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ABSTRACT 
Evasion differential game problem with many pursuers and one e
control functions of the players are subject to integral constraints on each coordinates. Sufficient 
conditions for evasion to be proposed 
strategy is constructed and illustrative example is given.
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INTRODUCTION 
Pursuit and evasion differential game problems 

involves two controlled dynamical objects called 
pursuer and evader with conflicting goals. The goal of 
the pursuit is to catch the evader in a finite time. 
Whereas, the evader want to escape catch by the 

pursuer. There is vast literature on pursuit and 
evasion differential game problems. Few of these are 

contained in the list of references in this paper. That 

is, from the first reference Azamov (1964) to the last 
one (Wah and Ibragimov, 2007). 
The study of pursuit problems involves finding 
conditions for completion of pursuit; optimal pursuit 

time and construction of pursuer’s strategy. In the 
other hand, finding conditions that guaranteed 

evader’s escape and construction of evader’s strategy 
are the main issues in the study of evasion differential 

game problem. 
A matter of interest in this paper is the evasion 

differential game problem. There are many 
publications from researches involving this type of 
differential game problem. Some of these publications 
include Azamov (1964), Chodun (1987), Ibragimov 

and Yusra (2012), Ibragimov and Hasim(2012), 
Ibragimov et. al. (2012), Alias et.al. (2016), Idham 
et.al. (2013), Idham et.al. (2016) and Saleh 
(2013). In the papers Ibragimov and Yusra(2012), 

Ibragimov et. al. (2012) and Alias et. al
evasion problems were investigated on the plane. 
Therefore, in this regard, these papers are the most 

relevant once to this research. 
In Alias et. al. (2016), an evasion differential game 

problem, involving one pursuer and one evader in the 
plane, is studied. Control functions of the players are 

subject to geometric constraints. Maximum speed of 
the pursuers is equal to 1 and maximal speed of the 

 �� ∶ 		 ��
                                  � ∶ 	
where ���, 
�, �� , �, ��, 
	 ∈ 	��  ; 	����� 	
functions of the pursuer and evader respectively, satisfying the inequalities

                                         � |������|�∞�
                                         � |�����|�∞�
where  ���, ���, ��, ��, �	 � 	1, . . . , �	 are given positive n

It is also required that the scalar measurable functions 

exists a positive number	� satisfying the inequality
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Pursuit and evasion differential game problems 

involves two controlled dynamical objects called 
pursuer and evader with conflicting goals. The goal of 

it is to catch the evader in a finite time. 
der want to escape catch by the 

pursuer. There is vast literature on pursuit and 
evasion differential game problems. Few of these are 

contained in the list of references in this paper. That 

(1964) to the last 

The study of pursuit problems involves finding 
conditions for completion of pursuit; optimal pursuit 

time and construction of pursuer’s strategy. In the 
ditions that guaranteed 

evader’s escape and construction of evader’s strategy 
are the main issues in the study of evasion differential 

A matter of interest in this paper is the evasion 

differential game problem. There are many 
om researches involving this type of 

differential game problem. Some of these publications 
(1987), Ibragimov 

(2012), Ibragimov and Hasim(2012), 
(2016), Idham 

(2016) and Saleh et. al. 
(2013). In the papers Ibragimov and Yusra(2012), 

et. al. (2016), 
investigated on the plane. 

Therefore, in this regard, these papers are the most 

(2016), an evasion differential game 

problem, involving one pursuer and one evader in the 
plane, is studied. Control functions of the players are 

subject to geometric constraints. Maximum speed of 
maximal speed of the 

evader is� � 	1. Control set of the evader is a sector 

S whose radius is greater than 1. Sufficient conditions 

are obtained that guarantee the evasion, regardless 
of the location of the initial positions of the players.
Evasion differential game problem, with many but 

finite number of pursuers and one evader in the 
plane, is studied by Ibragimov et al. (2012) . Player’s 
motion is described by simple equations. Control 
functions of the players are subjected to integral 

constraints. The main result in this paper is the 
sufficient condition that guaranteed evasion in the 

problem considered. 
Ibragimov and Yusra (2012) studied evasion 

differential described by simple equations which 
involved many pursuer and one evader in the plane. 

Each coordinate of the control functions of the 
players is subjected to integral constraints. Sufficient 
condition for which evasion to be possible is found. 
Evader’s strategy is constructed based on controls of 

the pursuers with lag. Moreover, illustrative example

is given. 
In the present paper, we investigate an evasion 

differential game problem of many pursuers and one 
evader with coordinate-wise integrals constraints in 
the space R2 . We obtain sufficient conditions for 
which evasion is possible in the game. The

considered in Ibragimov and Yusra(2012) is a special 
case of the problem considered in this paper. That is, 
the present work is a generalization in the work 
Ibragimov and Yusra(2012). 

 
Statement of the Problem 

We consider an evasion differential g
with many pursuers and one evader whose 

of motion are given by: 

	 � 	 �����,			���0� � 	���,							�	 � 	1, . . . , �;	           (1) 
�˙	 � 	"����,						
�0� 	� 	
�, 	 � 	 �������, ������� and ���� 	� 	 ������, ������	 are control 

functions of the pursuer and evader respectively, satisfying the inequalities  � #� $ ���� , � |������|�∞� #� $ ���� ,                           (2) #� $ ���,       � |�����|�∞� #� $ ���,             (3) 

are given positive numbers. 

It is also required that the scalar measurable functions  ���, "���	are such that for all �	 % 	0, there 

satisfying the inequality 
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In the present paper, we investigate an evasion 

differential game problem of many pursuers and one 
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. We obtain sufficient conditions for 
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                                         &| ���| $ 	�	 $ 	"���,																		�'	 ��� ≠ 	"���,| ���| � 	 |"���| $ 	�,														�'	 ��� 	� 	"���. )                        (4)  

                                                        

Definition 0.1 A measurable function ����� � 	 *������, ������+, �	 % 	0	 is called an admissible 

control of the pursuer ��, if the inequalities (2) are satisfied. 
 

Definition 0.2 A measurable function ���� � 	 *�����, �����+, �	 % 	0	is called an admissible control of the evader 

E if the inequalities (3) are satisfied 
Definition 0.3 A strategy of the evader	,�·� is the function of the form 

                   ,��� � &�0,0�																																																																																												0 $ � $ .,�	'������ − .�, … , �1�� − .�, '������ − .�,… , �1�� − .�			� � .,) (5) 

 
where . is a positive number, f1, f2 : R

m −→R are a continuous functions and �����,	 for all i = 1,2,3,...,m, t ≥ 0 

are admissible controls of the pursuers. 
 

Definition 0.4 If there exist a strategy of the evader ,�·� which ensure that ������ ≠ 	
����	and/or ������ ≠
����,		for all �	 � 	1, . . . , �, �	 % 	0,	 and for any admissible controls ���·�	of the pursuers then we say that evasion 
possible from the initial positions of the pursuers and evader 	��� � *�2�� , �2�� +, i � 1,2, . . . , �	and  
� � �
��, 
���,	 
respectively, in the game described by (1)-(4). 
 

Research Question: What are the sufficient conditions for evasion to be possible in the game described by (1)-
(4). 
SOLUTION OF THE PROBLEM 
The theorem and it’s proof below, which is the main result of this research, provides the sufficient conditions for 

the possibility of evasion in the game problem considered in this paper. 
 

Theorem 0.1 For evasion to be possible in the game described by (1)-(4) it is sufficient that 
1. There exists is a partition {6�, 6�}	of the set 6 � 	 {1,2,3, . . . , �},	for which the following inequalities hold 9���� $ ����∈:;

,			9���� $ ����∈:<
, 

 
2.                        
�� ∈ �−∞,  �� ∪ �"�,∞�,  
�� ∈ �−∞,  �� ∪ �"�,∞�, 

where 

                 � � min�∈:;{���� } , "� � max�∈:;{���� } ,  � � min�∈:<{���� } , "� � max�∈:<{���� }. 
Proof: 
Suppose the condition 1 and 2 of the theorem holds. Let . be a positive number such that 

                                                 . < �C	D<E<min{�
�� − "���, �
�� − "���}, 
where  �� � ���� + ���� 		and  ∑ ��1�H� � ��.  

                                               
We construct the evader’s strategy as follows: 

                     ,��� � I�0,0�,																																																																													0 $ � $ .,
JKL∑ ���� �� − .�,�∈:; 	K∗L∑ ���� �� − .�,�∈:< N ,														� � .,)                      (6) 

where  K � O;PQRS;P|O;PQRS;P | , T ∈ 6�;		   K∗ � O<PQRU<P|O<PQRU<P | , V ∈ 6�  and �� ,			� � 1,2,3, . . . , �,	 are admissible controls 

of the pursuers. 
 

Now our goal is show that if the evader uses the strategy defined by (6) then evasion is possible. 
Which means that ����� ≠ 	
���,		for all �	 � 	1,2,3, . . . , �, and for all �	 % 	0.	That is �������, ������� 	≠ 	 �
����, 
�����, 
which is equivalent to ������ ≠ 
����  and/or  ������ ≠ 
���� , for all �	 % 	0. 

To show this, we need to consider the four different possibilities with respect to the initial position of the evader, 
which arose from condition 2 of the theorem. One of these possibilities is that 
�� � "�, 
�� � "�. Other three are  
�� � "�, 	
�� <  � ; 		
�� <  �, 	
�� <  �  and
�� <  �, 
�� � "�. 
We now consider the first case, that is		
�� � "�, 
�� � "�. This implies that K	 � 	K∗ 	 � 	1.	Therefore the strategy 

defined by (6) reduces to the form 

                    ,��� � I�0,0�,																																																																													0 $ � $ .,
JL∑ ���� �� − .�	,�∈:; 	L∑ ���� �� − .�,�∈:< N ,																				� � .,)                      (7) 

The strategy defined by (7) is admissibility. This can be seen from the following: 
 

                                    � |�����|�#�∞� � � |�����|�#�W� +	� |�����|�#�∞W  

                                                       � � XL∑ ���� �� − .��∈:; X� #�∞�  
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                               � � Y∑ ���� ����∈:; Y#�∞� � ∑ *� Y���� �Z�Y∞� +#Z�∈:;  

                                                    � ∑ ���� $ ���.�∈:;  

In a similar way, we can show that 

                                                        � |�����|�#�∞� $ ���. 
If the evader uses this admissible strategy then we show that 

1. Evasion is possible from the pursuers �� , � ∈ I�	on the both intervals [0, .] and �.,∞�. 
2. Evasion is possible from the pursuers �� � ∈ I�, on the both intervals [0, .] and	�.,∞�  . 

 To show (1), we first consider evasion in the interval [0, .]. Observe that 

                 � 	�|����Z�|\� #Z $ ]� 	��#Z\� ^;< ]� |����Z�|�#Z\� ^;< $ 	�√��� $ �√.�                                            (8) 

 
Let the evader uses the strategy (7) and using the inequalities (4) and (8), with i ∈ I1, we have 

                                          
���� − ������ � 
�� + � "�Z����Z�#Z\� − ���� − �  �Z�����Z�#Z\�  

                                                              % 
�� − "� − � | �Z�||����Z�|#Z\�  

                                                              % 
�� − "� − � �|����Z�|#Z\�  

                                                              % 
�� − "� − 	�√��   

                                                                                             % 
�� − "� − 	��	√. 	% �� �
�� − "�� � 0 

This is by the choice of ., we have	�	√. 	% ��	D �
�� − "�� . This means that evasion is possible from the pursuers  ��, �	 ∈ 	 6�, in	[0, .]. 
 
Secondly, we consider evasion in the interval �.,∞� and observe that 

                                  � 	�|����Z�|\\QW #Z $ ]� 	��#Z\� ^;< ]� |����Z�|�#Z\� ^;< $ �√.�.                                (9) 

    

If the evader uses the strategy defined by (7) and using the inequality (9), we have 

   
���� − ������ � 
�� + � "�Z����Z�#Z\W − ���� − �  �Z�����Z�#Z\�     

                       % 
�� − "� + � "�Z�L∑ ���� �Z − .��∈:; #Z − � | �Z�����Z�|#Z\�\W      

																																� 
�� − "� + � |"�Z + .�|L∑ ���� �Z��∈:; #Z − � | �Z�||����Z�|#Z\QW� − � | �Z�||����Z�|#Z\\QW\QW�                                

																								      % 
�� − "� + � �L∑ ���� �Z��∈:; #Z − � �|����Z�|#Z − � �|����Z�|#Z\\QW\QW�\QW�  

                       % 
�� − "� − � �|����Z�|#Z\\QW  

                       % 
�� − "� − 	�√.� � �� �
�� − "�� � 0, 
This is by the choice of  . < �CD<E< �
�� − "���. This means that evasion from the pursuers�� 	 ∈ 	 6�, is 
ensured in the interval�.,∞�. This proves (1). 

 
To show (2), first we consider evasion from pursuers��, �	 ∈ 	 6�, in the interval	[0. .]. Let pursuer 

uses the strategy defined by (7), then for � ∈ 	 6� and �	 ∈ 	 [0, .],	 we have 


���� − ������ � 
�� +b"�Z����Z�#Z\
�

− ���� −b �Z�����Z�#Z\
�

 

                                                % 
�� − "� − � | �Z�����Z�|#Z\�    

                                                % 
�� − "� − � 	�|����Z�|#Z\�  

                                                % 
�� − "� − �√��	 
                                                % 
�� − "� − ��√. % �� �
�� − "�� � 0. 
This is by the choice of e, that is	�√. < ��D �
�� − "�� . Thus, evasion from the pursuers ��, � ∈ 	 6�,	is 
possible in the interval [0, .]. 
Lastly, let � ∈ �ϵ,∞�,	then according to (7), for any � ∈ 	 6�	and using the inequality (9), we have: 

  

                      
���� − ������ � 
�� + � "�Z����Z�#Z\W − ���� − �  �Z�����Z�#Z\�  

                                          % 
�� − "� + � |"�Z�|\W L∑ ���� �Z − .��∈:< − � | �Z�����Z�|#Z\�  

                        % 
�� − "� + � |"�Z + .�|L∑ ���� �Z��∈:< #Z − � | �Z�||����Z�|#Z\QW� − � | �Z�||����Z�|#Z\\QW\QW�  

                        % 
�� − "� + � �L∑ ���� �Z��∈:< #Z − � �|����Z�|#Z − � �|����Z�|#Z\\QW\QW�\QW�  

 

                         % 
�� − "� − � 	�|����Z�|#Z\�  
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                       					% 
�� − "� − ��√. % �� �
�� − "�� � 0, 
Thus, evasion from the pursuers �� , � ∈ 	 6�	is possible. 

The proof of the remaining cases i.e. 
�� � "�, 	
�� <  � ; 		
�� <  �, 	
�� <  � and	
�� <  �, 
�� � "�, is 
similar. This completes the proof of the theorem.  
Illustrative Example 
Example. Consider an evasion differential games problem described below 
                               ��:			�� �d �sin �� �����,									���0� � �0,1�, 
                                  ��:			�� �d �sin �� �����,								���0� � �1,2�, 
                                  �:				
d � �1 + fQ\�����,						
�0� � �1,3�, 
  

in which control functions of the pursuers ����� � *������, ����t�+, �	 � 	1,2,	 and that of the evader ���� � ������, ������	are such that 

 

                                         � |������|�#� $ ����∞� ,     � |������|�#� $ ����∞� , 

                                         � |������|�#� $ ����∞� ,     � |������|�#� $ ����∞� , 

                                         � |�����|�#� $ ���∞� ,	       � |�����|�#� $ ���∞� , 

 
where ���� � 3;	���� � 4;	���� � 1;	���� � 2;	��� � 3	 and ��� � 2. 
Observe that the two conditions in the theorem are satisfied for the partition {{1}, {2}}	of the set 6	 � 	 {1,2}.That is 

1. ���� � 3 � ���;  ���� � 2 � ���, for 6� � 	 {1}	and	6� �	 {2}. 
2. 
�� � 1 ∈ �−∞, 0� ∪ �0,∞�  and 
�� � 3 ∈ �−∞, 2� ∪ �2,∞�. 

                 (This is the case 
�� � 1 � "� � 0  and 
�� � 3 � "� � 2). 

According to our theorem, when the evader uses the strategy 

      ,��� � j�0,0�,																																																																													0 $ � $ .,]k���� �� − .�,									k���� �� − .�^ ,																													� � ., )              (10) 

then evasion from the pursuer P1 and P2 is possible. This can be seen from the following: 

Observe that in this example, ρ2 = ρ2
11 + ρ2

12 + ρ2
21 + ρ2

22= 10, and let . < �C� 
1. Firstly, we show evasion from P1 in possible in both intervals [0, .]	and �.,∞�. 

If  �	 ∈ 	 [0, .], �	 � 	1,	and evader uses the strategy (10), then 

                  
���� − ������ � 1 + � �1 + fQl����Z�\� #Z − 0 − � sin�Z�����Z�\� #Z 
                                      % 1 − � |sin�Z�����Z�|\� #Z 
                                      % 1 − ]� #Z\� ^;< ]� |����Z�|�#Z\� ^;<	 
                                      % 1 − √�√10 

                                      % 1 − √.√10 � 1 − √��√C� � �� � 0, 
This is by the choice of . $ �C�. 
Also, if �	 ∈ �ϵ,∞�	�	 � 	1,	 and evader uses the strategy (10), we have 


���� − ������ � 1 + b�1 + fQl����Z�\
W

#Z − 0 −bsin�Z�����Z�\
�

#Z 
                              % 1 + � |1 + fQl||����Z − .�|#Z − � |sin�Z�||����Z�|#Z\�\W  

                                                 % 1 + � |����Z�|#Z − � |����Z�|\QW� #Z + � |����Z�|#Z\\QW\QW�  

                                                 % 1 − � |����Z�|#Z\\QW   

                                                 % 1 − ]� #Z\� ^;< ]� |����Z�|�#Z\� ^;< 
                                                 % 1 − √.√10 � 1 − √��√C� � �� � 0.  

2. We can show that evasion from the pursuer P2 is possible in both the intervals [0, .]	and �.,∞�. 
 
For � ∈ 	 6� and �	 ∈ 	 [0, .],	we can easily show that  

		
���� − ������ � 3 + b �1 + fQl����Z�\
� #Z − 2 −b sin�Z�����Z� #Z % 1 − 14\

� � 0. 
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Also, for � ∈ 	 6� and � ∈ �.,∞�,	we can easily show that 


���� − ������ � 3 + b �1 + fQl����Z�\
W #Z − 2 − b sin�Z�����Z� #Z % 1 − 14\

� � 0. 
 
CONCLUSION 

We have studied evasion differential game of many 
pursuers and one evader on the plane. Motions of 
players are described by first order differential 

equations. Control functions of the players are 
subjected to integral constraints. We formulated and 
proved a theorem that provides sufficient conditions 
for evasion to be possible in the problem considered. 

In the proof of the theorem, we used the idea in [4]. 

Furthermore, we demonstrated the result of this 

paper by an illustrative example. 
The evasion problem studied in [4] is a special case 
to the one considered in this paper. That is, the case 

in which a(t) = b(t) = 1, and therefore, ζ = 1. This 
means that there are some problems solvable with 
the result of this paper, but not solvable using the 
result in [4]. This point is supported by the illustrative 

example. 
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