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ABSTRACT

Second order linear homogeneous ordinary differential equations are solved using fuzzy
Laplace transform method with generalized Hukuhara differentiability concept. The
results obtained is in this study is in the form of generalized triangular fuzzy number.
Existence and uniqueness of solution are also obtained. However, based on the cases
presented, the results have shown that relationship existed between the FLT of second

order and its k" derivative for k >1.
Keywords: gH differentiability, Linear Homogeneous ODE, Generalized Triangular Fuzzy

Number (GTFN), fuzzy Laplace transform (FLT)

INTRODUCTION
The concept of the fuzzy derivative was first
introduced by Chang and Zadeh (1972). Later,
Dubois and Prade (1982) presented a concept of
the fuzzy derivative based on the extension
principle. Buckley and Feuring (2000) compared
various derivatives of fuzzy function that have
been presented in the various literatures. Later,
Bede and Gal (2004) introduced a concept for
strongly generalized differentiability of fuzzy
functions. Allahviranloo et a/. (2009) used the
concept of generalised differentiability and
applied differential transformation method for
solving fuzzy differential equations. Khastan et
al. (2011) studied first order linear fuzzy
differential equations by using the generalized
differentiability concept.

Sankar and Tapan (2015) solved second

order linear homogeneous ODEs in fuzzy
environment based on the concept of
generalized  Hukuhara  derivatives.  They

MATERIAL AND METHOD
Consider second order linear homogeneous FDEs

d*x(t)
dt’
with fuzzy initial conditions
x(ty)=a=(a,a,,8,3,, @)
and
dx(t,)
dt

=k x(t)

=b=(b,b,, b, b, »)

considered the linear

order ODEs

d?x(t
X _kx(t)

with the fuzzy initial conditions

X(to):é=(a1,az,a3,a4,(0),

dx(t) -
szz(bl,bz,b3,b4,a))

and solved with fuzzy number as generalized
trapezoidal. However, limiting the work to
generalized trapezoidal fuzzy numbers without

considering the case when @w=1 or b, =Db,,

homogeneous second

a, = a, was not enough. Therefore, this needs

to be addressed by applying generalized
Hukuhara derivative concept with generalized
triangular fuzzy number (GTFN). In addition to
that, also establishments of the existence as well
as the uniqueness of solutions to the given
equations are deeming to be necessary.
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The procedures of solving second order linear homogeneous FODE are described as Type-I, Type-II
and Type-III by taking the coefficients of equation (1) as positive and negative respectively. Here
fuzzy numbers are taken as generalized trapezoidal fuzzy numbers (GTrFNs) and the solutions are
described in four different cases by the concept of generalized Hukuhara differentiability as indicated
below.

Case 1: When x(t) and d);—(tt) are (i) gH -differentiable.

Case 2: When x(t) is (i) gH -differentiable and d);—(tt) is (ii) gH -differentiable.

Case 3: When x(t) is (i) gH differentiable and d );(tt ) is (i) gH -differentiable.

Case 4: When x(t) and d);—(tt) are (i) gH -differentiable.

Using the concept of generalized Hukuhara differentiability cases 1 and 4 are treated in a
similar way while cases 2 and 3 are similarly treated.
Cases 1 and 4:

In these cases, Sankar and Tapan (2015) obtained two sets of equations from equation (1),

d’x(t,«
L) k() (4)
t
and
d?x,(t,a)
E(tz k% (ta) (5)
with initial conditions
al, ar;
X(t,a)=a+—=, %,(t,a)=a, ——2 (6)
w w
dxl(to,oz)zlerozlB dxz(to,oz)zb_ar6 (1)
dt ® ' dt ‘o
The general solution of equation (4) is obtained using characteristic equation and presented below.
xl(t,oz):clemjtcze’JEt (8)

Applying the initial condition (6) and (7) on equation (8) and solving, it is found that

_1 al, 1 al; VKt
cl_E{[a1+ " j+W(bl+?]}e , (9)

(v a2 e

Substituting (9) and (10) in equation (8) and solving

Xl(t'a)Z%{(aﬁaj +%(bl+%l5j}em“°)
L alg \_ L[y ol ) [ wew)
+E{(a1+ " j \/E£b1 - )}e (11)

Similarly, from equation (5), the general solution is obtained by using the characteristic equation and
presented as
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o
_1 a_lf?l _i _a_IB ~Jk(t-t)
() n- o Jpee "

Cases 2 and 3
In the above cases, equation (1) can be written as
d?x,(t,a
Cxlbe) o (ta) (13
dt
and
d’x (t, a
d(T)=kX2(t,a) (14)

Solving equation (13) and (14) using characteristic equation respectively, the general solutions is
obtained as

xl(t,a)zdleﬁwdze’m+d35in\/Et+d4cos\/Et, (15)
X, (t,a)=d, e* +d, e —d,sinvkt—d, coskt. (16)
Applying the initial conditions (13) and (14) on equations (15) and (16) and solving yield
1 a(l;—r 1 a(l.—r. )
dfa{““#*ﬁ(““‘*%}}e f (17
1 a(ly—r, 1 all. —r. )
dfz{a”a”%‘ﬁ(bﬁb”(bTb)j}e o (19)
1 1 a(ls+r) 1 a(ly+1)
d,== -, +——224+ b -b+——>"~ |, 19
3 4sin\/Eto{a1 ! ) \/E(bl ! w (19)
1 1 a(ly+r) 1 a(l;+r)
d=-"—"+1{a-a+—32- | b-b+—"27]|¢. 20
4 4sinﬁto{a1 4 @ \/E{bl 4 o (20)

The process used in solving equations (13) and (14) is repeated when k is negative in
equation (1). The results obtained are tested using numerical examples on FDE, which indicated that
it is a strong solution.

Concept of gH Differentiability for Second Order FODE

The second order gH -derivative of a fuzzy valued function f :[a,b]—>§RF at t, is

f'(t,+h)— Hf'(t
defined as f"(t, )=|im ( o +h) g ( 0)
h—0 h

L If f”(to)ei}{F then f'(to) is gH -

differentiable at t,. Also, f'(t,) is:

(i) gH -differentiable at t,if f"(t,, & )=( f/(t,. @), f;(t,.a)),

then f is gH - differentiable on (@,b) andif f"(t,, & )=(f,(t,, ), f/(t;,@)), then f is
gH - differentiable on (a,b ) forall @ €[ 0,1]; and

(i) gH -differentiable at t, on (@,b) and if f"(t,, )=( f,(t,a), f/(t, a )), then f is
gH -differentiable on (a,b) and if f"(t,, )=( f/(t,a), f,(t, a) ), then f is gH -
differentiable on ( a,b ), forall e [ 0, 1] )
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RESULTS AND DISCUSSION

Established Relationship between FLT and its k™ Derivative for k >1
Consider equation (1) and applying FLT we have

LLf (t, (1), y'()] = pLLY(t 2)] = pys(@) = Z5(a)
LLF (&, y(@), Y O) = LIVt @)] - pYo(@) - Z(a).

Consider the fuzzy linear function
f(t y@, y'(t) = ay'(t) +by"(t)

where a, b are real constants.

(23)

In order to see the relation between the FLT and its k™ derivative, we will apply the
following cases: (a) Case 1a: If a>0 and b>0; (b) Case 2a: If a>0 and b <0; (c) Case 3a: If
a<0 and b>0; (d) Case 4a: If a<0 and b <0. Below, we consider them case by case.

(a) Equation (21), (22) and (23) are subcategorized under four different cases and is presented

below.

Case la: If a>0 and b>0. Taking the Fuzzy Laplace transform of right hand sides of equation

(23) and simplify we have
LTt y(0), ()] = (@+b)sL y(t,) |-(a—bs)y,(@) ~by,(a)
From equation (21), (22) and (24) we have
(a+b)pL| y(t, @) |-(a—bp)y, (@) by, (@)= p°L| y(t.@) |- pyo (@)~ z,(a).
Solving equation (25) we have,
(a+b)pL| y(t,@) |- p°L| y(t, @) | =b¥,(a) +(@—bp) yo(@) — py,(a) —z(a) -
Rearranging equation (26)
[yta)]- by (ar) +(a—bp- p)zoz(a)—zo(a) |
ap+ bp-p
Also,

(@+b) pLY(t, )]~ (a~b) py, (@) - by, (@) = p°L[Y(t, @)] - Y, (@) = Z5(a) .
Solving equation (28) B B
L[Y(t,a)] _ bXO(a)+(a_bp_ p)yo(a)_zo(a) .

ap+ bp-p?
Therefore,

by, (@) +(a—bp—p) Y, (@) —2z,(x)
ap+ bp— p? '

on(“)"‘(a_bp_ P)Yo(a)-7Z,(@)
ap+ bp—p? '

H, (ta)=

K, (ta)=

(24)

(25)

(26)

(30)

(31)

H, (t,@) and K, (t,@) are the relation between the FLT and its k" derivative when a>0 and

b>0.
Case 2a: If a>0 and b <0, then from equations (21), (22) and (24) we have

(a+b) pL[ y(t, @) |-(a—b) pyo(@) —b¥, (@)= p°L| y(t, @) |- py,(@) - 2 ().
(a+b) pL[Y(t, @)]-(a—b) pY, (@) —by, (@)= L[ ¥(t, @) |- PTo(@) - Z,(a) .

Solving equation (32) we have
bpL [ y(t, @) |- p°L[ y(t. @) | +apL[y(t, )]

=apy, (a) +by,(a) - pro (o) - zy(x) - PYo (o).
Rearranging equation (24)
(bp—p*)L[ y(t.@) |+apL[¥(t,@)] =(ap+b)¥, (@) —(bp+ p) Yy (@) — 2 (@)
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Also, from equation (33)

apL[y(t,@)]+bpL | y(t,@) | -apy,(a) +bpy,(@) —by,(@)

= p°L[Y(t,@)] - pyo (@) —z5(a).

Rearranging equation (36)

(ap—p*)pL[Y(t, @)]+bpL| y(t, @) | =(ap+b)T(@)—(bp+ P)Yo(@) - Zy(@)  (37)
Considering equations (35) and (37), denote

A(p,a)=(ap+b)¥,(a) —(bp+ p)Ys(a)—2z(a), (38)
B,(p,a)= (ap+b)Y, () —(bp+ p)y, (@) - Zy(er) . (39)
Solving equation (38) and (39) we have
(ap—p*)A(p.a)—apB,(p, )
L[ y(t,a) | = .
[yte)] (ap— p*)(ap— p?) (4)
Also,
= bpA (p,a)—(bp— p*)By(p. @)
L[y(t, )] = .
I Ol= = o7~ op— pap- ) )
Therefore,
(ap—p*)A(p,@)—apB,(p, )
H (pa)= .
u(Pra) (ap—p*)(ap-p*) 12)
K. (p.a)=PA(R.@)~ (P~ P*)B,(p.2) (43)

abp® —(bp— p*)(ap— p*)
H,, (@) and K, (t,«) are the relation between the FLT and its k™ derivative when a>0 and

b<0.
Case 3a: If a<0 and b >0, then from equation (1), (2) and (24) we have

(a+b)pL| y(t, @) |-(a—b) py, (@) =by,(@)=p’L| y(t. @) |- pyo (@)~ z,(@),  (44)
(a+b) pL[Y(t.@)]—(a—b) py,(a) —by,(@) = p°L| y(t.@) |- pYo(@) ~Zy(@).  (45)
Utilizing the relation in case 3a, equation (44) is in the form

apL| y(t. @) |+bpL[¥(t, )] —apy, (@) +bpy, (@) by, ()

= p’L| y(t.@) |- pYo (@)~ 2, ().
Rearranging equation (46)

(ap—p*) pL[ y(t. @) [+bpL[¥(t, @)] =by, (@) +bp¥y (@) +(@p—p)Yo (@)~ z,() . (47)
Also, from equation (45)

apL| y(t, @) |+bpL[¥(t,@)]—apyo(a) +bp¥, (@) ~by,(@)

= pZL[V(t,a)] = PYo(@) —Z(a).

Rearranging equation (48)

(bp— p*) PL[¥(t, @)]+apL| y(t,@) | =by,(@)+apy,(a) —(bp+ p) Vs (@)~ Z,(a) . (49)
Considering equations (47) and (48), denote

A, (P, @) =by, (@) +bp¥,(a) +(@p—p)Y, (@) — % (a) , (50)
B, (P, @) =by,(a)+bpy, () —(bp+ )Y, (@) - Z,(). (51)
Solving equation (50) and (51) we have

L[Vt )] = Pp)—(@p— P8, (@) (52)

abp” —(ap— p*)(bp— p*)
24
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Also,
(bp— p*) A (P, @) ~bpB, (p, @)

L[yta)]= .

)= = e )b (52)
Therefore,
H, (p.a) = (@p—p7)B,(p.a) ~apA,(p.a) (54)

(@p—p*)(bp—p”) —abp

K, (p.a) =P p*)A (P, @) —bpB,(p,a) (55)

(bp— p*)(ap— p°) —abp’
H, (t,a) and K, (t,@) are the relation between the FLT and its k" derivative when a <0 and

b>0.
Case 4a: If a<0 and b <0, then from equation (21), (22) and (24) we have

(a+b)pL[ y(t, @) |-(a—b) pyy(a) ~b¥, (@)= p’L| y(t. @) |- pyo (@)~ z,(@) . (56)
(a+b) pL[Y(t,@)]-(a—b) py,(a) —by,(@)=p°L| y(t.@) |- pYo(@) ~Zy(a).  (57)

Utilizing the relation in case 4, equation (56) is in form of
apL[ y(t, @) |+bpL[¥(t. )] —apy,(a) +bpy, (@) —by, ()

(58)

= p’L y(t. @) |- pys (@) - 2, ().

Rearranging equation (58)

(ap+bp—p*)L| y(t.@) |=(ap—bp— p)y,(a) +bYy(a) ~ 2 () - (59)

_(ap—bp—p)y,(a)+by-2z,(a)

L[ y(t.a)]= P : (60)

Similarly, B

LT a)] - (ap—bp - p)zo(a)+i>yo—zo(a) | (61)
ap+bp—p

Therefore, B

H,, (p.) = (ap—bp-— p))_/o(a)+lzyo—zo(a) _ (62)
ap+bp-p

K, (pr) = (ap—bp- p)xo(a)+l2)yo—zo(a) _ (63)
ap+bp—p

H,, (t,a) and K, (t,«) are the relation between the FLT and its k" derivative when a <0 and

b<0.
(b) Consider equation (21), (22) and (24) from which we obtained the following:

(a+b)pL[y(t,)]-(a-bp)y,(a) ~by,(@)=p°L[y(t,@)]- pyo(a) - z(a), (64)

(a+b)pL| y(t, @) |-(a—bp)¥y(@) —by,(@)=p°L| y(t.@) |- pYs(@) = Z,(a) . (65)
We discuss equation (64) and (65) using the conditions below.
Case 1b: If a>0 and b>0

apL| y(t,@) |+bpL| y(t,@) | —a¥,(a) +bpy, (a) ~by, ()

= p’L| y(t.@) |- pyo (@) — z(a).
Rearranging equation (66)
(a+b)pL] y(t, @) |- p’L[ y(t. @) | =by, (@) +aY, (@) ~bpY, (@) — Py, (@)~ z,(@), (66)

(ap+bp—p*)L| y(t.@) |=(a—bp - p)y, (@) +by(a) - z,(), (67)
25
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_ B (@a—bp—p)y,(a)+by, - z,(a)
L[V(t,a)] = P—— : (68)
Similarly,
_ (a—bp— p)yo(a)‘*‘bzo_zo(a)
L y(t.a) | = P . (69)
Therefore,
_(a—bp—p)y,(a)+by, - z,()
Hbl(t,a)— ap +bp_ D’ : (70)
_ (a—bp—p)y,(a)+by,—7Z,(a)
K, (t, @) = ap +bp_ p° : (71)

H, (t,) and K, (t,) are the relation between the FLT and its k" derivative when a>0 and

b>0.
Case 2b: If a>0 and b < 0. Applying these conditions on equation (64) and (65)

apL[y(t,a)]+bpL | y(t, @) | —ay, () +bpy,(@) —by,(a)

(72)
= P°L[Y(t, @)]— pyo (@) — 2y ().
Rearranging equation (72)
(ap— p*)L[Y(t. @)]+bpL| y(t, @) |=(20— p)y, (@) +aFy(e) — 2 () - (73)
Also,
apL[y(t,@)]+bpL| y(t, @) | —ay,(a) +bpy,(a) ~by,(a) -
= pP°Ly(t. @) |- pYo(@) ~Z(a).
Rearranging equation (74)
(bp—p*)L[ y(t.@) |+apL[y(t,@)] =(a— p)Ys (@) + (b - p)Ys(@) ~ Z,(a) . (75)
Solving equations (73) and (75)
(ap— p*)L[¥(t,@)]+bpL| y(t,@) | =R, (), (76)
(bp—p*)L[ y(t.) |+apL[y(t.2)] =R, (). (77)
where R () =(2b— p)yo(@) +aY, (@)~ (@) and
R, () =(a—-p)Y,(@)+(b-p)y,(a) - Z(a) .
Therefore,
_apR,(2)—(ap - p*)R,(@)
L[X(t’a)] - apr_(ap_ p2)2 (78)
and
o 1 (8= PR (@) ~bpR, (a)
L[y(t’a)] - (bp_p2)2_abp2 ' (79)
Therefore,
H, (6 ) =B PIR(@)~apR (@) (80)
; abp’ - (ap- p*)
sz (La) _ prZ (a) _(ap — pz)Rl(a) . (81)

(bp— p*)* —abp®
H,, (t, @) and K, (t,) are the relation between the FLT and its k" derivative when a>0 and

b<O0.
Case 3b: If a<0 and b >0, then applying these conditions on equation (64) and (65)
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apL[ y(t, @) |+bpL[Y(t, @)] —ay, () +bp¥, (@) —by, ()

(82)
= P°L[Y(t, @)] - pyo (@) — 2y ().
Rearranging equation (82)
(bp— p*)L[¥(t, )] +apL| y(t,a) | ()
=by, () +bp¥, (a) —(a - Pp) Yo (@) — Py, (@) — 25 ().
Also,
apL| y(t, @) |+bpL[Y(t, @)] —ay, (@) +bpy, (@) —by,(a) (o)
= p’L| y(t, @) |- 0¥, (@) - Z(@).
Rearranging equation (84)
(ap— p*)L[ y(t,@) |+bpL [y (t, )] (85)
=by, () —bpy, (a) = (bp + P) Yo (@) = PYo () = Zy ().
Solving equations (83) and (85)
(bp—p*)L[V(t. )] +apL| y(t,@) | =Ry(a), (86)
(ap— p*)L[ y(t,@) |+bpL[¥(t,@)] =R, (2) (87)
where
R, () =by, (o) —bpy, (o) + (@ — p) Y, (@) — 2, (@)
and
R, ()L =by,(a) —ay,(a)—(bp+ p) Vs () — z,(a) -
Therefore,
bpR, (@) - (bp — p*)R, ()
L , -
Rl s ey (%)
and
- (@p— p*)R; () —apR, (@)
L[y(t,a)] = .
O~ o p)op- p7) - abp’ 5
Therefore,
(bp - p*)R, (@) —bpRy(a)
H, (t,a)= .
) = e Bp - pP)ap— p) (0)
K, (t,a) = 2PRu@) =@ PIR:(@) (o1)

(ap— p*)(bp— p*)—abp®
H, (t.a) and K, (t,a) are the relation between the FLT and its k™ derivative when a<0 and
b>0.

Case 4b: If a< 0 and b <0, then applying the conditions on equation (64) and (65)
[(@+b)p—p* |L[Y(t.@)]-ay,(a) +bpy(a)—by, = py,(a) - 2,(a). (92)
Rearranging equation (92)

(@a—bp+ p)y,(a)+by, — z,(a)

L[Vt )] = 2 +bp_p’ (93)
Also,

[(@+b)p—p* |L| y(t, @) |-ay, () +bpy(a) —bY, == pY, (@) ~Z,(@). (94)
Rearranging equation (94) B B

L[y(t,a)] _ (a—bp)y, (@) +by, — pYy(a) — 2, () . (95)

ap +bp — p?
27
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Therefore,
a—-b by, -z
Hb4(t,6()=( P+ P)Yo(a)+ 2yo Z(a) . (%)
ap+bp-p
a-b by, — py -z
Kb4(t'a):( P) Yo () + by, p{o(a) Z(a) . (97)
ap+bp-p

H,, (t,) and K, (t,@) are the relation between the FLT and its k™ derivative when a<0 and

b<0.
(c) Consider equation (21), (22) and (24) we have the results below.

(a+b) pLF(t,@)]-(a=bp)Ty(a) ~bys(e)=P°L| y(t.@) |- pyo(@) - Zy(@),  (98)

(a+b)pL| y(t,@) |-(a—bp)yo(@) —by, (@)= p’L[Y(t,@)] - Po(@) —z,(@) . (99)
Using following conditions on equation (98) and (99) we have the following cases.
Case 1c: If a>0 and b >0, then

(a+b) pL[Y(t,@)]- (a—bp)¥,(a) ~by, (@) - p°L| y(t. @) | =—pys(@) - Z,(cr).  (100)
Rearranging equation (100)
(a+b)pL[y(t, )]~ p°L[ y(t.@) | =(a—bp)¥,(a)

+by, (@) — Py, (@) — Py, (@)~ Z(a) (101)
Also, from equation (99)
(a+b)pL{ y(t,@) |- p’L[¥(t,@)] =(a—bp)y,(a)

+oy, (@) — pY, (@) — Py, (@) — 7 (@) - (102)
From equations (101) and (102)
(a+b)pL[y(t.2)]- p’L{ y(t.2) | =B,(a), (103)
(a+b)pL| y(t, @) |- p’L[¥(t,@)] =B, () (104)
where
B,(«) =(a—bp)¥,(a) + on (a)- PYo (o) —Z5(2)
and

B, (a) =(a—bp)y, (@) +bY, (@) — py, (@) -z, ().
Therefore, solving equation (103) and (104) we have

[(@+b)*p*+p*|L| y(t.@) | =(a+b)pB,(a)- p’B,(a), (108)

_ (a+b)pB,(a) - p’By(«)

L[X(t’a)] o (a+b)2 p2 N p4 (106)
[(@+b)*p*+ p* |L[Y(t,)] =(a+b)pB,(a) - p’B,(a), (107)
and

. _(a+b)pB,(a)- p°B,(«)
L[Y(t, )] = arD) T . (108)
Therefore,

_ p°B(a)-(a+b)pB,(a)

Ho(ta) === o (109)
K, (t,a) = p’B,(a)—(a+b)pB () . (110)

(a+b)*p®+p*
H, (t,) and K, (t,a) are the relation between the FLT and its k™ derivative when a>0 and
b>0.
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Case 2c: If a>0 and b <0, applying these conditions on equations (64) and (65)

apL[y(t,@)]+bpL | y(t,@) | —a¥, () +bpy,(@) —by, ()

(111)
= p’L| y(t,@) |- pyo (@)~ 7 ()
and
apL[y(t,a)]+bpL | y(t,@) | —a¥, () +bpy, (@) —by, () 12)

= P’L[Y(t.@)]- Yo (@) - 2 (@)
From equation (4.91)

(bp— P*)L[ y(t,@) |+apL[y(t,@)]=by, (@) +aF, (@)~ (b+ P)Ys (@) ~Zy(a),  (113)
(bp— p*)L[ y(t. @) |+ apL[¥(t,@)]= Dy(a). (114)
where D, (a) = b, (@) + &%, () — (b -+ p) yo (@) —Z(a)

Also, from equation (112)

(ap— p*)L[V(t,@)]+bpL| y(t, @) |= by(a) +ay, () ~bpy,(a) - pYs(@) — Z,(2)  (115)
(ap— p*)L[Y(t.@)]+bpL| y(t,@) |=D,() (116)
where D, (a) = by, (@) +a¥, (@) —bpy, (@) - P, (@) — 2,(@).

Therefore, solving equation (114) and (116) we have

[abp® —(ap - p*)(bp— p*) |L[¥(t, )] =bpD;(a)-(bp— p*)D,(ar), (117)
bpD, () - (bp - p*)D, ()

L|V(t, = ’
)= o (ap - p)op - ) )
and
[ (ap— p*)(bp— p*)—abp® |L[ y(t,@) | =(ap— p*)D,(@)—apD,(a), (119)
(ap - p*)Dy(a) ~apD,(a)
L| y(t, = .
V6D = o 5y op - p7) - abp (120)
Therefore,
(bp — p*)D, () —bpD, (@)
H , =
)= b (ap - p)op ) He
K. (p,ar) = 2PP2(a) —(ap—p*)Dy() (122)

(ap—p*)(bp - p*)—abp*
H, (t,a) and K_(t,) are the relation between the FLT and its k" derivative when a>0 and
b<O.

Case 3c: If a<0. b>0. Applying these conditions in equations (64) and (65)

apL| y(t,@) |+bpL[y(t, @)] —ay,(@) +bpy, (@) ~by,(@)

(123)
= p’L y(t.@) |- pyo (@)~ Z()
and
apL| y(t, @) |+bpL[y(t,@)] —ay,(a) +bpy, (@) —by(a) (1)

= p°L[Y(t,@)] - pYy (@) — 2, (@)
From equation (123)
(ap— p*)L[ y(t, @) [+ bpL[Y(t, @)]=by,(a) +ay,(@) —bpy,(a) - py,(a) ~Z,(@) (125)
(ap—p*)L| y(t.@) | +bpL[¥(t, )] = M, (a) (126)
where M, () = bX(a) +aY, (o) —bpy, () - PYo (@) —Zy() -
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Also, from equation (124)

(bp— p*)L[Y(t, @)]+apL y(t, @) |=by,(a) +ay,(@) —bpy,(er) - pYo (@) — 2, (@) (127)
(bp— PIL[Y(t, )] +apL| y(t, @) |= M, () (128)

where M, () =by, (o) +ay, () —by, (@) — pY, («) — (@) -
Therefore, solving equation (126) and (128) we have

[ abp?® —(ap— p?)(bp — p*) | L[ (t,@)] =apM,(a)—(ap— p*)M,(a). (129)
- apM, (@) —(ap — p*)M, ()
L|Vy(t, =
)= e (ap—p)Ep - p) o)
and
[ (@p— p*)(bp— p*)—abp® |L| y(t,@) | =(bp—p*)M, () —bpM () (131)
Also,

_ (bp— pz)Ml(a)_bpMz(a)
N T R R )

Therefore,

H, (t,a) = ~2P— P IM,(a) ~bpM,(a) (133)
: abp® —(ap—p“)(bp - p°)

ch(t'a):apMZ(a)_(ap_pz)Ml(a) (134)

(ap—p*)(bp - p*)—abp*
H, (t,a) and K_ (t,«) are the relation between the FLT and its k™ derivative when a <0 and

b>0.
Case 4c: If a<0 and b <0, applying these conditions on equations (64) and (65)

(a+b)pL| y(t.@) |- (a—bp)y, (@) ~b¥,(a) = p°L| y(t. @) | - pys(@) - Z,(@),  (135)

(a+b)pL[Y(t, )]~ (a—bp)yo(a) —byy (@) = P°L[Y(t, @)] — PV, (@)~ Z5(e) - (136)
Rearranging equation (135) and (136)
(a+b)pL| y(t.@) |- p’L| y(t. @) |

(137)
=by'(ar) + (a—bp)y, (@) — py, (@) — Yy (@) — Z, ()
Also,
(a+b)pL[y(t,@)]- p°L[Y(t, @)]
=by(a) +(a-bp)y, (@) — pY, (@) — py, (@) — () - (138)
Solving equations (137) and (138)
[(@+b)p—p* | pL[Y(t. @)] = b, (@) + (a—bp) Y, () - by, (@)~ Z () , (139)
= B by, (@) + (@—bp)y,(a) - pyy (@) - Z,()
L[V(t,a)] = @ib)p_p’ , (140)
[(@+b)p—p* | pL| y(t,@) | = by(a)+(a—bp)y,() - pY, (@) — 2,(a) (141)
_ by(a) +(a-bp)y,(a) - pYy(a) - 7, (a)
Ll y(te)]= Grb)p_p’ (142)
Therefore, B B
H. (t.a) :byo(a)+(a—bp)zo(a)—Es_/o(a)—zo(a) | (163)
' ) (a+b)p—p*
K (ta) = by, (@) +(a—bp)y,(a) - r:yo(a)—zo(a) | (144)
' (a+b)p-p
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H,, (t,a) and K_ (t,«) are the relation between the FLT and its k™ derivative when a <0 and

b<O0.
(d) Consider equation (21), (22) and (24) the following are obtained.

(a+b)pL| y(t.@) |-(a—bp)y, (@) ~by(a)=p’L| y(t.a) |- pyo(@)-Z(@),  (145)

(@+b)pL[Y(t,@)]-(a~bp)¥,(a) —by(a)=p’L[Y(t,@)]- pYy(@) — Z,(a) . (146)
We discuss equation (145) and (146) using the conditions below.
Case 1d: If a>0, b>0. Applying these conditions on equations (145) and (146)

(a+b) pLF(t,@)]-(a=bp)Ty(a) =bys(e)= P°L| y(t.@) |- pYo(@) - Z(@),  (147)
(a+b) pL[¥(t,@)]-(a—bp)¥y(@) —byy (@)= p’L[Y(t. )]~ PYo(@) =2 (@) . (148)

Therefore,

(a+b)pL[Y(t,@)]- p°L| y(t. @) |=(@—bp)Ty(@) +by,(a@) - pys(@)-Zo(@),  (149)
(a+b)pL| y(t,@) |- pL[Y(t @)]=(a~bp)Ty(@) +by,(a) - PTy(@) - Z,(@),  (150)
(a+b)pL[¥(t.2)]- p°L] y(t.) | =R(2), (151)
(a+b)pL| y(t,@) |- P’L[Y(t.@)] =R,(a). (152)
where
R (a) = (a-bp)y, () +on () - PYo () —Zy(a),
R, () =(a—bp) ¥, (a) +by, () — pYy (@) — z,(a) .
Therefore, solving equation (150) and (151) we have
[(@+b)*p*+p*|L| y(t.@) | =(a+b)pR, (@) - p’Ri(a), (153)
(a+b) pRy(@) - p'Ry(a)
Ll y(te)]= D) e D (154)
and
[(@+b)*p*+ p* |L[Y(t,@)] =(a+b)pR,(a)- p°R,(a). (155)
(a+b) PRy (@)~ PR (@)
L[Y(t.@)] = @) Pt ' (156)
Therefore,
H, (& o) = PR(@)—(@+b)pRy(a) (157)
(a+b)*p*+p*
K, (ta)= P Re(@—@+b)PR(@) (158)
' (a+b)?p?+p*

H,, (t,a) and K, (t,) are the relation between the FLT and its k" derivative when a>0 and
b>0.
Case 2d: If a>0, b < 0. Applying these conditions on equations (144) and (145)

apL[y(t, )] +bpL | y(t, @) | —ay,(a) +by, (@) ~by,(a)

(159)
= p’L| y(t.@) |- pyo(@)~Z,(a)
and
apL[y(t,a)]+bpL | y(t,@) | —a¥, () +bpy,(@) —by, () (150)

= P°L[Y(t, )]~ pyo (@) — 2(@)
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From equation (158),

(bp— p*)L[ y(t,@) |+apL[y(t, @)]= by, (@) +ay, (@) ~by,(@) — pyo(@) ~Z,(@)  (161)
(bp— p*)L| y(t. @) |+ apL[y(t, @)]=C\(e) (162)
where C, (&) = by, () +ay, (a) by, () —by, () —Z,(2) .

Also, from equation (159),

(ap— p*)L[V(t.@)]+bpL | y(t, @) |= by, (@) +ay, (@) ~bpy,(a) - pYs(@) — Z,(@) (163)
(ap— p*)L[¥(t.&)]+bpL| y(t. @) |=C,(a) (164)
where C, () = by, (@) +ay, () —bpy, () — pYy (@) — 7 () -

Therefore, solving equation (161) and (164) we have

[ (ap - p*)(bp - p*) —abp L y(t, @) | =(ap - p*)C,(a) —apC,(a) (165)
_ (ap-p*)C,(a) —apC(a)

Il o n - —abp” )

and

[ abp? —(ap— p*)(bp - p*) |L[¥(t,@)] =bpC, () - (bp - p*)C,(a) (167)
- _ bpC,(a) - (bp - p*)C,()

D)= e —an -0 p) e

Therefore,

H. ()= P~ P)C,(@)—bpC,(e) (169)
2 abp® —(ap— p*)(bp - p*)

Kdz (La) — (bp B p )CZ (6{) —prl(a) (170)

abp® —(ap - p*)(bp - p*) -
H,, (t,a) and K, (t,@) are the relation between the FLT and its k™ derivative when a>0 and
b<O0.

Case 3d: If a<0, b>0. Applying these conditions on equations (144) and (145)

apL| y(t,@) |+bpL[¥(t, @)] —ay, (@) +bpy, (@) ~by,(@)

(171)
= p’L y(t.@) |- pyo (@)~ Z()
and
apL| y(t, @) |+bpL[Y(t, @)] —ay,(a) +bp¥, (@) —by,() 12)
= pZL[y(t,a)]— PYo (@) — 7, (@)
From equation (170)
(ap— p*)L| y(t,@) | +bpL[y(t, )] (173)

= by, (a) +(a— p) Y, (@) —bpy, (a) - py, (@) - Z,(a)

(ap— p*)L| y(t.@) |+bpL[¥(t, )] = L,(a) (174)
where L, (a) =by,(a)+(@— p)Y, (@) —bpy,(a) —7Z,(a) . Also, from equation (121)
(bp— p*)L[Y(t, )] +apL| y(t,cx) |

= by, (ar) +ay, () — (b + p) PYo (@) — PYo(@) — Zy(er)

(bp— p*)L[V(t,@)]+apL| y(t,@) |= L () (176)
where L, (@) =by,(a)+ay,(a)—(b+ p)Yy(a) —Z,(c) . Therefore, solving equation (174) and
(176) we have

(175)
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[ (ap— p*)(bp— p*)—abp® |L[ y(t,@) | =(bp— p*)Ly() ~bpL,(a), (177)
(bp— p*)L () ~bpL, (@)
L| y(t, = '
)] = =) 6p— ) oo ()
and
[ abp? —(ap— p*)(bp— p*) | L[V (t,@)] =apL,(a)-(ap— p*)L,(a) . (179)
- apL,(a)—(ap - p*)L, ()
L|y(t, = .
IO g ap—p)op- ) )
Therefore,
H. (t )= PPLe(@)—(bp-p)L(@) - (181)
=0 (ap-p?)(bp - p*)—abp?
K, (ta) = (ap - p*)L, () —apL,(a) (182)

abp? —(ap—p*)(bp— p°*)
Hy (@) and K, (t,@) are the relation between the FLT and its k™ derivative when a<0 and
b>0

Case 4d: If a< 0 and b < 0. Applying these conditions on equations (144) and (146)

(a+b)pL| y(t, @) |- (a=bp)y, () ~by, (@) = p°L[ y(t. @) | - pys (@) ~Zo(a),  (183)
(a+b)pL[Y(t, @) ]~ (a—bp)y,(a) —b¥,(a) = p’L[V(t, @)] — pY, (@) — Z(a) - (184)
Rearranging equation (183) and (184)
(a+b)pL| y(t,a) |- p’L| y(t.) ]

(185)
=by, (@) +(a—bp)y,(a) - py, (@) = pY, (@) - Z,(@).
Also,
(@+b)pL{y(t,@)]- p°L[V(t, )] (186)
=by, (a) +(@a—bp) Y, (@) — pYy (@) — Py, (@) — Z, ().
Solving equations (185) and (186)
[(@+b)p—p* | pL| y(t.@) | = by, () + (a—bp)y, (@) - py,(@) 7 (@), (187)
_ by, (a) +(a—bp)y,(a) - py,(a) - Z,(2)
Ll yte)]= Gib)p_ D , (188)
[(@+b)p—p* | pL[Y(t.@)] = by, () +(a—bp) Y, (@) — pY, (@)~ Z,(2), (189)
B by, (@) + (@—bp)y,(a) - pYy (@) — z,()
Ll yte)]= 10 p—D . (190)
Therefore, ~ ~
H, (o) = by, (@) +(a—bp)y, (@) — pYo(@) ~Z(a) (191)
“ ) (a+b)p- pz_
K, () = by, () + (@ —bp)y,(a) - pY, (@) — z,() - (192)
“ (a+b)p-p’

H,, (@) and K, (t,«) are the relation between the FLT and its k™ derivative when a<0 and

b<0.
The results presented as (a), (b), (c) and (d) above, show that HalKal to H614 Ka‘1 and

H,K, to H K,, HK, to H K and H;K, to H; K, are algebraically equivalent
respectively.
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Constructed Examples

Existence of Second Order Differential Equations
Consider the following equations

Yo®) = y°+ [ (5, ¥o(5), y5(s))ds (193)

t

Vi) =y + [ £(5,¥:(5), yi(s)) ds (194)
Let Yo(0) = Yo (), YO =) [t-t[<e

[ £(5.%(5), ¥4 (s))ds

t

1y, = Yol = <Mt—t,|<aM <b,

thus ||y,(s) = Yo(S)||<b . Then I f (s, Y,(5), yi(s))ds is defined as |t—t,|<c .

Hence,
t

[ f(s,%.(5), yi(s)ds)

)

< j||f (s, ¥1(s), yi(s))[ds < aM <b.

)

Iyl =

Also,
t—to| <[y )= Yo| <aM <b,k =1, ...,n.
Now, for [t—t,|<er,

t t

YO+ [ (5, ,(5) ¥i(8))ds—y° — [ £ (5. ¥, 1(5).) Vi a(5)ds

f )

||yk+1(t) =Y (t)” =

[ 15 9(8), i 5)) = £ (5,4 4(9),) Yi s (s)ds

where the inequality above results to the fact that f is Lipschitz.

t

<LII(%(9): ¥4(8)) = (¥ (). yia (9) s

Next is to prove that, for all k

k
Lit—t
||Yk+1_Yk||£bw

Indeed, equation (195) holds for kK =1 as previously established. Now assume that equation (195)
holds for K =n, then

t—t|<a. (195)

i

t t

Yo+ (S ¥ (8), i (5))ds = y° = [ £ (5, Y, 5(5), Vi () ds

f )

||Yk+1(t) = Yi (t)” =

t

||yn+2 - yn+1|| = J. f (S’ yn+l(s)’ yr’1+1(s))_ f (S’ yn (S), yr!1 (S))dS
t
<j‘L|| (S) ' (S)— (S) '(S) ||dS<ijMd3 <b£ws_t
— : yn+l ' yn+1 yn yn ' - v n! - n! n +1 .
|_ . n+1
< bM t—to| <
(n+1)!
therefore, equation (195) holds for k =1,.... Thus, for N >n, we have
N-1
1Yn (0 = Yo O < 22 Vi O Vi (0, =¥, O yi (0, - (196)
k=n
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—t 71
-y, )< Snl b)) (1)

k=n

Equation (197) tends to zero an N — oo. Therefore, {yk (t)} converges uniformly to a
function y(t) on the interval |t—t0|£a. As the convergence is uniform, the limit function is

continuous, moreover, Y(t,) =Y, . Indeed,

2 0= %0+ (% OV 0¥, 10, ¥, ).
Therefore, -
YO =Yo®)+ Y (% 0 - Y1),
The fackt:lthat y(t) is a solution of fuzzy differential equations follows from the following
results. If a sequence of functions {yk (t)} converges uniformly and that Y, (t) are continuous on

the interval |t —t0| <a,then

t t

lim [y, (s)y;(s)ds = [ lim y, (s)ys(s) ds.
t ty

Hence

y(®) = limy, @y, 1) = y° +1im [ £ (s,Y,,(5), y;.4(5))ds = y* + [lim £ (s, y,,,(5), y;.4(5)) ds

=y*+[ f(s,¥(s)y'(s),)ds

f

This is to say that

t
y() =y + [ f(5,y(s),y(5))ds for [t—t;| <a,

f
as the integrand f(t,y) is a continuous function, Y(t) is differentiable with respect to t, and
y'(t) = f(t,y(t)), so y(t) is a solution of the second order fuzzy differential equations (1). This

shows that there exists a solution Yy(t) to equation (1).

Uniqueness of Second Order Differential Equations
Consider the second order linear ordinary differential equation

y' () =F(ty(t),y ). y(0)=Yo=(Y: ¥ ) ¥(0)=2=(2.%)

y'®) =y +[ f(s,y(),y(s))ds. (198)

)

X'(t) = x° +j' f (s,x(s),X'(s))ds.. (199)

Now, substracting equation (198) and (199) we have
y'(t) = y(t), x'(t) = x(t)
where X(t), y(t) € D. Then,

t
y(t)—x(t) =y’ —x°+ I[ f(s,y(s),Y'(s)) - f(5,%(s),x'(s))]ds. (200)
1,
Taking the normed of both sides of equation (199) and applying the Lipschitz condition, indicates that

[LIy(s), y'(s)=x(s), X(s)| ds| .

f

0£||y(t)—x(t)||£Hy° —x°H+ (201)
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We then apply Gronwall to inequality (200) for k =0and r(t) = ||y(t) — X(t)||

For t,<t<t,+a,weget 0< ||y(t) - X(t)|| <0, that s,

y(t) —x(t)| =0, thus y(t) =x(t).

For t,<t<ty+a. Similarly, for ty—a<t<t, [y(t)—x(t)|=0. Therefore, y(t)=x(t) for

|t —t0| <« . This shows that the solution y(t) = x(t) to equation (1) is unique.

DISCUSSION

A GTFN was applied to second order FODEs and
in that case, results were obtained for the
solutions of equations (1), (2) and (3)
categorized mainly as (a), (b), (c) and (d). Each
category was subcategorized into four cases and
solved using FLTM. Case 1 dealt with the
situation when a>0 and b>0. The results

obtained in that case were indicated as
equations (10) and (11). Case 2 dealt with the
situation when a>0 and b <0, which yielded

the results in equations (22) and (23). Case 3
dealt with the situation when a<0 and b>0,

which vyielded the results in equations (34) and
(35). Also, case 4 dealt with the situation when
a<0 and b<0 which yielded the results in

equations (42) and (43). Similarly other results
were further obtained such as equations (50),
(51); (60), (61); (70), (71); and (76), (77)
respectively for those categories mentioned
above. See also additional results in equations
(89), (90); (101), (102); (113), (114); (123);
(4.124); (137), (138); (149), (150); (161), (162)
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