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ABSTRACT

In this study, we will consider nonlinear non homogeneous third order fuzzy ordinary
differential equation and solve using fuzzy Laplace transform under the generalized
Hukuhara differentiability concept. The results of the solution of non-linear
nonhomogeneous third order FODE js obtain using FLT by consider the equation

y'” + yy’ =k Y+Y. with y(t) =0. The results obtained is tested on the existing growth

model in the literature using C** code.
Keywords: Nonlinear Non Homogeneous, Fuzzy Ordinary Differential equations, Fuzzy
Laplace Transform,

INTRODUCTION FDEs for nonlinear system modeling
In recent years, the theory of FDEs has attracted  with bernstein neural networks with fuzzy set
widespread attention and has been rapidly theory was considered. The uncertainty of
growing. It was massively studied by several nonlinear systems was modeled using FDEs. The
authors (Abbasbandy, et al. 2004). Allahviranloo  solutions of those equations was obtained.
et al. (2007). A novel method for solving fuzzy =~ Moreover, the first transform fuzzy differential
nonlinear differential equations, which its equations into four ODEs, was constructed by
construction based on the equivalent integral neural models with the structure of those
forms of original problems under the assumption  equations. Theory analysis and simulation
of strongly generalized differentiability by fuzzy = results showed that the new models were
Laplace transform was considered by many  effective for modeling uncertain in nonlinear
Authors such as Melliani et al. (2015), Nieto et  systems. Raheleh, et al. (2017)
al. (2006) and Regan et al. (2003). This study therefore will consider
The approximate solution of first order  Nonlinear non homogeneous third order fuzzy
nonlinear fuzzy initial value problems (FIVP) was  ordinary differential equation which will be solve
considered by formulating and analyzing the use  using fuzzy Laplace transform method under the
of the Optimal Homotopy Asymptotic Method  generalized Hukuhara differentiability concept
(OHAM). OHAM allow the solution of the FDE to  and the results obtained will be tested on
be calculated in the form of an infinite series in  existing growth model presented in Sankar and
which the components was easily computed.  Tapan (2013) and also a new C** code will be
The method provides a convenient way to  developed to implement the result.
control the convergence of approximation series.
Numerical examples using the well-known  Methods
nonlinear FIVP were presented to show the Results of the solution of non linear
capability of the method in that regard and the  nonhomogeneous third order FODE by FLT.

results satisfied the convex triangular fuzzy  Consider equation below with y(t) =0
number. Jameel (2018)

y"+yy =ky+y, (1)
Taking the Laplace transform of equation (1) and simplify the equation we have
L[y"]+yL[y']=kL][y]+L]y] (2)
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k 1
SgL[Y(t,a)]—SZXo(a)—SyO(Ot)—Zo(a)+ ~ Lyt a)]- o7 —5 X% (a) =t P (3)
Equating and simplify equations (2) and (3) we have
k 1
S'Ly(t, @)] 5%, (@) = sy,(a) -2 (@) +—5 o’ Ly(t )]~ X°(a)_s_2_F:
(4)
s?(a+bs)L[y(t, @)]-s(@+s)x, () - (a+ s)yo(a)—zo(a)
From equation (4)
S 1 k 1
(53 +_2] L[y(t,a)]—(sz +_2]X0(a)_5yo(a)_Zo(a)__z__z:
p p s p 5)
s*(a+bs)L[y(t,a)]-s(@a+s)x,(a)—(a+s)y,(a) - 2,()
Results
Now, applying the following cases to equation (5) we have
Case 1. a>0andb>0. Now, applying case 1 to equation (5), we have
S 1 k 1
(33 +?J L[X(t,a)]—[Sz +?jl(o(a)—sxo(a)—go(a)——2——2:
(6)
s*(a+bs) L[X(t,a)]—s(a+s)go(a)—(a+s)Xo(a)—;O(a)
and
S 1 k 1
s+ [L[y(a) ( —ji (@)= V(@) - Zy(e) 5~ =
[ Ll £+ & p@- gm0 - - .,
s?(a+bs)L[Y(t,a)]-s(a+9)%(a)—(a+9)Y,(a) - Z,(a)
Solving equation (6) we have
1 k 1
Ks—s(a+s)+pzﬂ>_<0(oz)+[s—(aJrs)]XO(oz)+Sz+p2
L[X(t,a)] = - ®)
(53 +p2j—sz(a+bs)
Taking the inverse Laplace transform of equation (8) we have
_ t 1 1
L y(t.2) ] =% b—_l—gt(k —bk)—a3—p2(—Xoaﬁp2 +a% +kb?p? — 2kbp? + kp?)
el e (kp? —2a’b +a’b* +a’p® +a” — 4bkp® —a’bp?
2a (@*p® =a’op*)(b-1) 9)
+6b’kp® —4b°kp® +b'*kp® —2a* p*x, —a’p’y, —a’b®p*y, +a’bp’x, + 2a°bp?y,)
Also, solving equation (7) we have
1) _ k 1
Ks—s(a+s)+pzﬂxo(oz)+[s—(a+s)]yo(oz)+SZ+p2
L[Y(t.a)] = (10)

[33 +;2J—sz(a+ bs)

Taking the inverse Laplace transform of equation (10) we have
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Are _t 1 1 _
LYt a)] =%, b—_l—gt(k —bk) —as—pz(—yoae’p2 +a’ +kb?*p? — 2kbp? +kp?)

t
N

BER ¢

2a (a’p? —a3bp2)(b—1)
+6b’kp® — 4b%kp® +b*kp® —2a* p*x, —a’p’y, —a’b’p’y, + a‘bp’x, + 2a’bp?y,)

(kp? —2a’b +a’b* + a®p® + a*> — 4bkp* — a’bp?

(11)

Case 2. If @a>0andb < 0. Applying case 2 into equation (5) we have

[SSJF%JL[V(LG)]—[SZ +#j>_<o(a)—53_/o(a)—20(a)—£2—iz=

s?(a+bs)L| y(t,@) |-s(a+s)x,(a) - (a+5)yo(@) - ()

and
(83 i) [yta)]- [ %j%(a)—s%(a)—fo(a)—%—%=
p p s p

s?(a+bs)L[Y(t,a)]-s(a+9)%,(a) —(a+5)Y,(a) - Z,(a)

From equation (12) we have
(s +p—j [Y(t,2)]-s* (a+bs)L| y(t, @) | = K(t,a) 14

Denote

(12)

(13)

1 k 1

Kl(t,a):(33+Fj&,(a)—s(a+s)50(a)+SXO(a)—(a+S)XO(a)+S—2+F
Similarly, from equation (13) we have
(s +p—j [¥(t.) |-s*(a+bs)L[y(t, )] = K, (t,2) 15)
Denote

, 1 _ _ _ _ k 1
Kz(t,a):(s +F)xo(a)—s(a+s)xo(a)+sy0(a)—(a+s)y0(a)+s—2+F
Now, solving equations (14) and (15) we have

(s + jK (t,a)+s’(a+bs)K,(t,a)
L) =P

s V2 (16)
(53 +2J —s*(a+bs)®

p
Taking the inverse Laplace transform of equation (16) we have

[yt -

SZ

k L +p°
'\ p?s? —ap?s® —bp?s* +1 p?s? —ap?s® —bp?s* +1 (17)
S s
ap’k bp’k
P 2( p?s? —ap?s® —bp?s* +1j+ P [ p?s? —ap?s® —bp?s* +lj

Similarly, from equations (14) and (15) we have

s’(a+bs)K,(t, a)+(s + o’ jK (t,a)
s Y (18)
(SSJFpZJ —s*(a+bs)®
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Taking the inverse Laplace transform of equation (18) we have

Uy ] =

k L +p° s’
?\ p?s? —ap?s® —bp?s* +1 p?s? —ap?®s® —bp?s* +1 (19)
S s’
ap’k +bp?k
P l[ p2s? —ap®s® —bp?s* +1j P l( p2s? —ap’s® —bp?s* +1J
Case 3. If @a<0andb>0. Now, applying case 1 to equation (5), we have

(sh% L[X(t,a)]—(sz +é])_(o(a)—szo(a)—;o(a)—shz—#=

(20)
s?(a+bs)L| y(t,@) |-s(a+3)x, () - (a+3)yy(@) - ,(a)
and
S 1 k 1
s +— |L[V(t, @) —[Sz+—]¥ (a)-sy,(a)-Z,(a) —-———=
( pzj ! ] p? )" ’ s p? 1)
s*(a+bs)L[Y(t,a)]-s(@a+s)%,(a)—(a+5) V() - Z,()
Now, solving equation (20) we have
1 k 1
{s+2—s(a+s)}>_<O(0:)—a)_/0(oz)+2+2
L[yt == =
EAN s S ) (22)
$*+— |-s"(a+bs)
P
Taking the inverse Laplace transform of equation (22) we have
t
— akn® 3 2
L[)_/(t,a)]—akp +kpt—exp(ap 207 2bp?
: 1 2 p’
7 smht\/ 7 7 +a RICTWERY
cosht |1y P Nbpopt  (2p'-2p)
bp”—p (2p°—2bp?) 1 ) p*
2 2 +a 2 2\2 (23)
bp®—p (2p”—2bp°)
kp* —bkp* +ap®y, —a’kp® p? .
= —a ap’x, —akp® — p*
LZpZS—akpG— p’y, +bp’x, +abkp®  2p*—2bp? (8p"% —akp™ =Py,
+bp’x, +abkp®)
Also, solving equation (21) we have
{s+12—s(a+s)}io(a)—a70(a)+k?_+12
= s p
L[V(t.a)] = (24)

(53 +:2j—sz(a+bs)

Taking the inverse Laplace transform of equation (24) we have
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_ t
L[Y(t )] = akp® +kp’t —exp[ap2 mj

sinht\/ ! a2 P’
cosht\/ +a’ p° - bp”— P’ (2p° —20p)°
bp®-p*  (2p*-2bp*)° 1 ) p* .
2 2 +a 2 2\2 ( )
bp®—p (2p” —2bp”)
kp" —bkp* +ap”y, —a’kp’ p’ b ke 2o
—-a ap X, —akp’ —
{szs—akp6 — p%, +bp?X, +abkp®  2p?—2bp? (8p%, ~akp™ =Y,
+bp’x;, + abkp®)

Case 4. If a<0andb < 0. Applying case 2 into equation (5) we have

[Ss-i'isz[y(t,a)J—(Sz +izjio(a)_syo(a)_zo(a)_hz_iz:
p - p S

P (26)

s?(a+bs) L[ y(t,a) |- s(a+3)x,(a) — (a+5)y,(e) - ()
and
(53 +i2jL[7(t,a)]—[sz +i2])_(o(a)_szo(a)_Zo(a)_£2_i2:

p p s* p 27)
s*(a+bs)L[Y(t,a)]-s(@a+s)%,(a) - (a+5)Vy(ar) — z,()
Now, solving equation (26) we have
L[yt -
[s+12]io(a)—s(a+b)xo<a>+svo(a)—(a+s>yo<a)+fo<a>—zo(a)—k2+12

p - S P8

(53 +p52j—sz(a+bs)

Taking the inverse Laplace transform of equation (28) we have
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L_l ':X(t'a)] =
X P* +Kp' + pZ, + pX; — Y;ap* — zbkp* — yoa'kp® —Zkp’t’ + exp(apz m]
. 1 p4
sinht +a’
cosht 1 +2a? p4 \/bpz - pz (bp2 - 2bp2)2
b 2 _ p2 (b

p’—2bp?)? 1 Y
2 2 +a 2 2\2
bp—p (bp” —2bp°)
ap?—z,p° + p?y, + p*> + X,ap* —bp* + 2akp® + ap’x, +ap* —z,a’p*
—a’kp® — 2abkp®
X, p* —bp® +kp® + p°x, + p*x, + p° — X bp* — z,ap* — 2bkp® —bp’x, —bp*x,
—a’kp® +b%kp® + z,abp* +a’bkp®

(

2

P
_ai
2p* - 2bp2)

bp? — p?
(% p* —bp? +kp® + p°%, + p*Z, + p* — x.bp* — z,ap* — 2bkp® —bp*%, —bp*Z,
—a’kp® + y,b’kp°® + z,abp* +a’bkp®) — akpz, +1

(29)
Also, solving equation (27) we have
L[Y(t,a)] =
1 = _ _ k 1
[s +p2]1<0(a) =s(a+b)X,(a)+syy (@) —(a+9)y,(a) + z(a) - Zy(a) - 5+
(30)

{53 +:2j—sz(a+bs)

Taking the inverse Laplace transform of equation (30) we have
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LYt )] =

o 1 t
X P* +kp*+ p°Z, + pX; —oap” ~ zbkp* — yoa'kp® — Zkpt” +exp(ap2 ap’ —2b|02]

: 1 2 p
7 smht\/ ;5 +a 7 o av2
Cosht\/ 1 e et T \btopt (b2
bp®—p (bp” —2bp) 1 ) p*
2 2 +a 2 2\2
bp”—p (bp” —2bp*)
ap® —z,p* + p°y, + p> + X,ap* —bp* + 2akp® +ap’x, +ap* - z,a’ p*
—a’kp® — 2abkp®
% p* —bp? +kp® + pX, + p*x, + p* —X,bp* — z,ap* — 2bkp® —bp*x, —bp*x,

(

—a’kp® +b’kp® + z,abp* +a’bkp®
p2
a5 )
2p°—2bp

bp? — p?
(%p* —bp® +kp® + p°X; + p*Z, + p* — x.bp* — zjap* — 2bkp°® —bp*X, —bp*Z,
—a’kp® + yb*kp°® + z,abp* +a’bkp®) — akpz, +1 (1)

Example
(Due to Sankar and Tapan 2013): Considering the model presented by Sankar and Tapan (2013),
growth model is presented in the work of Sankar and Tapan (2013) with

N =(3><106,5x106,7x106,0.8) and k =0.4055 where k is constant. In this study, we will use
the information presented in Sankar and Tapan (2013). Therefore, substituting
a=3x10°,b=5x10", p= 7x10°,5=0.8 and k = 0.4055 in equation (9) and (11) we have

Lyt ]-

2.00x10 % (1— )t + 2.23x 104t — 7.6 x10%[-1.32x10% (1— a)
-6012.02 (32)

€ [-7.9x10% (1- &) -1.3(1— )

5.2x10%
3.3x10%(1- @) +1.98x10% (1— o) —3.9x10%]

L[yt a)] =

2.00x10% (o - Dt +2.23x10"t - 7.6x10%[-1.32x10% (o - 1)

g 601202 (33)

~1.99%10%*]-6.76x10 *t? —W[—7.9x1039 (a-1D)-13(a-1)
L X

~1.99x10%°]-6.76x10"°t* —

3.3x10% (o —1) +1.98x10* (o —1) —3.9x10*]

Simplifying equations (32) and (33) we have we have the equations presented as Y(t,(l) and

Y (t, ) respectively. -

X(t’ a) =2.00x10®(1-a)t +2.23x10 ™t +1.00x10>" (1— ) +1.5x10%° —6.76 10 ®t?
+1.32x10%° +2.2(1- ) +5.5x10* (1- ) +3.3x10" (1- ) = 6.5x10*

V(t, ) =2.00x10 % (a =)t +2.23x10 ™t +1.00x10"* (o —1) +1.5x10%° —6.76 x10 *t?
+1.32x10° + 2.2(ar —1) +5.5x10% (o —1) + 3.3x10*° (o 1) = 6.5x10*
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Algorithm for C**

Start

Read v, V¥V, t &;

for (inti= 0; i<9; i++)

for (int j=0; j<1; j++)

Compute

L[yt

L[V(t )]
Print y

Compute
=0 +0.1
Print Yy
Stop.

Table 1: Solution of non-linear non-homogeneous case for t =0.05

e y(ta) Y@

0 21.2 -41.4
0.1 18.1 -38.3
0.2 14.9 -35.1
0.3 11.8 -32

0.4 8.7 -28.9
0.5 5.5 -25.8
0.6 2.4 -22.6
0.7 -0.7 -19.5
0.8 -3.8 -16.4

From table 1, we see that X(t, 05) is a decreasing function, y(t,«) is an increasing function and

X(t, a)>y(t,a)<0. Therefore, the solution of the Sankar and Tapan (2013) model for the

particular value of t is a week solution

Table 2: Solution of Sankar and Tapan (2013) model
a y(t,a) y(t.@)

0 1022.7357 1377.5550
0.1 1047.5458 1357.0748
0.2 1072.4580 1336.7224
0.3 1097.4726 1316.4973
0.4 1122.5899 1296.3987
0.5 1147.8103 1276.4260
0.6 1173.1340 1256.5786
0.7 1198.5614 1236.8558
0.8 1218.5341 1256.8285

From table 2, we see that X(t, 05) is an increasing function, y(t,«) is a decreasing function

and X(t, 05) < V(t, 0!) . Therefore, the solution is a strong solution.
From the results presented in table 2, the nonlinear nonhomogeneous case, we observed that
the lower bound variable X(t, 0!) is a decreasing function and the upper bound variable y(t,«) is also

a increasing function which indicated week solution both also still maintained very good interval of
convergens when compared with the work of Sankar and Tapan (2013) presented as table 2
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Graph of example 1

Functions

LBV
UBv

Figure 1: Graph of nonlinear non homogeneous FODES
In figure (4.4), it is also observed that the gap between the upper-bound variable y(t, «)

and lower- bound variable Y(t,a) decreases as & increases which indicate convergence.

DISCUSSION

The results for nonlinear nonhomogeneous
FODE is presented by considering equation (5).
The four cases discussed are thus; case 1 when
a>0and b>0 are applied to equation (5),
the results established are found in equations
(9) and (11). When a>0and b<O are
applied to equation (5), the results established
are indicated in equations (17) and (19)
respectively. Case 3 presented a<0and b>0
, when applied to equation (5), the results
established formed equations (23) and (25)
respectively. Finally, with a<0and b <0and
applying to equation (5), the results
established are equations (29) and(31).
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