now, 

𝑇(𝑡, 𝑥) =
1

2𝜋
⋅

1

2√𝜈2𝑡
𝛼
∫ 𝑀𝛼

2
(
|𝑥 − 𝑦|

√𝜈2𝑡
𝛼
)

∞

−∞

𝑔(𝑦)d𝑦 =
1

2𝜋
⋅

1

√𝜈2𝑡
𝛼
∫ 𝑀𝛼

2
(
|(𝑥 − 𝑦)|

√𝜈2𝑡
𝛼
)

∞

0

𝑔(𝑦)d𝑦         (27) 
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for some reasonable function 𝑔(𝑥) over (-∞, ∞). Note that, in the limit α → 1, the function 𝑀1

2

 is 

a Gaussian function. More explicitly, the solution for 𝑇 is equivalently written as   

                             𝑇(𝑡, 𝑥) =
1

2𝜋
⋅

1

√𝜈2𝑡
𝛼
∫∑

(−
(𝑥 − 𝑦)

√𝜈2 𝑡
𝛼 
)

𝑛

𝑛! Γ (1 − (𝑛 + 1)
𝛼
2
)

∞

𝑛=0

∞

0

𝑔(𝑦)d𝑦,                                   (28) 

Now, with a specific choice of initial data g(x) in equation (28), one equivalently writes the exact solution 
to the equations (1) and (2). 

 
Applying the Fourier-Laplace transforms to the second part of the heat problem (3) and (4), to write 

the solution. First take the Fourier transform to get 

                 
𝜕𝛼𝒖(𝑡, 𝑘)

𝜕𝑡𝛼
= (−𝑖𝑘)2𝜈1𝒖(𝑡, 𝑘) + 𝜇𝐓(𝑡, 𝑘) = −𝑘2𝜈1𝒖(𝑡, 𝑘) + 𝜇𝐓(𝑡, 𝑘).               (29) 

By Laplace transform of the equation (29) 
                                     𝑠𝛼 𝒖̂(𝑠, 𝑘) − 𝑠𝛼−1𝒖(0, 𝑘) = −𝑘2𝜈1𝒖̂(𝑡, 𝑘) + 𝜇𝐓̂(𝑡, 𝑘).                    (30) 

Solving for  𝒖̂  in the equation (30), we get  

                                 𝒖̂(𝑡, 𝑘) =
𝑠𝛼−1

𝑠𝛼 + 𝜈1𝑘
2
𝒖(0, 𝑘) +

𝜇

𝑠𝛼 + 𝜈1𝑘
2
 𝐓̂(𝑠, 𝑘).                                  (31)  

On taking the inverse Laplace transform and by using the equation (19), then (31) becomes 

𝒖(𝑡, 𝑘) = 𝐸𝛼,1(−𝜈1𝑘
2𝑡𝛼) 𝒖(0, 𝑘) + 𝜇𝐓(0, 𝑘)ℒ−1 [

𝑠𝛼−1

(𝑠𝛼 + 𝜈1𝑘
2)(𝑠𝛼 + 𝜈2𝑘

2)
]                   (32) 

whereas  

          
1

(𝑠𝛼 + 𝜈1𝑘
2)(𝑠𝛼 + 𝜈2𝑘

2)
=

1

𝑘2(𝜈1 − 𝜈2)
[

1

(𝑠𝛼 + 𝜈2𝑘
2)
−

1

(𝑠𝛼 + 𝜈1𝑘
2)
],                   (33) 

so that 

ℒ−1 [
𝑠𝛼−1

(𝑠𝛼 + 𝜈1𝑘
2)(𝑠𝛼 + 𝜈2𝑘

2)
] =

1

𝑘2(𝜈1 − 𝜈2)
[ℒ−1 [

1

(𝑠𝛼 + 𝜈2𝑘
2)
] − ℒ−1 [

1

(𝑠𝛼 + 𝜈1𝑘
2)
]]

=
1

𝑘2(𝜈1 − 𝜈2)
[𝐸𝛼,1(−(𝜈2𝑘

2)𝑡𝛼 ) − 𝐸𝛼,1(−(𝜈1𝑘
2)𝑡𝛼 )]                            (34) 

Next, to express more explicitly, the solution in the equation (32), with the result (34), takes the form 

𝒖(𝑡, 𝑘) = 𝐸𝛼,1(−(𝜈1𝑘
2)𝑡𝛼 )𝒖(0, 𝑘) +

𝜇𝐓(0, 𝑘)

𝑘2(𝜈1 − 𝜈2)
[𝐸𝛼,1(−(𝜈2𝑘

2)𝑡𝛼 ) − 𝐸𝛼,1(−(𝜈1𝑘
2)𝑡𝛼 )]            

It is left to transform into the physical space by taking the inverse Fourier transform 

𝑢(𝑡, 𝑥) = ℱ−1 (𝐸𝛼,1(−(𝜈1𝑘
2)𝑡𝛼 )𝒖(0, 𝑘))

+
𝜇

(𝜈1 − 𝜈2)
ℱ−1 [

𝐓(0, 𝑘)

𝑘2
𝐸𝛼,1(−(𝜈2𝑘

2)𝑡𝛼 ) −
𝐓(0, 𝑘)

𝑘2
𝐸𝛼,1(−(𝜈1𝑘

2)𝑡𝛼 )]        (35) 

Then, the first part of the equation (35) can be further simplified as follows: 

ℱ−1 (
𝐓(0, 𝑘)

𝑘2
𝐸𝛼,1(−𝜈1𝑘

2𝑡𝛼 )) =
1

2𝜋
ℱ−1 (

1

𝑘2
) ⋆ ℱ−1 (𝐸𝛼,1(−𝜈1𝑘

2𝑡𝛼 )𝐓(0, 𝑘))

=
1

2𝜋
(−√

𝜋

2
𝑥 sgn(𝑥)) ⋆

1

2√𝜈1𝑡
𝛼
𝑀𝛼
2
(
|𝑥|

√𝜈1𝑡
𝛼
) ⋆ 𝑇(0, 𝑥)

= −
1

4√2𝜋𝜈1𝑡
𝛼
∫(𝑥 − 𝑦)sgn(𝑥 − 𝑦)𝑀𝛼

2
(
|𝑥 − 𝑦|

√𝜈1𝑡
𝛼
)𝑇(0, 𝑦)d𝑦,

∞

−∞

                                         (36) 

where the sgn(𝑥) is a sign function which is 0 at 𝑥 = 0, but 1 for 𝑥 > 1 and −1for 𝑥 < 0. Therefore, 

using the result in the equation (36) above, the solution to the main field 𝑢(𝑡, 𝑥) is 
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𝑢(𝑡, 𝑥) =
1

2𝜋
⋅

1

2√𝜈1𝑡
𝛼
[ ∫ 𝑀𝛼

2
(
|𝑥 − 𝑦|

√𝜈1𝑡
𝛼
)

∞

−∞

𝑢(0, 𝑦)d𝑦 −
𝜇

(𝜈1 − 𝜈2)

⋅
1

4√2𝜋𝜈2𝑡
𝛼
∫(𝑥 − 𝑦)sgn(𝑥 − 𝑦)

∞

−∞

𝑀𝛼
2
(
|𝑥 − 𝑦|

√𝜈2𝑡
𝛼
)𝑇(0, 𝑦)d𝑦 +

𝜇

(𝜈1 − 𝜈2)

⋅
1

4√2𝜋𝜈1𝑡
𝛼
∫(𝑥 − 𝑦)sgn(𝑥 − 𝑦)

∞

−∞

𝑀𝛼
2
(
|𝑥 − 𝑦|

√𝜈1𝑡
𝛼
)𝑇(0, 𝑦)d𝑦].                                 

 

 
 

NUMERICAL EXAMPLE 

If 𝑔(𝑥) is a Gaussian function 𝑒−𝑥
2
, the 

profiles 𝑇(𝑡, 𝑥) for different values of α and the 

fixed values of 𝜈2 = 1.4 and 1.8 are shown in the 

figures Fig.1 and Fig.2. 

It shows no much difference is detected for 
different values of 𝜈𝑖 only that the profile can 

change for slightly larger value of 𝜈𝑖 for smaller 

value of 𝛼, where 𝑖 = 1,2. For the main variable 

𝑢(𝑡, 𝑥) we use 𝑢0(𝑥) = 𝑓(𝑥) = sech(𝑥) using the 

same initial condition for 𝑇0(𝑥) = 𝑔(𝑥). The 

solutions u(t, x) for different values of 𝜈1 and 𝜈2 
are shown in the Fig 3. We also take into account 

the definition of signum function sgn(𝑥) = |𝑥|/𝑥 

so that |𝑥| = 𝑥 sgn(𝑥). 
       Now, based on the difficulty we may 
encounter in integrating the expressions in the 

respective equations (28) and (36), the use of 

numerical integration in space becomes 
necessary. We use series expansions of the 
Mittag-Lefler’s function 𝑀𝛼(x) and taking the first 

100 terms to obtain the plots in the figures shown 
in Fig.1, Fig. 2 and Fig.3. Within the domain of 

consideration, the number of terms of the series 
used here is optimal, the higher number of terms 

does not add up any significant difference. 
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In Table 1, it is shown that for fractional derivatives, as shown in particular α = 0.75, solutions 

dissipate as time increases. This proves directly the dissipation property of solutions to the linear heat 
diffusion problem of integer kind. 

 
Since, we are dealing with coupled linear equations, in which the main variable’s solution depends on 
the auxiliary variable, the solution is expected to be taller in amplitude. This is the consequence of 

the superposition principle which is expected from the integer-time derivative heat equations. 
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CONCLUSION 
It is observed that, based on the simulations 

provided, the solution behaviour of both the main 
and auxiliary variable follows the heat conduction 

properties. It is well known that, the heat 

equation has solutions that decays (dissipation), 
which is indicating the loss of heat energy in a 

material over a time as indicated in the Figure 
Fig.1 for α = 1. However, considering the fact 

that the two equations are linear, the solutions 
for the main variable reflects similar behaviour 

except that it has greater amplitude at the start. 

That’s the reflection of linearity property of the 
superposition principle. Apart from the well-

posedness of the solutions, the evolution time of 
the solution u(x, t) can be elongated or 

contracted through the scaling parameter λ by 

taking λ to be sufficiently large or small. 
In the future, it would be interesting to know if 

there is a parameter dependence on the bounds 
of the solution for each choice of the fractional 

parameter α. Furthermore, analytic solutions for 
non-Schwartzian initial data are worthy of 

consideration. 
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