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ABSTRACT 
β-glucuronidase enzyme is present mostly in mammals’ tissues. β-glucuronidase is 
present in kidney, bile, serum, urine and spleen. In eukaryotic and prokaryotic 
organisms, it is important in the process of breaking down of β-glucuronide. It also helps 
in the neutralization of reactivity of some metabolites that are associated to many 
diseases. The most stable geometry of the dataset were obtained adopting DFT method 
at B3LYP/6-31G* level of theory. The model was developed using MLR analysis adopting 
GFA method. Molecular docking was also performed to portray the binding mode of these 
bis-indolymethanes derivatives in the binding pocket of their target receptor (human β-
glucuronidase). The selected model was assessed and chosen based on its statistical 
fitness with R2

trng=0.907233, R2
adj=0.881465, Qcv

2=0.833795, and R2
test=0.609841.And 

also, the significance and impart of each physicochemical parameters to the selected 
model were determine by their ME values. Molecular docking analysis revealed that 
amino acid such asALA49, SER52, ASP53, PHE51, VAL96, LEU92, TYR188, TYR199 and 
PHE200 might be responsible for the most promised binding affinity of the reported 
docked ligands. The molecular docking results showed that the reported compounds 
were better than the standard β-glucuronidase inhibitor. The results of this findings 
paved way for designing novel β-glucuronidase inhibitors. 
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INTRODUCTION 
β-glucuronidase enzyme is present mostly in 

mammals tissues, kidney, bile, serum, urine and 

spleen(Ali et al., 2016; Gloux et al., 2011). In 
eukaryotic and prokaryotic organisms, the 

enzyme is important  in  the process of breaking 
down of β-glucuronide (Beaud et al., 2005). It 

also helps in the neutralization of reactivity of 
some metabolites that are associated to many 

diseases (De Moreno de LeBlanc and Perdigón, 

2005).It has been shown that increase in 
performance of this enzyme can lead to 

numerous unhealthy situations (Salar et al., 
2016; Taha et al., 2015).This enzyme was stated 

to be sent to synovial fluid during inflammatory 

joint disorders(Taha et al., 2018).It is very 
paramount to devise a means to prevent the 

adverse effect of β-glucuronidase so as to stop 
many unhealthy situations caused by the 

enzyme. 

Due to their extensive uses in medicinal 
chemistry, pharmacology and biochemistry, bis-

indolymethanes were identified to possess 

different biological activities such antibacterial, 
HIV-1 integrase inhibitors, antitumor and 

antifungal, antimicrobial and aromatase 

inhibitors for breast cancer(Kamal et al., 2009; 
Lézé et al., 2004; Nagase et al., 2010).Also, 

some of these compounds are used by 
animals(humans) in the metabolism of estrogen 

to treat some sickness such as extended 
weakness, critical bowel symptom and 

fibromyalgia(Chakrabarty et al., 2002). 

Computational chemistry is a unique area in the 
drug design and development arena which 

provides in-silico methods and software that are 
employed in the discovery and production of 

new compounds of medicinal benefit(Jorgensen, 

2004). Quantitative structure-activity 
relationships (QSAR) is an in-silico method used 

to correlate the response variable (biological 
activities) with different descriptors 

(physicochemical properties) associated with the 

structures of a particular molecule(Ojha 
Lokendra et al., 2013).While an in-silico method 

used to predict the binding energy of 
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intermolecular complexes based on their 3D 

structures is known as molecular 

docking(Kitchen et al., 2004).This study is aimed 
at carrying out QSAR and molecular docking 

analysis on bis-indolymethanes derivatives 
against β-glucuronidase enzyme. 

 

MATERIALS AND METHODS 
QSAR modelling methodology 

Thirty two (32) derivatives of bis-
indolymethanes and their β-glucuronidase 

inhibitory activities (IC50) were retrieved from 
the work of Taha et al., (2018) for the purpose 

of this study. After data retrieval from their 

source, the inhibitory activities IC50 in (μM)of the 
studied data were transformed to their 

corresponding negative logarithm scale 
(pIC50)using equation 1 in order to increase 

linearity in the activities value. Chemdraw 

software was adopted for drawing the structures 
of all the studied data(Ibrahim et al., 2019). 

pIC50 = log (1/IC50)(1) 
In determining the structures of all the data set 

at global minima on Potential energy surface 
(PES) (stable structure), Density functional 

method (B3LYP/6-31G* level of theory) was 

employed to achieve the searching of the stable 
structures of all the dataset on potential energy 

surface (Amin and Gayen, 2016).For the 
generation of the physicochemical descriptors, 

the already optimized structures were save in 

SDF a file format recognized only by the 
Pharmaceutical data exploration laboratory tool 

kit (PaDEL descriptor tool kit).PaDEL descriptor 
tool kit was used to compute both 1D, 2D and 

3D descriptors(Yap, 2011). Before data set 

splitting, the data were pre-treated using data 
pre-treatment software retrieved from drug 

theoretical and cheminformatics Laboratory(DTC 
Lab) to remove redundant and constant values 

from the data (Ambure et al., 2015). Data 
division software was further used to split the 

data into model building set (75%) and 

validation set (25%) (Kennard and Stone, 1969). 
The model building set was used to generate the 

models using multi-linear regression analysis 
adopting genetic function algorithm method. 

The equation for the regression analysis is 

shown in equation (2). 
Y = A1x1+ A2x2 + A3x3 + C(2) 

where Y is the pIC50(dependent variable), ‘A’s 
are coefficients for the descriptors(which are the 

‘x’s), and ‘C’ is the constant for the regression 
equation(Ibrahim et al., 2020b). 

After generating the models, it is very important 

to assess the high predict power, reliability, 
stability and robustness of the generated models 

using the squared of the correlation coefficient 
(R2), cross-validation coefficient (Qcv

2), and 

adjusted squared of the correlation coefficient 

(Radj
2) of the model (Jalali-Heravi and Kyani, 

2004; Tropsha and Bajorath, 2015)the equations 
for these listed validation parameters are 

defined as: 

R2
intrnal = 1- 

∑(𝑌𝑒𝑥𝑝−𝑌𝑝𝑟𝑑)²

∑(𝑌𝑒𝑥𝑝−𝑌𝑚𝑛𝑡𝑟𝑛𝑔)²
   (3) 

R2
test = 1- 

∑(𝑌𝑝𝑟𝑑−𝑌𝑒𝑥𝑝)²

∑(𝑌𝑒𝑥𝑝−𝑌𝑚𝑛𝑡𝑟𝑛𝑔)²
                  (4) 

Qcv
2 = 1- 

∑(𝑌𝑝𝑟𝑑−𝑌𝑒𝑥𝑝)²

∑(𝑌𝑒𝑥𝑝−𝑌𝑚𝑛𝑡𝑟𝑛𝑔)²
                    (5) 

 

where Ypred is the predicted pIC50,Yexp is the 
observed pIC50respectively of the validation set 

and Ymntrngis the averagepIC50 value of the model 
building set. 

Variation inflation factors (VIF)is also important 

in QSAR which is used to determine the 
multicollinearity problem of the physicochemical 

parameters(descriptors) in aQSAR model, If VIF 
values isone (1), there is no multicollinearity 

problem/inter-correlation between the variable. 

But if VIF values is between one (1) to five (5), 
the selected model can be accepted and 

therefore regard as valid and if VIF values is 
greater than ten (10), therefore the selected 

model is bad and therefore rejected (not free 
from multicollinearity problem/inter-correlation) 

(Beheshti et al., 2016). VIF can be determine 

using equation 6 below: 

VIF = 
1

1−𝑅2
(6) 

where R2 is the correlation coefficient of the 
model.  

The mean effect (ME)is employed to determine 

the degree of contribution and significance of 
individual physicochemical descriptors to the 

selected model which indicates the direction in 
the activities of the compounds whether 

increase or decrease against their target 

enzyme. Mean effect help in ligand-based drug 
design by giving a hint on which 

physicochemical descriptor to give much 
consideration when carrying out structural 

modifications on the template. It is given by the 
expression below: 

MFj = 
𝐵𝑗 ∑ 𝑑𝑖𝑗

𝑖=𝑛
𝑗=1

∑ 𝐵𝑗
𝑚
𝑗 ∑ 𝑑𝑖𝑗

𝑛
𝑖

       (7) 

 

where βj is the coefficient of the physicochemical 
parameter J in that selected model, dij is the 

value of the physicochemical parameter in the 
data matrix for each molecule in the model 

building set and MFj is the mean effect of 

physicochemical parameter j in the selected 
model, m is the number of physicochemical 

parameter that appear in the selected model and 
n is the number of molecules in the model 

building set(Ibrahim et al., 2020a). 
Domain of applicability is very important in QSAR 

model validation most especially in the quality of 22 
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the model predictions and control of potential 

misuse of the models outcome. Also, it helps to 

figure out influential and outliers among the 
compounds in the data. The domain of 

applicability of the model must be exploited(Roy 
et al., 2017). As such leverage approach was 

adopted in this case and is given as hi:  

hi = yi (YT Y)-Kyi
T  (i=a,…, d)               (8) 

where Y is p × q independent variable matrix of 

the model building set compounds, yi is the 
model building compounds matrix I, and YT is 

the transpose matrix Y utilized in developing the 
model. The thresh-hold value (h*)as indication 

tool and is the boundary for Y values and is 

given as:  
     h*= 3(q+1)/z                              (9) 

where z is the number of compounds in the 
model building set and qis the number of 

independent variable in the selected model. For 

any QSAR model to be considered as valid and 
used, it has to pass the Internal and external 

validations assessment(Veerasamy et al., 2011).  
 

Molecular docking simulation methodology 
Docking simulation was performed to study the 

nature and mode of binding interactions 

between the binding pocket of human β-
glucuronidase and the ligands utilizing Discovery 

studio visualizer, Autodock Vina of Pyrex virtual 
screening and UCSF Chimera docking software. 

The coordinates and dimensions of the grid box 

used for the docking simulation are X: 81.5147 
Å, Y:90.5618Å and Z:138.5886Å respectively. 

Ligands were prepared prior to the 
commencement of the docking simulation, by 

saving the optimum conformation ascertained 

using density functional theory in protein data 
bank file (pdb file format). The crystal structure 

of Humanβ-glucuronidase was retrieved from 
pdb with pdbID 1bhg(Ibrahim et al., 2020c). The 

preparation of the human β-glucuronidase for 
the docking simulation was done using Discovery 

Studio Visualizer, by removing chain B, 

heteroatoms and co-ligands from the dimer 
saved also as protein data bank file (pdb file 

format) (Abdulfatai et al., 2017).Pyrex software 
was used in the execution of the docking 

simulation in which the ligands were docked to 

the binding site of the human β-glucuronidase 
(Trott and Olson, 2010). The complexes were 

rebuild using UCSF Chimera software for further 

investigation. The nature and mode of binding 

interactions of the complexes was investigated 

using the Discovery studio visualize (Abdulfatai 
et al., 2019). 

 
RESULTS AND DISCUSSION 

QSAR modelling results 

Four QSAR models were developed out of which 
the best model was selected and reported based 

its statistical significance. Model 1 was selected 
and reported as the best because of its 

statistical fitness. On comparing the statistical 
parameters of the selected model with those 

reported by Veerasamy et al., (2011) it can be 

seen that the statistical parameters of the 
selected and reported model were all greater 

than the minimum recommended values which 
confirmed the reliability of the model(Veerasamy 

et al., 2011). The squared correlation coefficient 

(R2
trng) of the reported models was 0.907233 

which means that the model can be able to 

explain about 90.72 % of the variations in the 
activities of these β-glucuronidase 

inhibitors(Golbraikh and Tropsha, 2002). Also 
the value of this R2

trng(0.907233) was greater 

than that of its corresponding R2
adjvalue 

(0.881465) which confirm the significance of the 
reported model(Ambure et al., 2015). The 

reliability of the reported model was further 
confirmed by the calculation of the predicted 

activities of the validation set compounds and 

the external validationR2
testvalue (0.609841)(Roy 

et al., 2016). 

Model 1 
pIC50=4.429930318 * GATS2e - 8.780469543 

* GATS3e - 3.613936763 * GATS4s - 

0.408832101 * SpMAD_Dzs - 4.66480514 * 
SpMax5_Bhs + 33.918834833.  

R2
trng=0.907233, R2

adj=0.881465, 
Qcv

2=0.833795, N trng=24,R2
test=0.609841, N test 

=8,R2- Q2= 0.073438and LOF =0.030552. 
To confirm the quality of the selected 

model, the Predicted activities of both the model 

building set and that of the validation set were 
plotted against the actual activities (Figure 1). 

The indicator used in this case is R2 value of 
both the plot and that of the internal validation, 

the quality of the selected model was confirmed 

by the corroboration of R2 value (0.9072) of the 
plot and that of the internal validation 

(R2
trng=0.907233). 
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Figure 1: Plot of actual pIC50 against predicted pIC50 

 
Every Good QSAR model is expected to be free from methodological/systematic error. In order to 

determine whether the selected and reported model is free from systematic error, the predicted 

activities were plotted against their standardized residuals (Figure 2). The selected model was 
confirmed to be free from methodological error by even distribution of the standardized residuals on 

the plot. 
 

 
Figure 2: Plot of predicted pIC50 against standardized residuals 
 

The observed activity was seen to have good correlations with the predicted activity. Table 1 presents 
the pIC50, Predicted pIC50 and residuals values of the dataset. The low values observed in the 

difference between the actual pIC50and Predicted pIC50in the table further confirmed the stability and 

reliability of the selected model. 
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Table 1: The pIC50, predicted pIC50, residuals and binding energy of the dataset. 

S/N pIC50 Predicted pIC50 Residuals Binding Energy (kcal/mol) 

1 0.370698 0.330341 0.040357 -11.8 

2 0.52288 0.480181 0.042698 -11 

3 0.879153 1.07631 -0.19716 -10.8 
4 1.515874 1.421871 0.094002 -11 

5 0.474216 0.479439 -0.00522 -11.1 
6 0.768934 0.5481 0.220834 -10.4 

7 1 0.866016 0.133984 -10.2 

8 1.630936 1.622417 0.008519 -10.2 
9 0.056905 0.096017 -0.03911 -11.7 

10 0.52288 0.929859 -0.40698 -10.3 

11 1 0.7477 0.2523 -11.2 
12 0.69897 0.87357 -0.1746 -10.9 

13TST 0.537567 0.611373 0.073805 -10.4 
14 0.322219 0.39697 -0.07475 -10.8 

15 TST 0.426511 1.613978 1.187467 -10.1 
16 1.638489 1.619497 0.018992 -10.8 

17 0.176091 0.233101 -0.05701 -11 

18 1.685742 1.462794 0.222948 -10.2 
19 1.346353 1.37602 -0.02967 -12.1 

20 1.525045 1.394978 0.130067 -12.4 
21 1.09691 1.309856 -0.21295 -10 

22 TST 0.447158 0.826689 0.379531 -11.8 

23 TST 0.838849 0.589544 -0.24931 -12.4 
24 0.763428 0.526575 0.236853 -11.5 

25 0.041393 0.148368 -0.10698 -11.7 
26 TST 0.079181 0.12847 0.049289 -11.3 

27 TST 0.342423 0.882903 0.54048 -10.7 
28 0.447158 0.470172 -0.02301 -12.4 

29 1.198657 1.142387 0.05627 -12.4 

30 TST 1.517196 1.591117 0.073921 -10.4 
31 1.369216 1.499605 -0.13039 -10.8 

32 TST 1.117271 1.336159 0.218888 -10.2 
TST = Test set 
 

The correlation analysis on the independent 
variables inthe model building set of the selected 

model in Table 2 indicates the importance of the 

independent variables to the model. The 
independent variables were found to have no 

correlation with one another as no two 
descriptors have their values close to one. The 

computed Variation Inflation Factor values for all 
the independent variables were found to be less 

than 5 (see Table 2) indicating the statistical 

fitness of the selected model and no multi-
collinearity problem exist between the 

independent variables.  
The mean effect(ME) value (Table 2) shows the 

degree of contribution of an independent 

variable, in comparison to others in the reported 
model. The positive or negative coefficients of 

the independent variable show the direction of 
the activity in inhibiting the β-glucuronidase 

enzyme whether high or low. From the mean 
effect, GATS2e(Geary autocorrelation - lag 2 / 

weighted by Sanderson electronegativities) gave 

the minimum degree of contribution with the 
negative value of -0.08929 which indicates that 

this physicochemical parameter contributes 

negatively to the potency of bis-indolymethanes 
against their target enzyme (β-glucuronidase) in 

the sense that if the number of this 
physicochemical parameter is reduced, it means 

that the potency of bis-indolymethanes will be 
high against β-glucuronidase and vice versa. On 

the other hand, the mean effect values 

forGATS3e(Geary autocorrelation - lag 3 / 
weighted by Sanderson electronegativities), 

GATS4s(Geary autocorrelation - lag 4 / 
weighted by I-state), SpMAD_Dzs(Spectral 

mean absolute deviation from Barysz matrix / 

weighted by I-state ) and SpMax5_Bhs(Largest 
absolute eigenvalue of Burden modified matrix - 

n 5 / weighted by relative I-state)signifies their 
positive contributions toward the effectiveness 

of bis-indolymethanes against β-glucuronidase 
each with positive value of +0.219708, 

+0.105168, +0.200507 and +0.563911 
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respectively. It indicates that addition of these 

descriptors to the bis-indolymethanes will 

increase their potency against β-glucuronidase 

and vice versa. The trend in the individual 

contribution given by these descriptors is given 

as  
SpMax5_Bhs ˃ GATS3e ˃ SpMAD_Dzs ˃ GATS4s ˃ GATS2e 

 
Table 2: The correlation analysis, VIF and ME of descriptors in the model building set. 

 Correlation    VIF ME 

 
GATS2e GATS3e GATS4s SpMAD_Dzs SpMax5_Bhs   

GATS2e 1 

    

1.897553 -0.08929 

GATS3e 0.402381 1 
   

2.117793 0.219708 

GATS4s 0.359744 -0.11925 1 

  

2.58655 0.105168 

SpMAD_Dzs 0.140732 -0.45943 0.284019 1 

 

2.042549 0.200507 

SpMax5_Bhs -0.15483 0.083278 -0.68912 -0.45632 1 2.615628 0.563911 

 
The plot of leverage values calculated for all the dataset and the standardized residuals (Williams 

plot) (see figure 3), which permit a graphical identification of both influential and outliers compounds 
in the selected model (Beheshti et al., 2016). From the plot, all the compounds of the model building 

set and 4 from the validation set were within the domain of the model. And only four influential 

compounds were observed from the validation set. Those influential compounds can be said to have 
their mechanism of action different from those within the domain of applicability of the reported 

model. More so, there were no outliers in both model building set and the validation set with their 
standardized residual greater than the +3 or -3 standard deviation unit. 

 

 
Figure 3: Williams Plot 

 
Results of Molecular docking analysis 

Molecular docking simulation on all the thirty 
two (32) bis-indolymethanes derivatives was 

performed to investigate the mode of binding 
interactions between them and their target 

enzyme (human β-glucuronidase, pdb ID:1bhg). 

The binding energy of all the studied ligands 
ranges from -10 kcal/mol to -12.4 kcal/mol as 

shown in Table 1. Table 3 presents the results of 
some selected ligands with higher binding 

affinity in kcal/mol. Ligand 28 being the most 

potent having the top binding energy of -

12.4kcal/mol among the dataset bounded to the 

binding pocket of human β-glucuronidase via 
hydrophobic, halogen and hydrogen bond 

interactions. It forms hydrophobic interactions 
with ALA49, SER52, ASP53, PHE51, SER52, 

VAL96, LEU92, TYR188, TYR199 and 

PHE200amino acid residues back bone of the 
enzyme. It forms conventional hydrogen bond 

interactions with HIS94 (2.47744) & PHE51 
(2.68745) amino acid residues, and formed 

halogen bond with GLU595amino acid residue.
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The next to ligand 28 reported with higher 

binding affinity is ligand 19 with -12.1kcal/mol 

binding affinity, it interacted with the human β-
glucuronidase through hydrophobic interactions 

with amino acid chains ALA49, SER52, ASP53, 
PHE51, SER52, VAL201, VAL96, LEU92, TYR188, 

TYR199 and PHE200 and also via conventional 

hydrogen bond interactions with:HIS94 
(2.10014) and PHE51 (2.53095) amino acid 

residues. Also, Ligand 1also shows good 
interaction with high binding affinity of -

11.8kcal/mol. Hydrophobic interactions with 
GLN202,TRP90,ALA49,PHE51 and PHE95, 

Electrostatic interactions with ALA49, SER52, 

ASP53, PHE51, SER52, VAL96, LEU92, TYR188, 
TYR199 and PHE200, and conventional 

hydrogen bond interactions withPHE200 

(2.97636) and PHE51 (2.63555) were observed 

with mentioned amino acid residues of the 

human β-glucuronidase. Beside the mentioned 
ligands, ligand 25 with binding affinity of -11.7 

kcal/mol was also observed to interact with the 
binding pocket of the human β-glucuronidase 

through hydrogen, hydrophobic and electrostatic 

interaction as shown in Table 3.The standard 
drug (D-saccharic acid 1,4-lactone) with the 

binding affinity of -5.7kcal/mol formed only 
hydrogen bond with ASN502(2.42729Å) and 

GLN524 (3.44886Å)amino acid residues of the 
human β-glucuronidase. All the compounds were 

seen to be more active than the standard drug. 

Figure 4 shows the 3D structure of the reported 
compounds investigated using PyMOL.

 

Table 3: Different types interactions of reported compounds in binding pocket of humanβ-

glucuronidase enzyme. 

S/NO Binding energy 

(kcal/mol) 

Hydrophobic, Halogen & Electrostatic Int. Hydrogen bond Int. and bond 

Distances (Å) 

1 -11.8 ALA49, SER52, ASP53, PHE51, SER52, 
VAL96, LEU92, TYR188, TYR199 and 

PHE200 

PHE200 (2.97636) and PHE51 
(2.63555) 

19 -12.1 ALA49, SER52, ASP53, PHE51, SER52, 

VAL201, VAL96, LEU92, TYR188, TYR199 

and PHE200 

HIS94 (2.10014) and PHE51 

(2.53095) 

25 -11.7 TYR511, TYR508, TYR508, MET556, 

LEU501, TYR508, TYR511, TYR511, 
TRP528 and TRP528 

TYR504 (2.01591), TYR511 

(1.94312), ASN484 (3.67888), 
SER503 (3.34112), and 

HIS509 (3.14637) 
28 -12.4 ALA49, SER52, ASP53, PHE51, SER52, 

VAL96, LEU92, TYR188, 

TYR199&PHE200; GLU595 

HIS94 (2.47744) & PHE51 

(2.68745) 

S/D -5.7  ASN502(2.42729) and 

GLN524(3.44886) 

Standard drug = D-saccharic acid 1,4-lactone 
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Figure 4: 3D structures of (A) ligand-Receptor 28, (B) ligand-Receptor 19, (C) ligand-Receptor 1 and 

(D) ligand-Receptor 25 using PyMOL. 
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CONCLUSION 

QSAR modelling on some bis-indolymethanes 

was conducted using Genetic Function Algorithm 
(GFA). The most stable geometry of the studied 

data were obtained using DFT method utilizing 
B3LYP/6-31G* level of theory.The selected 

model was assessed and chosen based on its 

statistical fitness with R2
trng=0.907233, 

R2
adj=0.881465, Qcv

2=0.833795, and 

R2
test=0.609841.Molecular Docking simulation 

reported between some selected compounds 

(compound 28, 19,1 and 25) and binding site of 
human β-glucuronidase enzyme, showed that 

these amino acid residuesALA49, SER52, ASP53, 

PHE51, VAL96, LEU92, TYR188, TYR199 and 
PHE200might be responsible for the most 

promised binding energy ofthe reported docked 

ligands.The reported compounds werefound to 

be more active than the standard drug used as 

control in this study. The result of this in-silico 
findings paved way for designing new novel β-

glucuronidase inhibitors. 
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