-
 Bayero Journal of Pure and Applied Sciences, 15(1): 19-25
 Received: December, 2021
 Accepted: March, 2022
 ISSN 2006-6996
 THE CONCEPT OF INVERSE α-CUTS IN MULTI Q-FUZZY SET

Isah, A. I., Alkali, A. J. and Tella, Y.
Department of Mathematical Sciences, Kaduna State University, Kaduna-Nigeria
Department of Mathematics, Ahmadu Bello University, Zaria
aisah204@gmail.com

Abstract

In various mathematical theories such as fuzzy sets, fuzzy multisets, fuzzy soft sets, the concept of α-Cuts were applied together with their inverses. However, we noticed that in multi Q-fuzzy sets only α-Cuts were studied without their inverses. In this paper the concept of inverse α-Cuts and their properties in multi Q-fuzzy sets were introduced. Some distinctive features of α-Cuts and inverse α-Cuts were demonstrated. It is shown that as both first and second decomposition theorems hold in the former, it actually fails in the latter. Moreover, unlike α-cuts, it was discovered that, a multi Q-fuzzy set cannot be uniquely represented as the family of all its weak inverse α-cuts. Thus, both α-cuts and inverse α-cuts attract applications in many mathematical fields.

Key words: Fuzzy set, Fuzzy multiset, multi Q-fuzzy set, α-Cut, inverse α-Cut

INTRODUCTION

The concepts of fuzzy sets and a-cuts (a-level sets) together with their applications were first presented by (Zadeh, 1965). Subsequently, other researchers such as (Brown, 1971; Chutia et al., 2010; Dutta et al., 2011; Klir and Yuan, 1995; Kreinovich, 2013) studied the theory and its applications. In (Singh et al., 2014; Alkali and Isah, 2018; Isah, 2019a; Isah et al., 2019; Alkali and Isah, 2019), a-cuts and n-level sets and some of their properties in various contexts were studied. Inverse a-cuts in fuzzy set and their properties were introduced in (Sun and Han 2006), it is further extended to fuzzy multiset in (Singh et al., 2015). The theory of Multi Q-fuzzy set was introduced and studied in (Adam and Hassan, 2014; Adam and Hassan, 2014a; Adam and Hassan, 2015; Adam and Hassan, 2016). a-cuts and their properties in Multi Q-fuzzy sets were first presented in (Isah, 2019) where various theorems were established and proved. However, inverse a-cuts in multi Qfuzzy sets were yet to be studied. In this paper, we intend to introduced inverse a-cuts and their
properties in Multi Q-fuzzy sets and also investigate the distinctive feature of a-cuts and inverse a-cuts of multi Q-fuzzy sets.

MATERIALS AND METHODS

The concepts of multisets, Fuzzy multisets, multi Q-fuzzy sets and a-cuts of multi Q-fuzzy sets which are necessary tools for this study were presented in this section. First and second Decomposition theorems with regard to a-cuts were also studied extensively as that will enable us to come up with these theorems in terms of inverse a-cuts.

Preliminaries

Definition 2.1.1 (Jena et al., 2001)
Let X be a set, then a multiset M or an mset (for short) M over X is represented by a function Count M or C_{M} defined as $C_{M}: X \rightarrow \mathbb{N}$, where \mathbb{N} is the set of natural numbers including zero. One way of representing a multiset M from X with x_{1} appearing k_{1} times, x_{2} appearing k_{2} times and so on is $M=\left\{k_{1} / x_{1}, k_{2} / x_{2}, \ldots, k_{n} / x_{n}\right\}$.

Let M and N be two msets drawn from a set X. Then
$M \subseteq N$ iff $C_{M}(x) \leq C_{N}(x), \forall x \in X$.
$M=N$ if $C_{M}(x)=C_{N}(x), \forall x \in X$.
$M \cup N=\max \left\{C_{M}(x), C_{N}(x)\right\}, \forall x \in X$.
$M \cap N=\min \left\{C_{M}(x), C_{N}(x)\right\}, \forall x \in X$.
Definition 2.1.2 (Syropoulos, 2012) A fuzzy multiset A is a multiset of pairs, where the first part of each pair is an element of a universe set X and the second part is the degree to which the first part

BAJOPAS Volume 15 Number 1, June, 2022
belongs to that fuzzy multiset. That is, $A: X \times I \rightarrow \mathbb{N}$; where $I=[0,1]$ and \mathbb{N} is the set of positive integers including 0 .
Let A and B be fuzzy multisets. Then, Lengths $L(x ; A)$ and $L(x ; A, B)$ are respectively defined as $L(x ; A)=\max \left\{j: \mu_{A}^{j}(x) \neq 0\right\}$; and $L(x ; A, B)=\max \{L(x ; A), L(x ; B)\}$.
For brevity, $L(x)$ for $L(x ; A)$ or $L(x ; A, B)$ is also used if no confusion arises.
Note that for defining an operation between two fuzzy multisets A and B, the lengths of the membership sequences $\mu_{A}^{1}(x), \mu_{A}^{2}(x), \ldots, \mu_{A}^{p}(x)$ and $\mu_{B}^{1}(x), \mu_{B}^{2}(x), \ldots, \mu_{B}^{p}(x)$ need to be set equal.

Let A, B be fuzzy multisets. Then

$$
\begin{aligned}
& \mu_{A \cup B}^{j}(x)=\mu_{A}^{j}(x) \vee \mu_{B}^{j}(x), j=1, \ldots, L(x), \forall x \in X . \\
& \mu_{A \cap B}^{j}(x)=\mu_{A}^{j}(x) \wedge \mu_{B}^{j}(x), j=1, \ldots, L(x), \forall x \in X . \\
& A \subseteq B \Leftrightarrow \mu_{A}^{j}(x) \leq \mu_{B}^{j}(x), j=1, \ldots, L(x), \forall x \in X .
\end{aligned}
$$

Thus, $A=B \Leftrightarrow A \subseteq B \quad$ and $B \subseteq A$.
Definition 2.1.3 (Adam and Hassan, 2014) Let I be a unit interval $[0,1], k$ be a positive integer, U be a universal set and Q be a non-empty set. A multi Q -fuzzy set A_{Q} in U and Q is a set of ordered sequences $A_{Q}=\left\{\left((u, q),\left(\mu_{1}(u, q), \mu_{2}(u, q), \ldots, \mu_{k}(u, q)\right)\right): u \in U, q \in Q\right\}$, where $\mu_{i}(u, q) \in I$ for all $i=1,2, \ldots, k$.
The function $\left(\mu_{1}(u, q), \mu_{2}(u, q), \ldots, \mu_{k}(u, q)\right)$ is called the membership function of multi Q-fuzzy set A_{Q} and $\mu_{1}(u, q)+\mu_{2}(u, q)+\cdots+\mu_{k}(u, q) \leq 1, \mathrm{k}$ is called the dimension of A_{Q}. Thus, if the sequences of the membership functions have finite number of terms, say k-terms, the multi Q -fuzzy set is a function from $U \times Q$ to I^{k} such that for all $(u, q) \in U \times Q, \mu_{A_{Q}}=\left(\mu_{1}(u, q), \mu_{2}(u, q), \ldots, \mu_{k}(u, q)\right)$. The set of all multi Q-fuzzy sets of dimension k in U and Q is denoted by $M^{k} Q F(U)$.

a-cuts in multi Q-fuzzy set

Definition 2.2.1 a-cuts in multi Q-fuzzy set (Isah, 2019)
Let $A_{Q} \in M^{k} Q F(U)$ and $\alpha \in[0,1]$. Then the α-cut or α-level set of A_{Q}, denoted ${ }^{\alpha} A_{Q}$ is defined as ${ }^{\alpha} A_{Q}=\left\{(u, q) / A_{m}: \mu_{A_{Q}}(u, q) \geq \alpha\right\}$ where A_{m} is the cardinality of $\mu(u, q)$ such that $\mu(u, q) \geq \alpha$.
The strong α-cut or α-level set of A_{Q}, denoted ${ }^{\alpha+} A_{Q}$ is defined as
${ }^{\alpha+} A_{Q}=\left\{(u, q) / A_{m}: \mu_{A_{Q}}(u, q)>\alpha\right\}$ where A_{m} is the cardinality of $\mu(u, q)$ such that $\mu(u, q)>\alpha$.
Definition 2.2.2 Decomposition of Multi Q-fuzzy Set (Isah, 2019)
Let $U=\left\{u_{1}, u_{2}\right\}, Q=\{p, q, r\}$ and a multi Q-fuzzy set A_{Q} over U and Q be

$$
\begin{gathered}
A_{Q}=\left\{\left(\left(u_{1}, p\right), 0.3,0.2,0.5\right),\left(\left(u_{1}, q\right), 0.2,0.8,0\right),\left(\left(u_{1}, r\right), 0.1,0.5,0.3\right),\left(\left(u_{2}, p\right), 0.3,0.1,0.2\right),\right. \\
\left.\left(\left(u_{2}, q\right), 0,0.3,0.7\right),\left(\left(u_{2}, r\right), 0.2,0.3,0.1\right)\right\}
\end{gathered}
$$

Suppose, we have the following distinct α-cuts defined by characteristic functions viewed as special membership functions:

$$
\begin{aligned}
& { }^{0.1} A_{Q}=\left\{\left(\left(u_{1}, p\right), 1,1,1\right),\left(\left(u_{1}, q\right), 1,1,0\right),\left(\left(u_{1}, r\right), 1,1,1\right),\left(\left(u_{2}, p\right), 1,1,1\right),\left(\left(u_{2}, q\right), 0,1,1\right),\right. \\
& \left.\left(\left(u_{2}, r\right), 1,1,1\right)\right\}, \alpha \geq 0.1 \text {. } \\
& { }^{0.2} A_{Q}=\left\{\left(\left(u_{1}, p\right), 1,1,1\right),\left(\left(u_{1}, q\right), 1,1,0\right),\left(\left(u_{1}, r\right), 0,1,1\right),\left(\left(u_{2}, p\right), 1,0,1\right),\left(\left(u_{2}, q\right), 0,1,1\right),\right. \\
& \left.\left(\left(u_{2}, r\right), 1,1,0\right)\right\}, \alpha \geq 0.2 \text {. } \\
& { }^{0.3} A_{Q}=\left\{\left(\left(u_{1}, p\right), 1,0,1\right),\left(\left(u_{1}, q\right), 0,1,0\right),\left(\left(u_{1}, r\right), 0,1,1\right),\left(\left(u_{2}, p\right), 1,0,0\right),\left(\left(u_{2}, q\right), 0,1,1\right),\right. \\
& \left.\left(\left(u_{2}, r\right), 0,1,0\right)\right\}, \alpha \geq 0.3 \text {. } \\
& { }^{0.5} A_{Q}=\left\{\left(\left(u_{1}, p\right), 0,0,1\right),\left(\left(u_{1}, q\right), 0,1,0\right),\left(\left(u_{1}, r\right), 0,1,0\right),\left(\left(u_{2}, p\right), 0,0,0\right),\left(\left(u_{2}, q\right), 0,0,1\right),\right. \\
& \left.\left(\left(u_{2}, r\right), 0,0,0\right)\right\}, \alpha \geq 0.5 \text {. } \\
& { }^{0.7} A_{Q}=\left\{\left(\left(u_{1}, p\right), 0,0,0\right),\left(\left(u_{1}, q\right), 0,1,0\right),\left(\left(u_{1}, r\right), 0,0,0\right),\left(\left(u_{2}, p\right), 0,0,0\right),\left(\left(u_{2}, q\right), 0,0,1\right),\right. \\
& \left.\left(\left(u_{2}, r\right), 0,0,0\right)\right\}, \alpha \geq 0.7 \text {. } \\
& { }^{0.8} A_{Q}=\left\{\left\{\left(\left(u_{1}, p\right), 0,0,0\right),\left(\left(u_{1}, q\right), 0,1,0\right),\left(\left(u_{1}, r\right), 0,0,0\right),\left(\left(u_{2}, p\right), 0,0,0\right),\left(\left(u_{2}, q\right), 0,0,0\right),\right.\right. \\
& \left.\left(\left(u_{2}, r\right), 0,0,0\right)\right\}, \alpha \geq 0.8 \text {. }
\end{aligned}
$$

Thus, converting each of the above α-cuts to a special Multi Q-fuzzy Set ${ }_{\alpha} A_{Q}$ defined for each $(u, q) \in A_{Q}$ as ${ }_{\alpha} A_{Q}=\alpha .\left({ }^{\alpha} A_{Q}\right)$ we get

$$
\begin{gathered}
{ }_{0.1} A_{Q}=\left\{\left(\left(u_{1}, p\right), 0.1,0.1,0.1\right),\left(\left(u_{1}, q\right), 0.1,0.1,0\right),\left(\left(u_{1}, r\right), 0.1,0.1,0.1\right),\left(\left(u_{2}, p\right), 0.1,0.1,0.1\right)\right. \\
\left.\left(\left(u_{2}, q\right), 0,0.1,0.1\right),\left(\left(u_{2}, r\right), 0.1,0.1,0.1\right)\right\}
\end{gathered}
$$

BAJOPAS Volume 15 Number 1, June, 2022

$$
\begin{array}{r}
{ }_{0.2} A_{Q}=\left\{\left(\left(u_{1}, p\right), 0.2,0.2,0.2\right),\left(\left(u_{1}, q\right), 0.2,0.2,0\right),\left(\left(u_{1}, r\right), 0,0.2,0.2\right),\left(\left(u_{2}, p\right), 0.2,0,0.2\right)\right. \\
\left.\quad\left(\left(u_{2}, q\right), 0,0.2,0.2\right),\left(\left(u_{2}, r\right), 0.2,0.2,0\right)\right\} \\
{ }_{0.3} A_{Q}=\left\{\left(\left(u_{1}, p\right), 0.3,0,0.3\right),\left(\left(u_{1}, q\right), 0,0.3,0\right),\left(\left(u_{1}, r\right), 0,0.3,0.3\right),\left(\left(u_{2}, p\right), 0.3,0,0\right)\right. \\
\left.\quad\left(\left(u_{2}, q\right), 0,0.3,0.3\right),\left(\left(u_{2}, r\right), 0,0.3,0\right)\right\} \\
{ }_{0.5} A_{Q}=\left\{\left(\left(u_{1}, p\right), 0,0,0.5\right),\left(\left(u_{1}, q\right), 0,0.5,0\right),\left(\left(u_{1}, r\right), 0,0.5,0\right),\left(\left(u_{2}, p\right), 0,0,0\right)\right. \\
\left.\quad\left(\left(u_{2}, q\right), 0,0,0.5\right),\left(\left(u_{2}, r\right), 0,0,0\right)\right\} \\
{ }_{0.7} A_{Q}=\left\{\left(\left(u_{1}, p\right), 0,0,0\right),\left(\left(u_{1}, q\right), 0,0.7,0\right),\left(\left(u_{1}, r\right), 0,0,0\right),\left(\left(u_{2}, p\right), 0,0,0\right),\left(\left(u_{2}, q\right), 0,0,0.7\right),\right. \\
\left.\quad\left(\left(u_{2}, r\right), 0,0,0\right)\right\} \\
{ }_{0.8} A_{Q}=\left\{\left\{\left(\left(u_{1}, p\right), 0,0,0\right),\left(\left(u_{1}, q\right), 0,0.8,0\right),\left(\left(u_{1}, r\right), 0,0,0\right),\left(\left(u_{2}, p\right), 0,0,0\right),\left(\left(u_{2}, q\right), 0,0,0\right)\right.\right. \\
\left.\left(\left(u_{2}, r\right), 0,0,0\right)\right\}
\end{array}
$$

It is easy to see that ${ }_{0.1} A_{Q} \cup{ }_{0.2} A_{Q} \cup{ }_{0.3} A_{Q} \cup{ }_{0.5} A_{Q} \cup{ }_{0.7} A_{Q} \cup{ }_{0.8} A_{Q}=A_{Q}$.
In other words, any Multi Q-fuzzy Set A_{Q} can be represented as the union of its special α-cuts ${ }_{\alpha} A_{Q}$, and this representation is usually referred to as Decomposition of A_{Q}.

Moreover, if for each $(u, q) \in A_{Q}$ we defined ${ }_{\alpha+} A_{Q}$ as ${ }_{\alpha+} A_{Q}=\alpha .\left({ }^{\alpha+} A_{Q}\right)$, we can see that by using a similar arguments, a Multi Q-fuzzy Set A_{Q} can be represented as the union of its strong α-cuts defined as above known as Decomposition of that Multi Q-fuzzy Set.

Theorem 2.2.3 First Decomposition Theorem (Isah, 2019)
Let $A_{Q} \in M^{k} Q F(U)$, then $A_{Q}=\mathrm{U}_{\alpha \in[0,1]} A_{Q}$.

Proof

For each $(u, q) \in A_{Q}$, let $y=\mu_{A_{Q}}^{i}(u, q), i=1,2, \ldots, k$
Then for every $\alpha \in(y, 1]$ we have $\mu_{A_{Q}}^{i}(u, q)=y<\alpha, i=1,2, \ldots, k$. Thus, ${ }_{\alpha} A_{Q}=0$.
On the other hand, for every $\alpha \in(0, y]$ we have $\mu_{A_{Q}}^{i}(u, q)=y \geq \alpha, i=1,2, \ldots, k$.
Thus, ${ }_{\alpha} A_{Q}=\alpha$.
Hence, $\left(\mathrm{U}_{\alpha \in[0,1]} A_{Q}\right)(u, q)=\sup _{\alpha \in(0, y]} \alpha=y=\mu_{A_{Q}}^{i}(u, q), i=1,2, \ldots, k$.
As the same argument is valid for each $(u, q) \in A_{Q}$, it follows that each multi Q-fuzzy set can be uniquely represented as the family of all its α-cuts.

Theorem 2.2.4 Second Decomposition Theorem (Isah, 2019)
Let $A_{Q} \in M^{k} Q F(U)$, then $A_{Q}=\cup_{\alpha \in[0,1]}{ }_{\alpha+} A_{Q}$.

Proof

For each $(u, q) \in A_{Q}$, let $y=\mu_{A_{Q}}^{i}(u, q), i=1,2, \ldots, k$. Then,
$\left(\mathrm{U}_{\alpha \in[0,1] \alpha+} A_{Q}\right)(u, q)=\operatorname{Sup}_{\alpha \in(0,1]}{ }_{\alpha+} A_{Q}=\max \left[\sup _{\alpha \in(0, y]}{ }^{\alpha+} A_{Q}, \sup _{\alpha \in(y, 1]}{ }^{\alpha+} A_{Q}\right]$.
Hence, $\left(\mathrm{U}_{\alpha \in[0,1] \alpha+} A_{Q}\right)(u, q)=\operatorname{Sup}_{\alpha \in(0, y]} \alpha=y=\mu_{A_{Q}}^{i}(u, q), i=1,2, \ldots, k$.
As the same argument is valid for each $(u, q) \in A_{Q}$, it follows that each multi Q-fuzzy set can be uniquely represented as the family of all its strong α-cuts.

Our presentions in the prelimineries and a-cuts in multi Q-fuzzy sets leads us to establish our results which is the introduction of inverse α-cuts and its distinctive features in multi Q-fuzzy sets.

RESULTS

In this section the concept of inverse α-Cuts and their properties in multi Q-fuzzy sets were introduced. It is shown that both first and second decomposition theorems of a multi Qfuzzy set fails even though they hold in terms of α-cuts. Also, unlike α-cuts, it was presented that, a multi Q-fuzzy set cannot be uniquely represented as the family of all its weak inverse α-cuts.

Inverse a-cuts in Multi Q-fuzzy set

Based on the prelimineries and the ideas from α-cuts in multi Q-fuzzy sets the following Definition is presented.

Definition 3.1.1

Let $A_{Q} \in M^{k} Q F(U)$ and $\alpha \in[0,1]$. Then the inverse α-cut of A_{Q}, denoted ${ }^{\alpha} A_{Q}^{-1}$ is defined as
${ }^{\alpha} A_{Q}^{-1}=\left\{(u, q) / A_{m}: \mu_{A_{Q}}(u, q)<\alpha\right\}$ with A_{m} the cardinality of $\mu(u, q)$ such that $\mu(u, q)<\alpha$.
The weak inverse α-cut of A_{Q}, denoted ${ }^{\alpha-} A_{Q}^{-1}$ is defined as

BAJOPAS Volume 15 Number 1, June, 2022
${ }^{\alpha-} A_{Q}^{-1}=\left\{(u, q) / A_{m}: \mu_{A_{Q}}(u, q) \leq \alpha\right\}$ with A_{m} the cardinality of $\mu(u, q)$ such that $\mu(u, q) \leq \alpha$.
Exemplifying these we have.

Example 3.1.2

Let $U=\left\{u_{1}, u_{2}\right\}, Q=\{p, q, r\}$ and a multi Q fuzzy set A_{Q} over U and Q be

$$
A_{Q}=\left\{\left(\left(u_{1}, p\right), 0.2,0.7,0.1\right),\left(\left(u_{1}, q\right), 0.6,0.2,0.1\right),\left(\left(u_{2}, p\right), 0.2,0.4,0.3\right),\left(\left(u_{2}, q\right), 0.2,0.8,0\right),\right.
$$

$$
\left.\left(\left(u_{2}, r\right), 0.3,0.3,0.1\right)\right\} .
$$

Then ${ }^{0.1} A_{Q}^{-1}=\left\{\left(u_{2}, q\right) / 1\right\},{ }^{0.2} A_{Q}^{-1}=\left\{\left(u_{1}, p\right) / 1,\left(u_{1}, q\right) / 1,\left(u_{2}, q\right) / 1,\left(u_{2}, r\right) / 1\right\},{ }^{0.5} A_{Q}^{-1}=\left\{\left(u_{1}, p\right) / 2,\left(u_{1}, q\right) /\right.$ $\left.2,\left(u_{2}, p\right) / 3,\left(u_{2}, q\right) / 2,\left(u_{2}, r\right) / 3\right\}, \quad{ }^{0.7} A_{Q}^{-1}=\left\{\left(u_{1}, p\right) / 2,\left(u_{1}, q\right) / 3,\left(u_{2}, p\right) / 3,\left(u_{2}, q\right) / 2,\left(u_{2}, r\right) / 3\right\}, \quad$ and ${ }^{0.8} A_{Q}^{-1}=\left\{\left(u_{1}, p\right) / 3,\left(u_{1}, q\right) / 3,\left(u_{2}, p\right) / 3,\left(u_{2}, q\right) / 2,\left(u_{2}, r\right) / 3\right\}$.

Moreover, $\quad{ }^{0.1-} A_{Q}^{-1}=\left\{\left(u_{1}, p\right) / 1,\left(u_{1}, q\right) / 1,\left(u_{2}, q\right) / 1,\left(u_{2}, r\right) / 1\right\},{ }^{0.3-} A_{Q}^{-1}=\left\{\left(u_{1}, p\right) / 2,\left(u_{1}, q\right) / 2,\left(u_{2}, p\right) /\right.$ $\left.2,\left(u_{2}, q\right) / 2,\left(u_{2}, r\right) / 3\right\},{ }^{0.4-} A_{Q}^{-1}=\left\{\left(u_{1}, p\right) / 2,\left(u_{1}, q\right) / 2,\left(u_{2}, p\right) / 3,\left(u_{2}, q\right) / 2,\left(u_{2}, r\right) / 3\right\} \quad$ and $\quad{ }^{0.9-} A_{Q}^{-1}=$ $\left\{\left(u_{1}, p\right) / 3,\left(u_{1}, q\right) / 3,\left(u_{2}, p\right) / 3,\left(u_{2}, q\right) / 3,\left(u_{2}, r\right) / 3\right\}$.

Remark 3.1.3 First Decomposition theorem of a multi Q-fuzzy set fails. Example 3.1.4

Let A_{Q} be as of example 3.1.2, then we have its distinct inverse α-cuts defined by characteristic functions considered as special membership functions as:

$$
\begin{aligned}
&{ }^{0.1} A_{Q}^{-1}=\left\{\left(\left(u_{1}, p\right), 0,0,0\right),\left(\left(u_{1}, q\right), 0,0,0\right),\left(\left(u_{2}, p\right), 0,0,0\right),\left(\left(u_{2}, q\right), 0,0,1\right),\left(\left(u_{2}, r\right), 0,0,0\right)\right\} . \\
&{ }^{0.2} A_{Q}^{-1}=\left\{\left(\left(u_{1}, p\right), 0,0,1\right),\left(\left(u_{1}, q\right), 0,0,1\right),\left(\left(u_{2}, p\right), 0,0,0\right),\left(\left(u_{2}, q\right), 0,0,1\right),\left(\left(u_{2}, r\right), 0,0,1\right)\right\} . \\
&{ }^{0.3} A_{Q}^{-1}=\left\{\left(\left(u_{1}, p\right), 1,0,1\right),\left(\left(u_{1}, q\right), 0,1,1\right),\left(\left(u_{2}, p\right), 1,0,0\right),\left(\left(u_{2}, q\right), 1,0,1\right),\left(\left(u_{2}, r\right), 0,0,1\right)\right\} . \\
&{ }^{0.4} A_{Q}^{-1}=\left\{\left(\left(u_{1}, p\right), 1,0,1\right),\left(\left(u_{1}, q\right), 0,1,1\right),\left(\left(u_{2}, p\right), 1,0,1\right),\left(\left(u_{2}, q\right), 1,0,1\right),\left(\left(u_{2}, r\right), 1,1,1\right)\right\} . \\
&{ }^{0.5} A_{Q}^{-1}=\left\{\left(\left(u_{1}, p\right), 1,0,1\right),\left(\left(u_{1}, q\right), 0,1,1\right),\left(\left(u_{2}, p\right), 1,1,1\right),\left(\left(u_{2}, q\right), 1,0,1\right),\left(\left(u_{2}, r\right), 1,1,1\right)\right\} . \\
&{ }^{0.6} A_{Q}^{-1}=\left\{\left(\left(u_{1}, p\right), 1,0,1\right),\left(\left(u_{1}, q\right), 0,1,1\right),\left(\left(u_{2}, p\right), 1,1,1\right),\left(\left(u_{2}, q\right), 1,0,1\right),\left(\left(u_{2}, r\right), 1,1,1\right)\right\} . \\
&{ }^{0.7} A_{Q}^{-1}=\left\{\left(\left(u_{1}, p\right), 1,0,1\right),\left(\left(u_{1}, q\right), 1,1,1\right),\left(\left(u_{2}, p\right), 1,1,1\right),\left(\left(u_{2}, q\right), 1,0,1\right),\left(\left(u_{2}, r\right), 1,1,1\right)\right\} . \\
&{ }^{0.8} A_{Q}^{-1}=\left\{\left(\left(u_{1}, p\right), 1,1,1\right),\left(\left(u_{1}, q\right), 1,1,1\right),\left(\left(u_{2}, p\right), 1,1,1\right),\left(\left(u_{2}, q\right), 1,0,1\right),\left(\left(u_{2}, r\right), 1,1,1\right)\right\} . \\
&{ }_{0.9} A_{Q}^{-1}=\left\{\left(\left(u_{1}, p\right), 1,1,1\right),\left(\left(u_{1}, q\right), 1,1,1\right),\left(\left(u_{2}, p\right), 1,1,1\right),\left(\left(u_{2}, q\right), 1,1,1\right),\left(\left(u_{2}, r\right), 1,1,1\right)\right\} . \\
&{ }^{1} A_{Q}^{-1}=\left\{\left(\left(u_{1}, p\right), 1,1,1\right),\left(\left(u_{1}, q\right), 1,1,1\right),\left(\left(u_{2}, p\right), 1,1,1\right),\left(\left(u_{2}, q\right), 1,1,1\right),\left(\left(u_{2}, r\right), 1,1,1\right)\right\} .
\end{aligned}
$$

Thus, converting each of the above inverse α-cuts to a special Multi Q-fuzzy Set ${ }_{\alpha} A_{Q}^{-1}$ defined for each $(u, q) \in A_{Q}$ as

$$
{ }_{\alpha} A_{Q}=\alpha \cdot\left({ }_{\alpha} A_{Q}^{-1}\right)
$$

we get

$$
\begin{aligned}
& { }_{0.1} A_{Q}^{-1}=\left\{\left(\left(u_{1}, p\right), 0,0,0\right),\left(\left(u_{1}, q\right), 0,0,0\right),\left(\left(u_{2}, p\right), 0,0,0\right),\left(\left(u_{2}, q\right), 0,0,0.1\right),\left(\left(u_{2}, r\right), 0,0,0\right)\right\} . \\
& { }_{0.2} A_{Q}^{-1}=\left\{\left(\left(u_{1}, p\right), 0,0,0.2\right),\left(\left(u_{1}, q\right), 0,0,0.2\right),\left(\left(u_{2}, p\right), 0,0,0\right),\left(\left(u_{2}, q\right), 0,0,0.2\right),\right. \\
& \left.\left(\left(u_{2}, r\right), 0,0,0.2\right)\right\} \text {. } \\
& { }_{0.3} A_{Q}^{-1}=\left\{\left(\left(u_{1}, p\right), 0.3,0,0.3\right),\left(\left(u_{1}, q\right), 0,0.3,0.3\right),\left(\left(u_{2}, p\right), 0.3,0,0\right),\left(\left(u_{2}, q\right), 0.3,0,0.3\right)\right. \text {, } \\
& \left.\left(\left(u_{2}, r\right), 0,0,0.3\right)\right\} \text {. } \\
& { }_{0.4} A_{Q}^{-1}=\left\{\begin{array}{c}
\left(\left(u_{1}, p\right), 0.4,0,0.4\right),\left(\left(u_{1}, q\right), 0,0.4,0.4\right),\left(\left(u_{2}, p\right), 0.4,0,0.4\right),\left(\left(u_{2}, q\right), 0.4,0,0.4\right), \\
\left(\left(u_{2}, r\right), 0.4,0.4,0.4\right)
\end{array}\right\} . \\
& { }_{0.6} A_{Q}^{-1}=\left\{\begin{array}{c}
\left(\left(u_{1}, p\right), 0.6,0,0.6\right),\left(\left(u_{1}, q\right), 0,0.6,0.6\right),\left(\left(u_{2}, p\right), 0.6,0.6,0.6\right),\left(\left(u_{2}, q\right), 0.6,0,0.6\right), \\
\left(\left(u_{2}, r\right), 0.6,0.6,0.6\right)
\end{array}\right\} . \\
& { }_{0.7} A_{Q}^{-1}=\left\{\begin{array}{c}
\left(\left(u_{1}, p\right), 0.7,0,0.7\right),\left(\left(u_{1}, q\right), 0.7,0.7,0.7\right),\left(\left(u_{2}, p\right), 0.7,0.7,0.7\right),\left(\left(u_{2}, q\right), 0.7,0,0.7\right), \\
\left(\left(u_{2}, r\right), 0.7,0.7,0.7\right)
\end{array}\right\} . \\
& { }_{0.8} A_{Q}^{-1}=\left\{\begin{array}{c}
\left(\left(u_{1}, p\right), 0.8,0.8,0.8\right),\left(\left(u_{1}, q\right), 0.8,0.8,0.8\right),\left(\left(u_{2}, p\right), 0.8,0.8,0.8\right), \\
\left(\left(u_{2}, q\right), 0.8,0,0.8\right),\left(\left(u_{2}, r\right), 0.8,0.8,0.8\right)
\end{array}\right\} .
\end{aligned}
$$

Observed that ${ }_{0.1} A_{Q}^{-1} \cup_{0.2} A_{Q}^{-1} \cup_{0.3} A_{Q}^{-1} \cup_{0.4} A_{Q}^{-1} \cup_{0.6} A_{Q}^{-1} \cup_{0.7} A_{Q}^{-1} \cup_{0.8} A_{Q}^{-1} \neq A_{Q}$.
In other words, contrary to the case of α-cuts, a Multi Q -fuzzy Set A_{Q} cannot be represented as the union of its special inverse α-cuts ${ }_{\alpha} A_{Q}^{-1}$.

BAJOPAS Volume 15 Number 1, June, 2022

Remark 3.1.5 Second Decomposition theorem of a multi Q-fuzzy set fails.
 Example 3.1.6

Let the following distinct weak inverse α-cut of A_{Q} in example 3.1.2 defined by characteristic functions be considered as special membership functions:

$$
\begin{aligned}
{ }^{0.1-} A_{Q}^{-1} & =\left\{\left(\left(u_{1}, p\right), 0,0,1\right),\left(\left(u_{1}, q\right), 0,0,1\right),\left(\left(u_{2}, p\right), 0,0,0\right),\left(\left(u_{2}, q\right), 0,0,1\right),\left(\left(u_{2}, r\right), 0,0,1\right)\right\} . \\
{ }^{0.2-} A_{Q}^{-1} & =\left\{\left(\left(u_{1}, p\right), 1,0,1\right),\left(\left(u_{1}, q\right), 0,1,1\right),\left(\left(u_{2}, p\right), 1,0,0\right),\left(\left(u_{2}, q\right), 1,0,1\right),\left(\left(u_{2}, r\right), 0,0,1\right)\right\} . \\
{ }^{0.3-} A_{Q}^{-1} & =\left\{\left(\left(u_{1}, p\right), 1,0,1\right),\left(\left(u_{1}, q\right), 0,1,1\right),\left(\left(u_{2}, p\right), 1,0,1\right),\left(\left(u_{2}, q\right), 1,0,1\right),\left(\left(u_{2}, r\right), 1,1,1\right)\right\} . \\
0.4-A_{Q}^{-1} & =\left\{\left(\left(u_{1}, p\right), 1,0,1\right),\left(\left(u_{1}, q\right), 0,1,1\right),\left(\left(u_{2}, p\right), 1,1,1\right),\left(\left(u_{2}, q\right), 1,0,1\right),\left(\left(u_{2}, r\right), 1,1,1\right)\right\} . \\
{ }^{0.6-} A_{Q}^{-1} & =\left\{\left(\left(u_{1}, p\right), 1,0,1\right),\left(\left(u_{1}, q\right), 1,1,1\right),\left(\left(u_{2}, p\right), 1,1,1\right),\left(\left(u_{2}, q\right), 1,0,1\right),\left(\left(u_{2}, r\right), 1,1,1\right)\right\} . \\
0.7-A_{Q}^{-1} & =\left\{\left(\left(u_{1}, p\right), 1,1,1\right),\left(\left(u_{1}, q\right), 1,1,1\right),\left(\left(u_{2}, p\right), 1,1,1\right),\left(\left(u_{2}, q\right), 1,0,1\right),\left(\left(u_{2}, r\right), 1,1,1\right)\right\} . \\
0.8- & A_{Q}^{-1}
\end{aligned}=\left\{\left(\left(u_{1}, p\right), 1,1,1\right),\left(\left(u_{1}, q\right), 1,1,1\right),\left(\left(u_{2}, p\right), 1,1,1\right),\left(\left(u_{2}, q\right), 1,1,1\right),\left(\left(u_{2}, r\right), 1,1,1\right)\right\} .
$$

Thus, converting each of the above weak inverse α-cuts to a special Multi Q-fuzzy Set ${ }_{\alpha-} A_{Q}^{-1}$ defined for each $(u, q) \in A_{Q}$ as ${ }_{\alpha} A_{Q}=\alpha .\left({ }_{\alpha-} A_{Q}^{-1}\right)$

we get

$$
\begin{aligned}
& { }_{0.1-} A_{Q}^{-1}=\left\{\left(\left(u_{1}, p\right), 0,0,0.1\right),\left(\left(u_{1}, q\right), 0,0,0.1\right),\left(\left(u_{2}, p\right), 0,0,0\right),\left(\left(u_{2}, q\right), 0,0,0.1\right)\right. \text {, } \\
& \left.\left(\left(u_{2}, r\right), 0,0,0.1\right)\right\} \text {. } \\
& { }_{0.2} A_{Q}^{-1}=\left\{\left(\left(u_{1}, p\right), 0.2,0,0.2\right),\left(\left(u_{1}, q\right), 0,0.2,0.2\right),\left(\left(u_{2}, p\right), 0.2,0,0\right),\left(\left(u_{2}, q\right), 0.2,0,0.2\right),\right. \\
& \left.\left(\left(u_{2}, r\right), 0,0,0.2\right)\right\} \text {. } \\
& { }_{0.3}-A_{Q}^{-1}=\left\{\left(\left(u_{1}, p\right), 0.3,0,0.3\right),\left(\left(u_{1}, q\right), 0,0.3,0.3\right),\left(\left(u_{2}, p\right), 0.3,0,0.3\right),\left(\left(u_{2}, q\right), 0.3,0,0.3\right),\right. \\
& \left.\left(\left(u_{2}, r\right), 0.3,0.3,0.3\right)\right\} . \\
& { }_{0.4-} A_{Q}^{-1}=\left\{\begin{array}{c}
\left(\left(u_{1}, p\right), 0.4,0,0.4\right),\left(\left(u_{1}, q\right), 0,0.4,0.4\right),\left(\left(u_{2}, p\right), 0.4,0.4,0.4\right), \\
\left(\left(u_{2}, q\right), 0.4,0,0.4\right),\left(\left(u_{2}, r\right), 0.4,0.4,0.4\right)
\end{array}\right\} . \\
& { }_{0.6-} A_{Q}^{-1}=\left\{\begin{array}{c}
\left(\left(u_{1}, p\right), 0.6,0,0.6\right),\left(\left(u_{1}, q\right), 0.6,0.6,0.6\right),\left(\left(u_{2}, p\right), 0.6,0.6,0.6\right), \\
\left(\left(u_{2}, q\right), 0.6,0,0.6\right),\left(\left(u_{2}, r\right), 0.6,0.6,0.6\right)
\end{array}\right\} . \\
& { }_{0.7}-A_{Q}^{-1}=\left\{\begin{array}{c}
\left(\left(u_{1}, p\right), 0.7,0.7,0.7\right),\left(\left(u_{1}, q\right), 0.7,0.7,0.7\right),\left(\left(u_{2}, p\right), 0.7,0.7,0.7\right), \\
\left(\left(u_{2}, q\right), 0.7,0,0.7\right),\left(\left(u_{2}, r\right), 0.7,0.7,0.7\right)
\end{array}\right\} . \\
& { }_{0.8-} A_{Q}^{-1}=\left\{\begin{array}{c}
\left(\left(u_{1}, p\right), 0.8,0.8,0.8\right),\left(\left(u_{1}, q\right), 0.8,0.8,0.8\right),\left(\left(u_{2}, p\right), 0.8,0.8,0.8\right), \\
\left(\left(u_{2}, q\right), 0.8,0.8,0.8\right),\left(\left(u_{2}, r\right), 0.8,0.8,0.8\right)
\end{array}\right\} .
\end{aligned}
$$

Clearly, ${ }_{0.1-} A_{Q}^{-1} \cup_{0.2-} A_{Q}^{-1} \cup_{0.3-} A_{Q}^{-1} \cup_{0.4-} A_{Q}^{-1} \cup_{0.6-} A_{Q}^{-1} \cup_{0.7-} A_{Q}^{-1} \cup_{0.8-} A_{Q}^{-1} \neq A_{Q}$. Thus, each multi Q-fuzzy set cannot be uniquely represented as the family of all its weak inverse α-cuts.

After establishing that both first and second decomposition theorems of a multi Q-fuzzy set fails, we then check the status of commutativity, associativity and containment in terms of inverse and weak inverse α-cuts, which we discovered they all hold by the following theorem.

Theorem 3.1.7 Let $A_{Q}, B_{Q}, C_{Q} \in M^{k} Q F(U)$ and $\alpha \in[0,1]$. Then

$$
\begin{equation*}
{ }^{\alpha} A_{Q}^{-1} \cup{ }^{\alpha} B_{Q}{ }^{-1}={ }^{\alpha} B_{Q}{ }^{-1} \cup{ }^{\alpha} A_{Q}{ }^{-1} \tag{i}
\end{equation*}
$$

(ii) $\quad{ }^{\alpha} A_{Q}{ }^{-1} \cap{ }^{\alpha} B_{Q}{ }^{-1}={ }^{\alpha} B_{Q}{ }^{-1} \cap{ }^{\alpha} A_{Q}{ }^{-1}$,
(iii) $\quad{ }^{\alpha-} A_{Q}{ }^{-1} \cup^{\alpha-} B_{Q}{ }^{-1}={ }^{\alpha-} B_{Q}{ }^{-1} \cup^{\alpha-} A_{Q}{ }^{-1}$,
(iv) $\quad{ }^{\alpha-} A_{Q}{ }^{-1} \cap{ }^{\alpha-} B_{Q}{ }^{-1}={ }^{\alpha-} B_{Q}{ }^{-1} \cap^{\alpha-} A_{Q}{ }^{-1}$,
(v) ${ }^{\alpha} A_{Q}{ }^{-1} \cup\left({ }^{\alpha} B_{Q}{ }^{-1} \cup{ }^{\alpha} C_{Q}{ }^{-1}\right)=\left({ }^{\alpha} A_{Q}{ }^{-1} \cup{ }^{\alpha} B_{Q}{ }^{-1}\right) \cup{ }^{\alpha} C_{Q}{ }^{-1}$,
(vi) ${ }^{\alpha} A_{Q}{ }^{-1} \cap\left({ }^{\alpha} B_{Q}{ }^{-1} \cap{ }^{\alpha} C_{Q}{ }^{-1}\right)=\left({ }^{\alpha} A_{Q}{ }^{-1} \cap{ }^{\alpha} B_{Q}{ }^{-1}\right) \cap{ }^{\alpha} C_{Q}{ }^{-1}$,
(vii) $\quad{ }^{\alpha-} A_{Q}{ }^{-1} \cup\left({ }^{\alpha-} B_{Q}{ }^{-1} \cup{ }^{\alpha-} C_{Q}{ }^{-1}\right)=\left({ }^{\alpha-} A_{Q}{ }^{-1} \cup^{\alpha-} B_{Q}{ }^{-1}\right) \cup{ }^{\alpha-} C_{Q}{ }^{-1}$,
(viii) $\quad{ }^{\alpha-} A_{Q}{ }^{-1} \cap\left({ }^{\alpha-} B_{Q}{ }^{-1} \cap{ }^{\alpha-} C_{Q}{ }^{-1}\right)=\left({ }^{\alpha-} A_{Q}{ }^{-1} \cap^{\alpha-} B_{Q}{ }^{-1}\right) \cap{ }^{\alpha-} C_{Q}{ }^{-1}$,
(ix) $\quad{ }^{\alpha} A_{Q}{ }^{-1} \subseteq{ }^{\alpha-} A_{Q}{ }^{-1}$,
(x) If $\alpha_{1} \leq \alpha_{2} \Rightarrow{ }^{\alpha_{1}} A_{Q}{ }^{-1} \subseteq{ }^{\alpha_{2}} A_{Q}{ }^{-1}$,
(xi) If $\alpha_{1} \leq \alpha_{2} \Rightarrow{ }^{\alpha_{1}-} A_{Q}{ }^{-1} \subseteq{ }^{\alpha_{2}-} A_{Q}{ }^{-1}$.

BAJOPAS Volume 15 Number 1, June, 2022
Proof
(i) Let ${ }^{\alpha} C_{Q}{ }^{-1}={ }^{\alpha} A_{Q}{ }^{-1} \cup^{\alpha} B_{Q}{ }^{-1}$ and let $(u, q) / C_{m} \in{ }^{\alpha} C_{Q}{ }^{-1}$
$\Rightarrow(u, q) / C_{m} \in{ }^{\alpha} A_{Q}{ }^{-1} \cup{ }^{\alpha} B_{Q}{ }^{-1}$
$\Rightarrow(u, q) / C_{m} \in{ }^{\alpha} A_{Q}{ }^{-1}$ or $(u, q) / C_{m} \in{ }^{\alpha} B_{Q}{ }^{-1}$
i.e., $(u, q) / A_{m} \in{ }^{\alpha} A_{Q}{ }^{-1}$ or $(u, q) / B_{m} \in{ }^{\alpha} B_{Q}{ }^{-1}$
$\Rightarrow \mu_{A_{Q}}(u, q)<\alpha, \forall\left((u, q), \mu_{i}(u, q)\right) \in A_{Q}$ or $\mu_{B_{Q}}(u, q)<\alpha, \forall\left((u, q), \mu_{i}(u, q)\right) \in B_{Q}$
$\Rightarrow \mu_{B_{Q}}(u, q)<\alpha, \forall\left((u, q), \mu_{i}(u, q)\right) \in B_{Q}$ or $\mu_{A_{Q}}(u, q)<\alpha, \forall\left((u, q), \mu_{i}(u, q)\right) \in A_{Q}$
$\Rightarrow(u, q) / B_{m} \in{ }^{\alpha} B_{Q}{ }^{-1}$ or $(u, q) / A_{m} \in{ }^{\alpha} A_{Q}{ }^{-1}$
$\Rightarrow(u, q) / C_{m} \in{ }^{\alpha} B_{Q}{ }^{-1}$ or $(u, q) / C_{m} \in{ }^{\alpha} A_{Q}{ }^{-1}$
i.e., $(u, q) / C_{m} \in{ }^{\alpha} B_{Q}{ }^{-1} \cup{ }^{\alpha} A_{Q}{ }^{-1}$
i.e., ${ }^{\alpha} A_{Q}{ }^{-1} \cup{ }^{\alpha} B_{Q}{ }^{-1} \subseteq{ }^{\alpha} B_{Q}{ }^{-1} \cup{ }^{\alpha} A_{Q}{ }^{-1}$

Similarly, ${ }^{\alpha} B_{Q}{ }^{-1} \cup{ }^{\alpha} A_{Q}{ }^{-1} \subseteq{ }^{\alpha} A_{Q}{ }^{-1} \cup{ }^{\alpha} B_{Q}{ }^{-1}$.
The proofs of (ii), (iii) and (iv) are analogous to that of (i).
(v) Let $\left({ }^{\alpha} B_{Q}{ }^{-1} \cup^{\alpha} C_{Q}{ }^{-1}\right)={ }^{\alpha} D_{Q}{ }^{-1}$ and $\left({ }^{\alpha} A_{Q}{ }^{-1} U^{\alpha} B_{Q}{ }^{-1}\right)={ }^{\alpha} F_{Q}{ }^{-1}$.

Let ${ }^{\alpha} A_{Q}{ }^{-1} \cup\left({ }^{\alpha} B_{Q}{ }^{-1} \cup{ }^{\alpha} C_{Q}{ }^{-1}\right)={ }^{\alpha} E_{Q}{ }^{-1}$ and let $(u, q) / E_{m} \in{ }^{\alpha} E_{Q}{ }^{-1}$
$\Rightarrow(u, q) / A_{m} \in{ }^{\alpha} A_{Q}{ }^{-1}$ or $(u, q) / D_{m} \in\left({ }^{\alpha} B_{Q}{ }^{-1} \cup{ }^{\alpha} C_{Q}{ }^{-1}\right)$
$\Rightarrow(u, q) / A_{m} \in{ }^{\alpha} A_{Q}{ }^{-1}$ or $(u, q) / B_{m} \in{ }^{\alpha} B_{Q}{ }^{-1}$ or $(u, q) / C_{m} \in{ }^{\alpha} C_{Q}{ }^{-1}$
$\Rightarrow \mu_{A_{Q}}(u, q)<\alpha, \forall\left((u, q), \mu_{i}(u, q)\right) \in A_{Q}$ or $\mu_{B_{Q}}(u, q)<\alpha, \forall\left((u, q), \mu_{i}(u, q)\right) \in B_{Q}$ or
$\mu_{C_{Q}}(u, q)<\alpha, \forall\left((u, q), \mu_{i}(u, q)\right) \in C_{Q}$
$\Rightarrow \mu_{F_{Q}}(u, q)<\alpha, \forall\left((u, q), \mu_{i}(u, q)\right) \in F_{Q}$ or $\mu_{C_{Q}}(u, q)<\alpha, \forall\left((u, q), \mu_{i}(u, q)\right) \in C_{Q}$
$\Rightarrow(u, q) / F_{m} \in\left({ }^{\alpha} A_{Q}{ }^{-1} \cup{ }^{\alpha} B_{Q}{ }^{-1}\right)$ or $(u, q) / C_{m} \in{ }^{\alpha} C_{Q}{ }^{-1}$
$\Rightarrow(u, q) / E_{m} \in\left({ }^{\alpha} A_{Q}{ }^{-1} \cup{ }^{\alpha} B_{Q}{ }^{-1}\right) \cup{ }^{\alpha} C_{Q}{ }^{-1}$
$\Rightarrow{ }^{\alpha} A_{Q}{ }^{-1} \cup\left({ }^{\alpha} B_{Q}{ }^{-1} \cup{ }^{\alpha} C_{Q}{ }^{-1}\right) \subseteq\left({ }^{\alpha} A_{Q}{ }^{-1} \cup{ }^{\alpha} B_{Q}{ }^{-1}\right) \cup{ }^{\alpha} C_{Q}{ }^{-1}$
Similarly, $\left({ }^{\alpha} A_{Q}{ }^{-1} \cup{ }^{\alpha} B_{Q}{ }^{-1}\right) \cup{ }^{\alpha} C_{Q}{ }^{-1} \subseteq{ }^{\alpha} A_{Q}{ }^{-1} \cup\left({ }^{\alpha} B_{Q}{ }^{-1} \cup{ }^{\alpha} C_{Q}{ }^{-1}\right)$
The proofs of (vi) and (vii) are analogous to that of (v).
(viii) Let $\left({ }^{\alpha-} B_{Q}{ }^{-1} \cap{ }^{\alpha-} C_{Q}{ }^{-1}\right)={ }^{\alpha-} H_{Q}{ }^{-1}$ and $\left({ }^{\alpha-} A_{Q}{ }^{-1} \cap^{\alpha-} B_{Q}{ }^{-1}\right)={ }^{\alpha-} J_{Q}{ }^{-1}$.

Let ${ }^{\alpha-} K_{Q}{ }^{-1}={ }^{\alpha-} A_{Q}{ }^{-1} \cap\left({ }^{\alpha-} B_{Q}{ }^{-1} \cap{ }^{\alpha-} C_{Q}{ }^{-1}\right)$ and for any $(u, q) / K_{m} \in{ }^{\alpha-} K_{Q}{ }^{-1}$
we have $(u, q) / A_{m} \in{ }^{\alpha-} A_{Q}{ }^{-1}$ and $(u, q) / H_{m} \in\left({ }^{\alpha-} B_{Q}{ }^{-1} \cap^{\alpha-} C_{Q}{ }^{-1}\right)$
$\Rightarrow(u, q) / A_{m} \in{ }^{\alpha-} A_{Q}{ }^{-1}$ and $(u, q) / B_{m} \in{ }^{\alpha-} B_{Q}{ }^{-1}$ and $(u, q) / C_{m} \in{ }^{\alpha-} C_{Q}{ }^{-1}$
$\Rightarrow \mu_{A_{Q}}(u, q) \leq \alpha, \forall\left((u, q), \mu_{i}(u, q)\right) \in A_{Q} \quad$ and $\quad \mu_{B_{Q}}(u, q) \leq \alpha, \forall\left((u, q), \mu_{i}(u, q)\right) \in B_{Q}$ and $\mu_{C_{Q}}(u, q) \leq$
$\alpha, \forall\left((u, q), \mu_{i}(u, q)\right) \in C_{Q}$
$\Rightarrow \mu_{J_{Q}}(u, q) \leq \alpha, \forall\left((u, q), \mu_{i}(u, q)\right) \in J_{Q}$ and $\mu_{C_{Q}}(u, q) \leq \alpha, \forall\left((u, q), \mu_{i}(u, q)\right) \in C_{Q}$
$\Rightarrow(u, q) / J_{m} \in\left({ }^{\alpha-} A_{Q}{ }^{-1} \cap{ }^{\alpha-} B_{Q}{ }^{-1}\right)$ and $(u, q) / C_{m} \in{ }^{\alpha-} C_{Q}{ }^{-1}$
$\Rightarrow(u, q) / K_{m} \in\left({ }^{\alpha-} A_{Q}{ }^{-1} \cap^{\alpha-} B_{Q}{ }^{-1}\right) \cap^{\alpha-} C_{Q}{ }^{-1}$
$\Rightarrow^{\alpha-} A_{Q}{ }^{-1} \cap\left({ }^{\alpha-} B_{Q}{ }^{-1} \cap{ }^{\alpha-} C_{Q}{ }^{-1}\right) \subseteq\left({ }^{\alpha-} A_{Q}{ }^{-1} \cap{ }^{\alpha-} B_{Q}{ }^{-1}\right) \cap{ }^{\alpha-} C_{Q}{ }^{-1}$
Similarly, $\left({ }^{\alpha-} A_{Q}{ }^{-1} \cap{ }^{\alpha-} B_{Q}{ }^{-1}\right) \cap{ }^{\alpha-} C_{Q}{ }^{-1} \subseteq{ }^{\alpha-} A_{Q}{ }^{-1} \cap\left({ }^{\alpha-} B_{Q}{ }^{-1} \cap^{\alpha-} C_{Q}{ }^{-1}\right)$.
(ix) Let $(u, q) / A_{m} \in{ }^{\alpha} A_{Q}{ }^{-1} \Rightarrow \mu_{A_{Q}}(u, q)<\alpha, \forall\left((u, q), \mu_{i}(u, q)\right) \in A_{Q}$.
$\Rightarrow \mu_{A_{Q}}(u, q) \leq \alpha, \forall\left((u, q), \mu_{i}(u, q)\right) \in A_{Q}$
$\Rightarrow(u, q) / A_{m} \in{ }^{\alpha-} A_{Q}{ }^{-1}$
i.e., ${ }^{\alpha} A_{Q}{ }^{-1} \subseteq{ }^{\alpha-} A_{Q}{ }^{-1}$.
(x) $(u, q) / A_{m} \in{ }^{\alpha_{1}} A_{Q}{ }^{-1} \Rightarrow \mu_{A_{Q}}(u, q)<\alpha_{1}, \forall\left((u, q), \mu_{i}(u, q)\right) \in A_{Q}$,
$\Rightarrow \mu_{A_{Q}}(u, q)<\alpha_{2}, \forall\left((u, q), \mu_{i}(u, q)\right) \in A_{Q}$ since $\alpha_{1} \leq \alpha_{2}$
$\Rightarrow(u, q) / A_{m} \in{ }^{\alpha_{2}} A_{Q}{ }^{-1}$,
i.e., ${ }^{\alpha_{1}} A_{Q}{ }^{-1} \subseteq{ }^{\alpha_{2}} A_{Q}{ }^{-1}$.
(xi) $(u, q) / A_{m} \in{ }^{\alpha_{1-}} A_{Q}{ }^{-1} \Rightarrow \mu_{A_{Q}}(u, q) \leq \alpha_{1}, \forall\left((u, q), \mu_{i}(u, q)\right) \in A_{Q}$,
$\Rightarrow \mu_{A_{Q}}(u, q) \leq \alpha_{2}, \forall\left((u, q), \mu_{i}(u, q)\right) \in A_{Q}$ since $\alpha_{1} \leq \alpha_{2}$
$\Rightarrow(u, q) / A_{m} \in^{\alpha_{2}-} A_{Q}{ }^{-1}$,
i.e., ${ }^{\alpha_{1-}} A_{Q}{ }^{-1} \subseteq{ }^{\alpha_{2-}} A_{Q}{ }^{-1}$.

DISCUSSION

The idea of a-cuts and their properties in Multi Q-fuzzy sets were presented in (Isah, 2019) where various theorems were established and proved. In this work we introduced inverse a-cut in multi Q-fuzzy set and compare it with a-cut in (Isah, 2019). We discovered that similar to acut; commutativity, associativity and containment in terms of inverse and weak inverse α-cuts hold. Also, some theorems such as First and second Decomposition theorems of a multi Q-fuzzy set which hold in a-cuts actually fails in the inverse a-cuts. Furthermore, contrary to the case of α-cuts, a Multi Q-fuzzy set cannot be uniquely represented either as the union of its inverse α-cuts nor as the family of all its

REFERENCES

Adam, F. and Hassan, N. (2014). Multi Q-fuzzy parameterized soft set and its application, Journal of Intelligent and Fuzzy Systems 27(1) 419-424.
Adam, F. and Hassan, N. (2014a). Q-fuzzy soft matrix and its application. AIP Conference Proceedings, 1602, 772778.

Adam, F. and Hassan, N. (2015). Multi Q-fuzzy soft set and its application. Far East Journal of

Mathematical Sciences, 97(7) 871-881.
Adam, F. and Hassan, N. (2016). Multi Q-fuzzy soft expert set and its application. Journal of Intelligent and Fuzzy Systems, 30 (2) 943-950.
Alkali, A. J. and Isah, A. I. (2018). An Extension of n-level set to Multi-fuzzy sets, ABACUS (Mathematics Science Series), 45 (1) 237-244.
Alkali, A. J. and Isah, A. I. (2019). a-Cuts and inverse a-Cuts in fuzzy soft sets, Bayero Journal of Pure and Applied Sciences, 12 (1) $155-160$.
Brown, J. G. (1971). A note on Fuzzy sets, Information and Control, 18, 32-39.
Chutia, R., Mahanta, S. and Baruah, H. K. (2010). An alternative method of finding the membership of a fuzzy number, International Journal of Latest Trends in Computing, 1 (2) 69-72.
Dutta, P., Boruah, H. and Ali, T. (2011). Fuzzy arithmetic with and without using α-cut method:

A comparative study, International Journal of Latest Trends in Computing, 2 (1) 99-107.
Isah, A. I. (2019a). An Introduction of the Concept of n-level Soft set, ABACUS,
weak inverse α-cuts. The implications of these results are that a multi Q-fuzzy set A_{Q} can be represented as the union of its α-cuts and strong α-cuts in a unique way while it cannot be uniquely represented as the union of its inverse α-cuts and weak inverse α-Cuts which shows that some properties holding in α-cuts fails in inverse α-cuts of a multi Q-fuzzy set.

CONCLUSION

Inverse α-Cuts and their properties in multi Qfuzzy sets are described. It is shown that unlike α-Cuts, multi Q-fuzzy sets cannot be decomposed into its inverse α-cuts or into its weak inverse α-cuts.
(Mathematics Science Series), 46 (1) 628-634.
Isah, A. I. (2019). The Concept of a-Cuts in Multi Q-Fuzzy Set, Science World Journal, 14 (2) 42-44.
Isah, A. I., Tella, Y. and Alkali, A. J. (2019). nLevel and n-Upper Level Soft Sets FUDMA Journal of Sciences 3 (4) 285 290.

Jena, S. P., Ghosh, S. K. and Tripathy, B. K. (2001). On the theory of bags and lists, Information Science 132, 241-254.
Klir, G. J. and Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall.
Kreinovich, V. (2013). Membership functions or α-cuts? Algorithmic (constructivist) analysis justifies an interval approach, Appl. Math. Sci. (Ruse) 7(5) 217-228.
Singh, D., Alkali, A. J. and Isah, A. I. (2014). Some applications of α-cuts in fuzzy multiset theory, Journal of Emerging Trends in Computing and Information Sciences 5 (4) 328- 335.
Singh, D., Alkali, A. J. and Isah, A. I. (2015). An extension of the properties of inverse α -cuts to fuzzy multisets, Annals of Fuzzy Mathematics and Informatics, 9 (6) 917-923.
Sun, Z. and Han, J. (2006). Inverse alpha-Cuts and Interval [a, b)-Cuts, Proceedings of the International Conference on Innovative Computing, Information and Control Beijing, IEEE Press, 441-444.
Syropoulos, A. (2012). On generalized fuzzy multisets and their use in computation, Iranian Journal of Fuzzy Systems 9 (2) 113-125.
Zadeh, L. A. (1965). Fuzzy Sets, Information and Control, 8, 338 - 353.

