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ABSTRACT 
In this study, first order fuzzy partial differential equations with negative coefficient on 
one hand and with both positive and negative coefficients on the other hand are solved 
using fuzzy Laplace transform method. The results obtained indicate that all the solutions 
exist and the examples presented illustrate the applicability of the method. 
 
INTRODUCTION 
Fuzzy differential equations (FDEs) appeared as 

a natural way to model the propagation of 

epistemic (relating to) uncertainty in a dynamical 
environment (Bede, 2013). The idea of fuzzy 

number and fuzzy arithmetic was first introduced 
by Zadeh (1965) followed by Dubois and Parade 

(1978). Work that involved fuzzy derivative was 

first introduced by Chang and Zadeh (1972). 
Kaleva (1987) was first to formulate FDEs and 

subsequently, the idea was extended to include 
fuzzy partial derivatives by Buckley and Feuring 

(1999). However, Hukuhara derivative, Zadehs 

extension principle and fuzzy differential 
inclusions are the several ways that FDEs can be 

interpreted (Bede, 2013). 
Laplace transform is a widely used integral 

transform in mathematics with many 
applications in science and engineering (Sawant, 

2018). The Laplace transform of an expression 

 f t  denoted by   L f t  and defined as 

a semi-infinite integral is in the form 

0

{ ( )} e ( )ptL f t f t dt



  . 

The parameter p  assumed to be positive and 

large enough to ensure that the integral 

converges. The Laplace transform  f t  is said 

to exist if the integral  
0

e
p t

f t d t





  converges 

for all values of p, otherwise it does not exist 
(Gomes, et al., 2015). The fuzzy Laplace 

transform method (FLTM) for solving fuzzy 
partial differential equations (FPDEs) has been a 

subject of investigation by researchers like 
Eljaoui and Melliani (2016) and Ullah et al. 

(2018) where they initiated FLTM for the 
solution of FPDEs. 

Eijaoui and Melliani (2016) proposed some 

theorems for the continuity and differentiability 
of a fuzzy valued function defined through a 

fuzzy improper Riemann integral which was used 
to prove some results concerning FLTM in fuzzy 

environment. They also generalized the LTM for 

first order FPDEs with positive constant 

coefficients 0c   under the strongly 

generalized Hukuhara differentiability concept 

where the the solutions of  ,y x t  for some 

cases were obtained. Their work did not 

consider negative coefficients i.e. 0c  . This 

study addresses the condition for 0c  , which 

gives results for negative coefficients only, it is 

also discovered that gap may still exist if we 

consider only 0c   or only 0c   which will be 

taken care of if we consider 0c   and 0c   

together for both positive and negative 

coefficients respectively. 
 

MATERIAL AND METHODS 
Existing Theorems on Results of Some 

FPDEs 

Theorem 2.1 (Eljaoui  Melliani, 2016): Let 

 ;f F   be a continuous fuzzy function 

and      , , ,f t f t r f t r     for every

 0,1r , the following hold. 

(i)  If the fuzzy function  f t  is (i)-

differentiable then  ,f t r  and  ,f t r  are 

both differentiable and 

     , , ,f t f t r f t r      . 
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 (ii) If the fuzzy function  f t  is (ii)-differentiable then  ,f t r  and  ,f t r  are both differentiable 

and      , , ,f t f t r f t r      . 

Theorem 2.2 (Ullah et al, 2018): Let : ( , ) ( , )y a b a b E   be a fuzzy valued function such that its 

derivatives up to the 
thn  order with respect to t are continuous for all 0t   and 

ny  exists, then 

         1 2 1, , ,0 ,0 ... ,0
n

n n n n

n
L y x t p y x p p y x p y x y x

t

   
 

 
Θ Θ Θ Θ  

and 

     , , ,n

n n

n nx

d
L y x t L y x t Y x p

x dx


       

. 

Existing Method for Solution of First Order FPDEs by FLTM due to Eijaoui and Melliani 

(2016) 
Eijaoui and Melliani (2016) developed a method for solving first order FPDEs. Therefore, consider the 

equation below 

      , , , , ,x ty x t cy x t f x t y x t         (2.1) 

with initial condition 

      ,0; , , ,y x r g x r g x r  

and boundary condition 

      0, , , , ,y t r h t r h t r  

where  ,xy x t  and  ,ty x t  are fuzzy valued functions for 0,x   0t  , c  is a real constant and 

  , , ,f x t y x t , is a fuzzy valued function,  ,g x r ,  ,h x r  are the lower cases for the initial and 

the boundary condition and  ,g t r ,  ,h t r  are the upper cases for the initial and boundary 

conditions and   , , ,f x t y x t  is linear with respect to y . Assume 0c   and applying LTM on 

equation (2.1) we have 

      , , , , ,x tL y x t cL y x t L f x t y x t           .     (2.2) 

Four cases aroused in respect of equation (2.2) and used to obtain the solutions of equation (2.1). 

Case 1: If y  is (i)-differentiable with respect to both x  and t , then  by Theorem  (2.1)  equation 

(2.2) become 

      , , , , , , , ,x tL y x t r cL y x t r L f x t y x t r           ,    (2.3) 

      , , , , , , , ,x tL y x t r cL y x t r L f x t y x t r               (2.4) 

where   , , , ,f x t y x t r   = min       , , \ , , , , ,f x t v v y x t r y x t r     

and 

  , , , ,f x t y x t r = max       , , \ , , , , ,f x t v v y x t r y x t r    . 

By Theorem (2.2), equations (2.3) and (2.4) respectively become 

         , , , , , , , , ,L y x t r cpL y x t r cg x r L f x t y x t r
x


           

   (2.5)
 
 

and 

         , , , , , , , , ,L y x t r cpL y x t r cg x r L f x t y x t r
x


           

.   (2.6) 

Equations (2.5) and (2.6) satisfy the following boundary conditions; 

   0, , ,L y t r L h t r               (2.7) 

and 
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   0, , ,L y t r L h t r               (2.8) 

respectively. Assuming that the solutions of equations (2.5) and (2.6) are given as 

   1, , ,L y x t r H p r            (2.9)
 
 

and 

   1, , ,L y x t r K p r    .        (2.10) 

Now, taking the inverse Laplace transform of (2.9) and (2.10), we have 

   1

1, , [ , ]y x t r L H p r ,        (2.11) 

and 

   1

1, , [ , ]y x t r L K p r .        (2.12) 

Case 2: if y  is (i)-differentiable with respect to x  and (ii) differentiable with respect to t . Theorem 

(2.1) and (2.2) hold for equation (2.2) with equations (2.7) and (2.8) satisfied respectively. 

Consequently, the equations obtained below are thus 

         , , , , , , , , ,L y x t r cpL y x t r cg x r L f x t y x t r
x


          

   (2.13) 

and 

         , , , , , , , , ,L y x t r cpL y x t r cg x r L f x t y x t r
x


           

.   (2.14) 

Assuming that the solutions of equations (2.13) and (2.14) are given as 

   2, , ,L y x t r H p r            (2.15) 

and 

   2, , ,L y x t r K p r            (2.16) 

respectively. Taking the inverse Laplace transform of equations (2.15) and (2.16), the results 
obtained are 

   1

2, , [ , ]y x t r L H p r ,        (2.17) 

and 

   1

2, , [ , ]y x t r L K p r .        (2.18) 

Case 3:  If y  is (ii)-differentiable with respect to x  and (i)-differentiable with respect to t . As 

indicated in the last two cases considered above, the following results are also true. 

         , , , , , , , , ,L y x t r cpL y x t r cg x r L f x t y x t r
x


           

   (2.19) 

and 

         , , , , , , , , ,L y x t r cpL y x t r cg x r L f x t y x t r
x


          

   (2.20) 

respectively. Assuming that the solutions of equations (2.19) and (2.20) are given as 

   3, , ,L y x t r H p r            (2.21) 

and 

   3, , ,L y x t r K p r            (2.22) 

Next is to take the inverse Laplace transform of equations (2.21) and (2.22), the following are arrived 

at; 

   1

3, , [ , ]y x t r L H p r         (2.23) 

and 

   1

3, , [ , ]y x t r L K p r .        (2.24) 

Case 4: If y  is (ii)-differentiable with respect to x  and t . After considering Theorem (2.1), (2.2) and 

the boundary conditions therein, the results below are therefore 

         , , , , , , , , ,L y x t r cpL y x t r cg x r L f x t y x t r
x


           

   (2.25) 
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and 

         , , , , , , , , ,L y x t r cpL y x t r cg x r L f x t y x t r
x


           

.   (2.26) 

Assuming that the solutions of equations (3.25) and (3.26) are given as 

   4, , ,L y x t r H p r    ,        (2.27) 

and 

   4, , ,L y x t r K p r    .        (2.28) 

Hence taking the inverse Laplace transform of equations (2.27) and (2.28) respectively, we have 

   1

4, , [ , ]y x t r L H p r         (2.29) 

and 

   1

4, , [ , ]y x t r L K p r .        (2.30) 

 

RESULTS AND DISCUSSION 

Obtaining Solutions of First Order FPDEs for 0c   by FLTM  

 Eljaoui and Melliani (2016) established the result for first order FPDEs with only positive 

coefficients i.e. 0c  , to bridge the gaps in their work, we considered a case of negative coefficients 

0c  , presented below.     

 Consider equation (2.1) but in this case with negative coefficient c . Assume c a   and 

    , , , ,f x t y x t f x r  we have 

     , , ,x ty x t ay x t f x r          (3.4)  

with fuzzy initial conditions 

      ,0, , , ,y x r s x r s x r         (3.5) 

and fuzzy boundary conditions 

      0, , , , ,y t r u t r u t r         (3.6) 

where  ,f x r  is a fuzzy valued function,  ,s x r  and  ,s x r  are the lower and upper cases for 

the appropriate  initial conditions respectively, also  ,u t r  and  ,u t r  are the lower and upper 

cases of the appropriate boundary condition respectively, for 0t  , 0x   and  0,1r . 

Taking Laplace transform of equation (3.4) as expressed in equation (2.2), we have  

     , , ,x tL y x t aL y x t L f x r             .      (3.7) 

Four cases arise as consequence of equation (3.7) which is similar to the cases related to equation 

(2.3) 
Case 1: When y  is (i)-differentiable with respect to both x  and t . We apply Theorem (2.1) on 

equation (3.7), to have 

     , , ,x tL y x t aL y x t L f x r                   (3.8) 

and 

     , , ,x tL y x t aL y x t L f x r            .      (3.9) 

Applying theorem (2.2) on equations (3.8) and (3.9) after which we substituting the initial condition 

(3.5) into it respectively, gives 

        , , , , , , ,
d

Y x p r apY x p r as x r F x p r
dx

        (3.10) 

and 

        , , , , , , ,
d

Y x p r apY x p r as x r F x p r
dx

    .    (3.11) 

Taking the Laplace transform of equation (3.6) gives results similar to that of equations (2.9) and 

(2.10) respectively. Therefore, we have 
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     0, , , ,L y t r L u t r U p r             (3.12) 

and 

     0, , , ,L y t r L u t r U p r        .      (3.13) 

Solving equation (3.10) and (3.11) together with equation (3.12) and (3.13) respectively, we have 

 
       

 
 

 

2 2 2 2

2 2

, , , ,
, , ,

,

apx

apx

apx

s x r s r F x p r F p r s r e
Y x p r U p r e

p ap ap a p ap

F p r e

a p







      

  (3.14) 

and 

 
       

 
 

 

2 2 2 2

2 2

, , , ,
, , ,

,
,

apx

apx

apx

s x r s r F x p r F p r s r e
Y x p r U p r e

p ap ap a p ap

F p r e

a p







      

 (3.15) 

 Taking the inverse Laplace transform of the equations (3.14) and (3.15) we have  

   
     

    

 
   

 
   

2

2

, t, t,
, , ,

,

f x rs r t F r t
y x t r s x r u r t ax H t ax

a a a

f t rs r
t ax H t ax t ax H t ax

a a

       

    

 

and 

   
     

    

 
   

 
   

2

2

, t, t,
, , ,

,
H ,

s r t f x r f r t
y x t r s x r u r t ax H t ax

a a a

s r f t r
t ax H t ax t ax t ax

a a

       

    

 

Case 2: When y  is (i)-differentiable with respect to x  and (ii)-differentiable with respect to t . We 

apply Theorem (2.1) and (2.2) to equation (3.7) and Substituting the initial condition (4.5) into it, 

after which we solve it together with equation (3.12) and (3.13), we arrive at 

 
       

 
 

 

2 2 2 2

2 2

, , , ,
, , ,

,

apx

apx

apx

s x r s r F x p r F p r s r e
Y x p r U p r e

p ap ap a p ap

F p r e

a p







      

  (3.16) 

and  

 
       

 
 

 

2 2 2 2

2 2

, , , ,
, , ,

,
,

apx

apx

apx

s x r s r F x p r F p r s r e
Y x p r U p r e

p ap ap a p ap

F p r e

a p







      

  (3.17) 

 Again, taking the inverse Laplace transform of the equations (3.16) and (3.17) we have  

   
     

    

 
   

 
   

2

2

, t, ,
, , ,

,

f x r f t r ts r t
y x t r s x r u r t ax H t ax

a a a

f t rs r
t ax H t ax t ax H t ax

a a

       

    
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and 

   
     

    

 
   

 
   

2

2

, t, t,
, , ,

s r t f x r f r t
y x t r s x r u r t ax H t ax

a a a

s r f r
t ax H t ax t ax H t ax

a a

       

    

. 

Case 3: When y  is (ii)-differentiable with respect to x  and (i)-differentiable with respect to t .  We 

apply Theorem (2.1) and (2.2) to equation (3.7) and substituting the initial condition (4.5) into it, 

after which we solve it together with equation (3.12) and (3.13), we arrive at 

 
       

 
 

 

2 2 2 2

2 2

, , , ,
, , ,

,

apx

apx

apx

s x r s r F x p r F p r s r e
Y x p r U p r e

p ap ap a p ap

F p r e

a p







      

 (3.18) 

and 

 
       

 
 

 

2 2 2 2

2 2

, , , ,
, , ,

,

apx

apx

apx

s x r s r F x p r F p r s r e
Y x p r U p r e

p ap ap a p ap

F p r e

a p







      

 (3.19) 

 Also, taking the inverse Laplace transform of the equations (3.18) and (3.19), we have 

   
     

    

 
   

 
   

2

2

, t, t,
, , ,

f x r f r ts r t
y x t r s x r u r t ax H t ax

a a a

f rs r
t ax H t ax t ax H t ax

a a

       

    

 

and 

   
     

    

 
   

 
   

2

2

, t, ,
, , ,

s r t f x r f t r t
y x t r s x r u r t ax H t ax

a a a

s r f r
t ax H t ax t ax H t ax

a a

       

    

. 

Case 4: When y  is (ii)-differentiable with respect to both x  and t . We apply Theorem (2.1) and 

(2.2) to equation (3.7) and substituting the initial condition (3.5) into it, after which we solve it 

together with equation (3.12) and (3.13) we have 

 
       

 
 

 

2 2 2 2

2 2

, , , ,
, , ,

,

apx

apx

apx

s x r s r F x p r F p r s r e
Y x p r U p r e

p ap ap a p ap

F p r e

a p







      

 (3.20) 

and 

 
       

 
 

 

2 2 2 2

2 2

, , , ,
, , ,

,
,

apx

apx

apx

s x r s r F x p r F p r s r e
Y x p r U p r e

p ap ap a p ap

F p r e

a p







      

(3.21) 

Therefore, taking the inverse Laplace transform of the equations (3.20) and (3.21), we have 
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   
     

    

 
   

 
   

2

2

, t, t,
, , ,

f x r f r ts r t
y x t r s x r u r t ax H t ax

a a a

f rs r
t ax H t ax t ax H t ax

a a

       

    

 

and  

   
   

    

 
   

 
   2

, t,
, , ,

s r t f x r
y x t r s x r u r t ax H t ax

a a

s r f r
t ax H t ax t ax H t ax

a a

      

    

. 

 Basically, all the cases discussed and the results obtained above have addressed the 

identified gap (for 0c  ) pointed out in the work of Eljaoui and Melliani (2016). Therefore, it is also 

achievable when 0c   is set for negative coefficients of first order FPDEs. 

Obtaining solutions for first order FPDEs for 0c   and 0c   by FLTM 

 Having established the results for 0c   we discovered that gaps may still exist if we ignore 

results for both 0c   and 0c  , so we considered a case for both positive and negative coefficients 

as presented below. Consider equation (2.1) but in this case c  is positive. Assume c a  and 

    , , , ,f x t y x t f x r , gives the equation below  

     , , ,x ty x t ay x t f x r  ,        (3.22) 

with fuzzy initial conditions 

      ,0, , , ,y x r s x r s x r         (3.23) 

and fuzzy boundary conditions 

      0, , , , ,y t r u t r u t r         (3.24) 

where  ,f x r  is a fuzzy valued function,  ,s x r  and  ,s x r  are the appropriate lower and upper 

cases of the initial condition (3.29) respectively also,  ,u t r  and  ,u x r  are the appropriate lower 

and upper cases for the boundary condition (3.30) respectively, with  0t  , 0x   and  0,1r . 

Taking the Laplace transform of equation (3.22) as expressed in equation (2.2), we have 

      , , ,x tL y x t aL y x t L f x r            .      (3.25) 

Four cases arise as a result of equation (3.25) which is similar to cases related to equation (2.3). 
Case 1: When y  is (i)-differentiable with respect to both x  and t .  

Taking the Laplace transform of equation (3.24), the result is similar to that of equation (2.9) and 

(2.10) respectively. Therefore, we arrive at  

     0, , , ,L y t r L u t r U p r              (3.26) 

and 

     0, , , ,L y t r L u t r U p r        .        (3.27) 

We apply Theorem (2.1) and (2.2) on equation (3.25) after which we substitute the initial condition 

(3.23) into it, and solve it together with equation (3.26) and (3.27), we have 

 
       

 
 

 

2 2 2 2

2 2

, , , ,
, , ,

,

apx

apx

apx

s x r s r F x p r F p r s r e
Y x p r U p r e

p ap ap a p ap

F p r e

a p

      

  (3.28) 
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and 

 
       

 
 

 

2 2 2 2

2 2

, , , ,
, , ,

,
,

apx

apx

apx

s x r s r F x p r F p r s r e
Y x p r U p r e

p ap ap a p ap

F p r e

a p

      

  (3.29) 

However, to get the result for both 0c   and 0c  , we add equation (3.14) to (3.28) and equation 

(3.15) to (3.29) and get 

 
   

 
 

 2 2 2 2

2 , 2 , ,
, , , apx apx

s x r F p r F p r
Y x p r U p r e e

p a p a p


 

     
 

     (3.30) 

and  

 
   

 
 

 2 2 2 2

2 , 2 , ,
, , , apx apx

s x r F p r F p r
Y x p r U p r e e

p a p a p


 

     
 

.      (3.31) 

 Now, taking the inverse Laplace transform of the equations (3.30) and (3.31), we have  

   
 

         

 
   

 
   

2

2 2

2 ,
, , 2 ,

f t r t
y x t r s x r u r t ax H t ax u r t ax H t ax

a

f r f r
t ax H t ax t ax H t ax

a a

        

    

 

and 

   
 

         

 
   

 
   

2

2 2

2 ,
, , 2 ,

f t r t
y x t r s x r u r t ax H t ax u r t ax H t ax

a

f r f r
t ax H t ax t ax H t ax

a a

        

    

. 

Case 2: When y  is (i)-differentiable with respect to x  and (ii)-differentiable with respect to t . We 

apply theorem (2.1) and (2.2) on equation (3.25), substituting equation (3.23) to it, and solving it 
together with equation (3.26) and (3.27), we arrive at 

 
       

 
 

 

2 2 2 2

2 2

, , , ,
, , ,

,

apx

apx

apx

s x r s r F x p r F p r s r e
Y x p r U p r e

p ap ap a p ap

F p r e

a p

      

  (3.32) 

and 

 
       

 
 

 

2 2 2 2

2 2

, , , ,
, , ,

,
,

apx

apx

apx

s x r s r F x p r F p r s r e
Y x p r U p r e

p ap ap a p ap

F p r e

a p

      

  (3.33) 

 However, to get the result for both 0c   and 0c  , we add equation (3.16) to (3.32) and equation 

(3.17) to (3.33) and have 

 
   

 
 

 2 2 2 2

2 , 2 , ,
, , , apx apx

s x r F p r F p r
Y x p r U p r e e

p a p a p


 

     
 

     (3.34) 

and 

 
   

 
 

 2 2 2 2

2 , 2 , ,
, , , apx apx

s x r F p r F p r
Y x p r U p r e e

p a p a p


 

     
 

.     (3.35) 

Also, taking the inverse Laplace transform of the equations (3.34) and (3.35), we have 
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   
 

         

 
   

 
   

2

2 2

2 ,
, , 2 ,

f t r t
y x t r s x r u r t ax H t ax u r t ax H t ax

a

f r f r
t ax H t ax t ax H t ax

a a

        

    

 

and 

   
 

         

 
   

 
   

2

2 2

2 ,
, , 2 ,

f t r t
y x t r s x r u r t ax H t ax u r t ax H t ax

a

f r f r
t ax H t ax t ax H t ax

a a

        

    

. 

Case 3: When y  is (ii)-differentiable with respect to x  and (i)-differentiable with respect to t . We 

apply Theorem (2.1) and (2.2) on equation (3.25) and substituting the equation (3.23), after which 
we solve it together with equation (3.26) and (3.27), we have 

 
       

 
 

 

2 2 2 2

2 2

, , , ,
, , ,

,

apx

apx

apx

s x r s r F x p r F p r s r e
Y x p r U p r e

p ap ap a p ap

F p r e

a p

      

  (3.36) 

and 

 
       

 
 

 

2 2 2 2

2 2

, , , ,
, , ,

,
,

apx

apx

apx

s x r s r F x p r F p r s r e
Y x p r U p r e

p ap ap a p ap

F p r e

a p

      

  (3.37) 

However, to get the result for both 0c   and 0c  , we add equation (3.18) to (3.32) and equation 

(3.19) to (3.37) which gives 

 
   

 
 

 2 2 2 2

2 , 2 , ,
, , , apx apx

s x r F p r F p r
Y x p r U p r e e

p a p a p


 

     
 

    (3.38) 

and 

 
   

 
 

 2 2 2 2

2 , 2 , ,
, , , apx apx

s x r F p r F p r
Y x p r U p r e e

p a p a p


 

     
 

,     (3.39) 

 Again, taking the inverse Laplace transform of the equations (3.38) and (3.39), we have 

   
 

         

 
   

 
   

2

2 2

2 ,
, , 2 ,

f t r t
y x t r s x r u r t ax H t ax u r t ax H t ax

a

f r f r
t ax H t ax t ax H t ax

a a

        

    

 

and 

   
 

         

 
   

 
   

2

2 2

2 ,
, , 2 ,

f t r t
y x t r s x r u r t ax H t ax u r t ax H t ax

a

f r f r
t ax H t ax t ax H t ax

a a

        

    

. 

Case 4: When y  is (ii)-differentiable with respect to both x  and t . We apply Theorem (2.1) and 

(2.2) on equation (3.25) and substituting equation (3.23) into it, after which we solve it together with 

equation (3.26) and (3.27), we have 
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 
       

 
 

 

2 2 2 2

2 2

, , , ,
, , ,

,

apx

apx

apx

s x r s r F x p r F p r s r e
Y x p r U p r e

p ap ap a p ap

F p r e

a p

      

  (3.40) 

 

 
 

 
and 

 
       

 
 

 

2 2 2 2

2 2

, , , ,
, , ,

,
,

apx

apx

apx

s x r s r F x p r F p r s r e
Y x p r U p r e

p ap ap a p ap

F p r e

a p

      

  (3.41) 

 However, to get the result for both. 0c   and 0c  , we add equation (3.20) to (3.40) and 

equation (3.21) to (3.41) and get 

 
   

 
 

 2 2 2 2

2 , 2 , ,
, , , apx apx

s x r F p r F p r
Y x p r U p r e e

p a p a p


 

     
 

     (3.42) 

and 

 
   

 
 

 2 2 2 2

2 , 2 , ,
, , , apx apx

s x r F p r F p r
Y x p r U p r e e

p a p a p


 

     
 

,     (3.43) 

  Therefore, taking the inverse Laplace transform of the equations (3.42) and (3.43), we have 

   
 

         

 
   

 
   

2

2 2

2 ,
, , 2 ,

f t r t
y x t r s x r u r t ax H t ax u r t ax H t ax

a

f r f r
t ax H t ax t ax H t ax

a a

        

    

 

and 

   
 

         

 
   

 
   

2

2 2

2 ,
, , 2 ,

f t r t
y x t r s x r u r t ax H t ax u r t ax H t ax

a

f r f r
t ax H t ax t ax H t ax

a a

        

    

. 

  Basically, all the cases discussed and the results obtained above have addressed the 

identified gap (for both 0c   and 0c  ) pointed out in the work of Eljaoui and Melliani (2016). 

Therefore, it is also achievable for both 0c  and 0c   is set for both negative and positive 

coefficients of first order FPDEs. 

Constructed Examples 

Example 3.1 

Consider      , 3 , , 2x ty x t y x t x r r            (3.44) 

with initial conditions 

     
2

,0, 3 ,2 ,2
2

x
y x r x r r r r               (3.45) 

and boundary conditions 

   0, , , 2y t r t r r   .             (3.46) 

Example (3.1) is similar to equation (3.4), where 3c    which is negative and   , 2x r r  is a 

fuzzy valued function. 0t  , 0x   and  0,1r . 

Solution: 46 
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Applying Laplace transform on equation (3.44), we get  

       , 3 , , 2 1x tL y x t L y x t x r r L          .        (3.47) 

Four cases arises as a result of equation (3.47). 

Case 1: When y  is (i)-differentiable with respect to both x  and t . 

Taking the Laplace transform of the boundary conditions (3.46), it becomes 

    2
0, ,

r
L y t r L tr

p
               (3.48) 

and 

   
 

2

2
0, , 2

r
L y t r L t r

p


                 (3.49) 

 Applying Theorem (2.1) and (2.2) on equation (3.47), substituting the initial conditions (3.45) into it 
and solving it together with equation (3.48) and (3.49), we have 

 
2

3

2 2

3 2
, ,

2

pxxr r x r r
Y x p r e

p p p p


            (3.50) 

and 

 
       2

3

2 2

3 2 2 2 2 2
, ,

2

px
x r r x r r

Y x p r e
p p p p


    

           (3.51) 

Taking the inverse Laplace transform of the equations (3.50) and (3.51), we have 

 
2

, , 3 2 ( 3 ) ( 3 )
2

x r
y x t r xr rt r t x H t x        

and  

     
 

 
2 2

, , 3 2 2 2 2 ( 3 ) ( 3 )
2

x r
y x t r x r r t r t x H t x


          . 

Case 2: When y  is (i)-differentiable with respect to x  and (ii)-differentiable with respect to t . 

Applying Theorem (2.1) and (2.2) on equation (3.47) substituting the initial conditions (3.45) into it 

and solving it together 
with equation (3.48) 

and (3.49) we have 

    (3.52) 

and 

 
       2

3 3

2 2 3 2 3

2 1 2 1 2 1 2 13
, ,

2 3 9 9

px px
x r r r rxr r x r

Y x p r e e
p p p p p p p

 
   

         

 (3.53) 

Taking the inverse Laplace transform of the equations (3.52) and (3.53), we have 

     
     

    
 

  

2 2

2

2 2 1 1
, , 3 2 2

2 3 9

1
2 2 3 3 3 3

9

x r x r r t
y x t r x r r t

r
r t x H t x H t x t x

  
        


     

 

and 

 
   

    

 
  

22

2

2 1 1
, , 3 2 1 3 3

2 3 9

1
3 3

9

x r t r tx r
y x t r xr rt r H t x t x

r
H t x t x

 
          


 

.  

 
         

   

2

2 2 3

3 3

2 3

3 2 2 2 2 1 2 1
, ,

2 3 9

2 1 2 1

9

px px

x r r x r x r r
Y x p r

p p p p p

r r
e e

p p

 

     
     

 

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Case 3: When y  is (ii)-differentiable with respect to x  and (i)-differentiable with respect to t . When 

we apply Theorem (2.1) and (2.2) on equation (3.47), substituting the initial conditions (3.45) into it 
and solving it together with equation (3.48) and (3.49) we have 

 
2

3

2 2

3 2
, ,

2

pxxr r x r
Y x p r e

p p p p


            (3.54) 

and 

 
     2

3

2 2

3 2 2 2 2
, ,

2

px
x r r x r

Y x p r e
p p p p


   

             (3.55) 

Taking the inverse Laplace transform of the equations (3.54) and (3.55), we have 

    
2

, , 3 2 3 3
2

x r
y x t r xr rt H t x t x        

and 

     
 

   
2 2

, , 3 2 2 2 3 3
2

x r
y x t r x r r t t x H t x


         . 

Case 4: When y  is (ii)-differentiable with respect to both x  and t . Applying Theorem (2.1) and 

(2.2) on equation (3.47), substituting the initial conditions (3.45) into it and solving it together with 

equation (3.48) and (3.49) we have 

 
         

   

2

2 2 3

3 3

2 3

3 2 2 2 2 1 2 1
, ,

2 3 9

2 2 2 1

9

px px

x r r x r x r r
Y x p r

p p p p p

r r
e e

p p

 

     
     

 


   (3.56) 

and 

 
     2

3 3

2 2 3 2 3

2 1 2 1 2 13 2
, ,

2 3 9 9

px px
x r r rxr r x r r

Y x p r e e
p p p p p p p

 
  

          (3.57) 

Taking the inverse Laplace transform of the equations (3.56) and (3.57), we have 

     
     

    
 

  

2 2

2

2 2 1 1
, , 3 2 2

2 3 9

1
2 2 3 3 3 3

9

x r x r r t
y x t r x r r t

r
r t x H t x H t x t x

  
        


     

 

and 

 
   

  

 
  

22

2

2 1 1
, , 3 2 3 3

2 3 9

1
3 3

9

x r t r tx r
y x t r xr rt rH t x t x

r
H t x t x

 
         


 

. 

 To ascertain the applicability of the FLTM on first order FPDE with both positive and negative 
coefficient, we consider example 4.2 as seen bellow. 

Example 4.2   

Consider      , , , 2x ty x t ay x t x r r            (3.58) 

with initial conditions 

     
2

,0, , 2 , 2
2

x
y x r ax r r r r              (3.59) 

and boundary conditions 

   0, , , 2y t r t r r                (3.60) 

Example (4.2) is similar to equation (3.28) where a  can be either positive or negative and that 

 , 2x r r  is a fuzzy valued function. Assume that 3a   in equation (3.28). for 0t  , 0x   and 

 0,1r . 48 
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Solution: 
Applying Laplace transform on equation (3.58), we have  

       , 3 , , 2 1x tL y x t L y x t x r r L         .        (3.61) 

Four cases arises as a result of equation (3.61) 
Case 1: When y  is (i) differentiable with respect to both x  and t . 

Taking the Laplace transform of the equation (3.60), we have 

    2
0, ,

r
L y t r L tr

p
               (3.62) 

and 

   
 

2

2
0, , 2

r
L y t r L t r

p


          .       (3.63) 

 Applying theorem (2.1) and (2.2) on equation (3.61) then substitute the initial conditions (3.59) into 

it and solving it together with equation (3.62) and (3.63) after which we add equation (3.50) and 
(3.51) to its solution respectively gives 

 
2

3

2 2

2 2
, ,

2

pxr x r r
Y x p r e

p p p

               (3.64) 

and 

 
     2

3

2 2

2 2 2 2 2
, , px

r x r r
Y x p r e

p p p


  

    .       (3.65) 

 

Taking the inverse Laplace transform of the equations (3.64) and (3.65), we have 

    
2

, , 2 2 3 3
2

x r
y x t r rt rH t x t x      

and 

          2, , 2 2 2 2 2 3 3y x t r x r r t r H t x t x        . 

Case 2: When y  is (i)-differentiable with respect to x  and (ii)-differentiable with respect to t . 

Applying theorem (2.1) and (2.2) on equation (3.61), then we substitute the initial conditions (3.59) it 

and solving it together with equation (3.62) and (3.63) after which we add the equation (3.52) and 
(3.53) to its solution respectively gives 

 
         

   

2

3 3

2 3 2 2

3 3

3 3

2 2 2 4 1 2 1 2 1
, ,

9

2 1 2 1

9 9

px px

px px

r x r r r r
Y x p r e e

p p p p p

r r
e e

p p





    
      

 


    (3.66) 

and 

 
       

 

2
3 3 3

2 3 2 2 3

3

3

4 1 2 1 2 1 2 12
, ,

9 9

2 1

9

px px px

px

r r r rr x r
Y x p r e e e

p p p p p p

r
e

p





   
       


.   (3.67) 

Taking the inverse Laplace transform of the equations (3.66) and (3.67), we have 

     
 

    

    
 

  
 

  

2

2

2 2

2 1
, , 2 2 2 2 1 3 3

9

1 1
2 1 3 3 3 3 3 3

9 9

r t
y x t r r t x r r H t x t x

r r
r H t x t x H t x t x H t x t x


          

 
        

 

and 49 
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 
 

         

 
  

 
  

2

2

2 2

2 1
, , 2 2 1 3 3 2 1 3 3

9

1 1
3 3 3 3

9 9

r t
y x t r rt x r r H t x t x r H t x t x

r r
H t x t x H t x t x


            

 
    

 . 

Case 3: When y  is (ii)-differentiable with respect to x  and (i)-differentiable with respect to t . 

Applying theorem (2.1) and (2.2) on equation (3.61), then we substitute the initial conditions (3.59) 

into it after which we solve it together with equation (3.62) and (3.63) after which we add equation 
(3.54) and (3.55) to its solution respectively gives 

 
 2

3 3

2 2 2

2 12 2
, , px px

rr x r
Y x p r e e

p p p p




             (3.68) 

and 

 
     2

3 3

2 2 2

2 2 2 2 1 2
, , px px

r x r r
Y x p r e e

p p p p


  

     .         (3.69) 

Taking the inverse Laplace transform of the equations (3.68) and (3.69), gives 

         2, , 2 2 1 3 3 2 3 3y x t r rt x r r H t x t x H t x t x           

and 

             2, , 2 2 2 2 1 3 3 2 3 3y x t r r t x r r H t x t x H t x t x            . 

Case 4: When y  is (ii)-differentiable with respect to both x  and t . Applying theorem (2.1) and (2.2) 

on equation (3.61), then we substitute the initial conditions (3.59) into it and solving it together with 

equation (3.62) and (3.63) after which we add the equation (3.56) and (3.57) to its solution gives 

 
         

 

2

3 3

2 3 2 3

3

3

2 2 2 4 1 2 2 2 1
, ,

9 9

2 1

9

px px

px

r x r r r r
Y x p r e e

p p p p p

r
e

p





    
      


   (3.70)  

and 

 
     2

3 3 3

2 2 2 3 3

4 1 2 1 2 12 2
, ,

3 9 9

px px px
x r r rr x r r

Y x p r e e e
p p p p p p

 
  

       .       (3.71) 

Taking the inverse Laplace transform of the equations (3.70) and (3.71), we have 

     
 

    

 
  

 
  

2

2

2 2

2 1
, , 2 2 2 2 2 3 3

9

1 1
3 3 3 3

9 9

r t
y x t r r t x r r H t x t x

r r
H t x t x H t x t x


          

 
    

 

and 

 
 

  
 

  

 
  

22

2

4 1 2 1
, , 2 2 3 3 3 3

3 9

2 1
3 3

9

x r t r
y x t r rt x r rH t x t x H t x t x

r
H t x t x

 
          


 

. 

 
DISCUSSION 

It is observe that certain gaps existed for 
solution of first order FPDEs where negative 

coefficients are not mention. This study 
considered as its mandate to address the above 

problem. However the subsection 3.1 has 

rightfully taken care of the above problem by 
obtaining the solution of first order FPDE for 

0c  . In that case equation (3.4), (3.5) and 

(3.6) were considered and their results after 

transformation were categorized into four cases. 
Case 1 deals with a situation whereby y  is (i)-

differentiable with respect to both x  and t . The 

result in this case includes a unit step function 

was obtained. Moreover, other cases included a 
case where y  is (i)-differentiable with respect 

to x  and (ii)-differentiable with respect to t . 
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Again applying the Laplace transform to 
equation (3.4) subject to equations (3.5) and 

(3.6) yielded the result in equations (3.14) and 

(3.15), which after taking the inverse Laplace 
transform gave a result, which also included a 

unit step function. Also, the solution for the case 

of y  being (ii)-differentiable with respect to x  

and (i)-differentiable with respect to t  was also 

presented and finally the case when y  is (ii)-

differentiable with respect to both x  and t  was 

also solved and their results included a unit step 

function were also presented as well. In all the 
above cases, one can conclude that it is quite 

possible that you can conveniently obtain 

solutions when 0c   is considered a case may 

be. 

After obtaining results for 0c  , it is observed 

that a problem may still occur where both 
positive and negative coefficients are involved. 

In this regards, this study extend the case to 

include a situation when the coefficient can be 

either of 0c   or 0c  .

To obtain the result for both 0c   and 0c  , 

we first considered equation (3.22) where 
results for positive coefficients were established. 

Recall that section 3.1 established results for 

negative coefficients, therefore the combine 
results we considered both equation (3.4) and 

(3.22) that gave rise to four cases discussed in 
subsection 3.2. It is establish that situations 

involving both positive and negative coefficients 

of first order FPDEs can be addressed using the 

results we obtained in subsection 3.2. 
 

CONCLUSION 
In this paper, first order FPDEs with negative 

coefficients and that of but positive and negative 
coefficient is been solved by FLTM. Their results 

is rightfully established which will pave way for 

researchers which will encounter problems 
relation in FPDEs with both positive and negative 

coefficients. 
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