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ABSTRACTS   
The Frechet distribution which has a scale and shape parameters, has been found to have wide 
application in modelling extreme events such as radioactive emission, flood, rainfall, seismic 
analysis, wind speed, etc. In this research paper, the Bayesian analysis of sca
Frechet distribution was considered. It is necessary to know the best combination of prior 
distribution and loss function for the parameter estimation. Posterior distribution was derived by 
uniform and Jeffrey’s prior under the square error
loss function. Bayes estimation and their corresponding risk was obtained by the above stated 
priors and loss function. Monte Carlo simulations was conducted to compare the performance of 
the estimators. It is evident that weighted balance loss function when used with uniform prior 
provides the least posterior risk.
Keywords: Frechet Distribution, Non
Carlo Simulations 

 
INTRODUCTION 
The Frechet distribution was named after a French 
mathematician Maurice Rene Frechet
it in the 1920s as a maximum value distribution. The 
Frechet distribution is also known as extreme value 
distribution(EVD) Type II, it is one of the four 
distributions along with Gumbel distribution, Extreme 
value distribution and Weibull distribution classified 
under the general heading “extreme value 
distribution” and therefore used as tool for quantifying 
extreme events. The Frechet distribution has been 
shown to be useful for modeling and 
several extreme events ranging from accelerated life 
testing to earthquakes, radioactive emissions, floods, 
rain fall, sea currents, horse racing, h
and wind speeds; Kamran et al 2012
studied the Applications of the Frechet
various fields which showed that it is an important 
distribution for modeling the statistical behavior of 
materials properties for a variety of engineering 
applications. Nadarajahet al (2008) discuss the 
sociological models based on Freche
variables. Later, Ter (2009) study the unification of 
the Frechet and Weibull distribution using unifying 
parametrization. Also, Zaharimet al
Frechet distribution for analyzing the wind spe
data. Arora et al (2013) usedFrechet
distribution to fit maximum annual wind speed for 
individual stations. 
Mubarak (2011) studied the estimation of parameter 
of Frechet distribution under progressive 
censored data with binomial removals using maximum 
likelihood estimation. He also constructs
intervals for the parameters and percentile of the 
failure time distribution. Kamran 
estimated the scale parameter of Frechet distribution 
using Maximum Likelihood Estimation, Probability
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several extreme events ranging from accelerated life 
testing to earthquakes, radioactive emissions, floods, 
rain fall, sea currents, horse racing, human lifespans 

2012. Harlow (2002) 
studied the Applications of the Frechet distribution in 
various fields which showed that it is an important 
distribution for modeling the statistical behavior of 
materials properties for a variety of engineering 

(2008) discuss the 
sociological models based on Frechet random 

(2009) study the unification of 
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(2011) studied the estimation of parameter 
of Frechet distribution under progressive type II 
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weighted moment and Bayesian estimation methods 
assuming known shape parameter of the Frechet 
distribution.  
Azamet al (2014) estimated the scale parameter of 
Nakagami distribution under 
inverse exponential and levy prior and three loss 
functions; square error, quadratic and precautionary 
loss functions. Relative posterior risk and Monte Carlo 
simulation where used to assess the performance of 
the estimators. It was discovered that the 
precautionary loss function produces the least 
posterior risk when uniform prior is used while 
squared error loss function is best when inverse 
exponential prior is used.  
Wajihaet al (2015) studied the shape parameter of 
Frechet distribution using the Gumbel Type 
the Levy prior under four loss functions. It was 
observed that the Gumbel Type 
than the Levy Prior as its posterior risks is smallest 
amongst the two assumed prior distributions. 
Weighted balance loss function was found to be 
better as its posterior risk was least among all the loss 
functions. So, Gumbel Type 
balance loss function provides less posterior risks as 
compare to other loss functions and priors.
Aliyu and Abubakar (2016) studied the estimation of 
shape parameter of Generalized Rayleigh distribution 
with assumption of non – informative prior under 
Squared error, Entropy and Precautionary loss 
functions. Comparison was also made between the 
performance of Maximum likeliho
Bayesian estimators, and it was concluded that Bayes 
estimator under the entropy loss function is better 
than that of Squared error loss function, 
Precautionary loss function and that of 
likelihood estimation. 
The cumulative distribution function (CDF) and the 
probability density function (PDF) for Frechet 
distribution are given by 
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where: the parameter 0,α > is the shape of the distribution and 0β > is the scale parameter. 

 
However, in this research paper we studied the Bayes estimation of scale parameter of Frechet distribution with 
known shape parameter. We will use four loss function under uniform and Jeffrey prior.  
 
Loss and Risk Functions 
This section contains Bayes estimate and posterior risks of different loss functions. 
In this research, we considered four loss functions. The details are given below. 
i. Square Error Loss Function (SELF) 
The squared error loss is defined as: 

* * 2( , ) ( )L β β β β= −                                                                                                      

(3)                                                                       

where
*β ( SELFβ ) is the estimator of the parameter β under SELF. 

The Bayes estimator is given as  

( ) ( )
0

| |SELF E x P x dβ β β β β
∞

= = ∫                                                                             

(4)                                                                                                     
.and the Bayes posterior risk is obtained as: 

( ) ( ) ( ) ( )2 22 2 | |
SELF
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(5) 
ii. Precautionary Loss Function (PLF) 
Norstrom (1996) introduced an asymmetric precautionary loss function (PLF) which is defined as: 

( ) ( )2*

*
*
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β β

β β
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−
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where
*β ( PLFβ ) is the estimator of the parameter β under PLF 

and the Bayes estimator is given as 
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1
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(7) 
The Bayes posterior risk is obtained as: 

( ) ( ) ( )22 2 |
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(8) 
iii. Quadratic Loss Function (QLF) 
The quadratic loss function can be defined as  

( )
2*

*,L
β ββ β

β
 −=  
 

                                                                          

(9) 

where 
*β ( QLFβ ) is the estimator of the parameter β under QLF 

The Bayes estimator is given as: 
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The Bayes posterior risk is gotten as: 
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(11)    
iv. Weighted Balance Loss Function (WBLF) 
The weighted balance loss function can be defined as  
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where:
*β ( WBLFβ ) is the estimator of the parameter β under WBLF 

The Bayes estimator is given as: 
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(13) 
and  
The Bayes posterior risk is gotten as: 
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(14)           
Posterior Distribution 

To obtain the posterior distribution ( )|p xβ , we apply Bayes’ Theorem 
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(15)   

where ( )p β is the Prior distribution and ( )|L x β is the likelihood function.  

Likelihood Function 

Let 1 2, , nx x xK  be a random sample of size n, drawn from the Frechet distribution. The Likelihood function is 

given as 
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Posterior Distribution using Uniform prior 

The Uniform Prior relating to the scale parameter is defined as: 

( ) 1p β ∝                                      					0 < β < ∞                (17) 

The posterior distribution for scale parameter of Frechet distribution under uniform prior is: 
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which is solved by numerical integration technique. 
Posterior Distribution using Jefferey’s Prior 
The Jeffrey’s prior as non-informative prior with parameter � is gives as 
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β
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(19)                                                
The posterior distribution of scale parameter of Frechet distribution using Jefferey’s prior is 
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(20) 
which is solved by numerical integration technique. 
Bayesian estimation under the assumption of different priors and loss functions 
The scale parameter of Frechet distribution has been estimated under the assumption of two non – informative 
priors and various loss functions including squared error loss function (SELF), quadratic loss function (QLF). 
Precautionary loss function(PLF) and weighted balance loss function (WBLF). The results are given in the table 
below.  
Table 1: Bayesian estimation under the uniform and Jeffrey’s priors for different loss functions  
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Simulation Study 

We use simulation study to check the behavior and performance of prior distributions and loss functions. A 
comparison in terms of magnitude of posterior risks is needed to check whether an estimator is admissible under 
some loss function or prior distribution. We use Mathematica 11 package to generate N = 1000 random samples 

of size n = 5, 10, 20, 30, 50, 70 and 100 from Frechet distribution using ( )2,3α ∈ and ( )1.5,2β ∈ . The 

Bayes posterior risks are in Parentheses. The simulation results are summarized in the following tables. 
 
Table 2: Bayes estimates and corresponding posterior risks (within parenthesis) under different 
loss functions and Priors for � = � and � = 	. � 

N Uniform prior 
� = 2,												� = 1.5 

Jeffrey’s prior 
� = 2,												� = 1.5 

     SELF     PLF   QLF WBLF     SELF      PLF    QLF WBLF 
5 1.6556 

�0.1348� 
1.6886 
�0.0757� 

1.50135 
�0.0533� 

1.7531 

�0.0443� 

1.5795 
�0.1360� 

1.6052 
�0.0791� 

1.4157 
�0.0604� 

1.6432 

�0.0486� 
10 1.5994 

�0.0633� 
1.5820 
�0.0374� 

1.4975 
�0.0259� 

1.6127 

�0.0235� 

1.5475 
�0.0621� 

1.5674 
�0.0389� 

1.4740 
�0.0273� 

1.5915 

�0.0246� 
20 1.5324 

�0.0292� 
1.5534 
�0.0188� 

1.5055 
�0.0127� 

1.5551 

�0.0121� 

1.5109 
�0.0290� 

1.5262 
�0.0190� 

1.4778 
�0.0130� 

1.5276 

�0.0124� 
30 1.5252 

�0.0193� 
1.5256 
�0.0124� 

1.4948 
�0.0084� 

1.5397 

�0.0081� 

1.5176 
�0.0194� 

1.5241 
�0.0126� 

1.4930 
�0.0085� 

1.5243 

�0.0082� 
50 1.5234 

�0.0115� 
1.5215 
�0.0075� 

1.4992 
�0.0050� 

1.5218 

�0.0049� 

1.5102 
�0.0114� 

1.5111 
�0.0075� 

1.4945 
�0.0050� 

1.5127 

�0.0049� 
70 1.5130 

�0.0081� 
1.5173 
�0.0053� 

1.5009 
�0.0035� 

1.5201 

�0.0035� 

1.5071 
�0.0081� 

1.5081 
�0.0053� 

1.4923 
�0.0036� 

1.5103 

�0.0035� 
100 1.5083 

�0.0056� 
1.5086 
�0.0037� 

1.5013 
�0.0025� 

1.5122 

�0.0024� 

1.5034 
�0.0056� 

1.5028 
�0.0037� 

1.4970 
�0.0025� 

1.5065 

�0.0024� 
 
Table 3: Bayes estimates and corresponding posterior risks (within parenthesis) under different 
loss functions and Priors for � = � and � = � 

N                           Uniform prior 
� = 2,										� = 2 

                       Jeffrey’s prior 
� = 2,										� = 2 

     SELF     PLF    QLF WBLF     SELF      PLF    QLF WBLF 

5 2.2209 
�0.2437� 

2.2738 
�0.1020� 

1.9883 
�0.0539� 

2.3054 

�0.0443� 

2.0986 
�0.2393� 

2.1653 
�0.1067� 

1.8880 
�0.0060� 

2.2257 

�0.0486� 

10 2.0910 
�0.1083� 

2.1410 
�0.0506� 

2.0101 
�0.0259� 

2.1527 

�0.0235� 

2.0432 
�0.1087� 

2.0942 
�0.0520� 

1.9402 
�0.0273� 

2.1008 

�0.0246� 

20 2.0604 
�0.0528� 

2.0733 
�0.0252� 

2.0085 
�0.1273� 

2.0796 

�0.0121� 
2.0348 
�0.0528� 

2.0299 
�0.0252� 

1.9753 
�0.0130� 

2.0493 

�0.0124� 

30 2.0389 
�0.0344� 

2.0426 
�0.0167� 

2.0010 
�0.0084� 

2.0535 

�0.0081� 
2.0194 
�0.0344� 

2.0256 
�0.0168� 

1.9753 
�0.0085� 

2.0366 

�0.0082� 

50 2.0144 
�0.0202� 

2.0217 
�0.0099� 

1.9997 
�0.0050� 

2.0316 

�0.0049� 
2.0121 
�0.0203� 

2.0185 
�0.0100� 

1.9916 
�0.0050� 

2.0307 

�0.0049� 

70 2.0135 
�0.0144� 

2.0201 
�0.0071� 

1.9969 
�0.0035� 

2.0208 

�0.0035� 
2.0103 
�0.0145� 

2.0123 
�0.0071� 

1.9953 
�0.0036� 

2.0164 

�0.0035� 

100 2.0096 
�0.0100� 

2.0130 
�0.0052� 

2.0043 
�0.0025� 

2.0070 

�0.0024� 
2.0092 
�0.0101� 

2.0091 
�0.0050� 

1.9979 
�0.0025� 

2.0085 

�0.0024� 
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Table 3: Bayes estimates and corresponding posterior risks (within parenthesis) under different 
loss functions and Priors for =  and = .  

N Uniform prior 
= 3,										 = 1.5 

Jeffrey’s prior 
= 3,										 = 1.5 

     SELF     PLF    QLF WBLF     SELF      PLF    QLF WBLF 

5 1.5756 
�0.0553� 

1.5929 
�0.0339� 

1.4971 
�0.0243� 

1.6141 
�0.0212� 

1.5229 
�0.0551� 

1.5638 
�0.0356� 

1.4695 
�0.0262� 

1.5638 
�0.0226� 

10 1.5298 
�0.0260� 

1.5432 
�0.0168� 

1.4957 
�0.0116� 

1.5586 
�0.0108� 

1.5129 
�0.0263� 

1.5234 
�0.0171� 

1.4803 
�0.0120� 

1.5443 
�0.0112� 

20 1.5154 
�0.0127� 

1.5231 
�0.0083� 

1.5410 
�0.0056� 

1.5304 
�0.0054� 

1.5081 
�0.0128� 

1.5117 
�0.0084� 

1.4923 
�0.0057� 

1.5193 
�0.0055� 

30 1.5115 
�0.0084� 

1.5109 
�0.0055� 

1.4992 
�0.0037� 

1.5157 
�0.0036� 

1.5094 
�0.0085� 

1.5108 
�0.0056� 

1.4932 
�0.0038� 

1.5081 
�0.0037� 

50 1.5087 
�0.0050� 

1.5048 
0.0033 

1.5001 
�0.0024� 

1.5099 
�0.0022� 

1.5051 
�0.0050� 

1.5033 
�0.0033� 

1.4949 
�0.0022� 

1.5081 
�0.0022� 

70 1.5030 
�0.0035� 

1.5048 
�0.0023� 

1.4974 
�0.0015� 

1.5084 
�0.0015� 

1.5033 
�0.0036� 

1.5011 
�0.0023� 

1.4975 
�0.0016� 

1.5039 
�0.0015� 

100 1.5039 
�0.0025� 

1.5046 
�0.0016� 

1.4969 
�0.0011� 

1.5059 
�0.0011� 

1.5017 
�0.0025� 

1.5040 
�0.0016� 

1.4978 
�0.0011� 

1.5077 
�0.0011� 

 
 

Table 4: Bayes estimates and corresponding posterior risks (within parenthesis) under different 
loss functions and Priors for =  and =  

N Uniform prior 
= 3,										 = 2 

Jeffrey’s prior 
= 3,										 = 2 

     SELF     PLF    QLF WBLF     SELF      PLF   QLF WBLF 

5 2.1079 
�0.0990� 

2.1250 
�0.0453� 

2.0135 
�0.0243� 

2.1368 
�0.0212� 

2.0500 
�0.1000� 

2.0886 
�0.0476� 

1.9522 
�0.0262� 

2.1022 
�0.0226� 

10 2.0309 
�0.0460� 

2.0599 
�0.0224� 

2.0104 
�0.0116� 

2.0656 
�0.0108� 

2.0247 
�0.0471� 

2.0204 
�0.0227� 

1.9692 
�0.0120� 

3.5518 
�0.0501� 

20 2.0164 
�0.0225� 

2.0207 
�0.0111� 

1.9920 
�0.0056� 

2.0342 
�0.0054� 

2.0167 
�0.0229� 

2.0067 
�0.0112� 

1.9832 
�0.0057� 

2.0295 
�0.0054� 

30 2.0108 
�0.0149� 

2.0123 
�0.0074� 

2.0016 
�0.0037� 

2.0198 
�0.0036� 

2.0045 
�0.0150� 

2.0171 
�0.0075� 

1.9903 
�0.0038� 

2.0239 
�0.0036� 

50 2.0078 
�0.0089� 

2.0115 
�0.0044� 

2.0001 
�0.0022� 

2.0103 
�0.0022� 

2.0075 
�0.0090� 

2.0019 
�0.0044� 

1.9927 
�0.0022� 

2.0109 
�0.0022� 

70 2.0044 
�0.0063� 

2.0085 
�0.0031� 

2.0011 
�0.0015� 

2.0066 
�0.0015� 

2.0035 
�0.0064� 

2.0061 
�0.0031� 

1.9930 
�0.0016� 

2.0133 
�0.0015� 

100 2.0026 
�0.0044� 

2.0071 
�0.0022� 

2.0019 
�0.0011� 

2.0078 
�0.0011� 

2.0047 
�0.0044� 

1.9998 
�0.0022� 

1.9968 
�0.0011� 

2.0061 
�0.0011� 

 
From the above tables 5.1 down to 5.4, it is observed 
that the estimated value of the scale parameter 
approaches the true value and corresponding 
posterior risks associated with each estimate 
decreases with increase in sample size. The pattern of 
risks is almost similar for each prior distribution and 
under every loss function. It should also be noted that 
the magnitude of risk under the four (4) loss function 
are not muchly affected by the choice of prior from a 
sample size greater than 20 and in terms of 
magnitude of the parameter, it is observed that as the 
value of α increases, the magnitude of the risks 

decreases. Furthermore, the performance of both the 
QLF and WBLF are stable at various sample sizes as 
their posterior risks are minimal but that of WBLF is 
more stable. In terms of prior distributions used, the 
Uniform prior performs better than the Jefferey’s prior 

because it estimates are associated with minimum risk 
when compared to the Jefferey’s prior. 
CONCLUSION 

In this paper, Bayesian approach to estimation of 
scale parameter of Frechet distribution is considered. 
Bayes estimates and posterior risk was determined 
using two non – informative prior under the 
assumption of squared error, precautionary, quadratic 
and weighted balance loss function. After After 
conducting simulation study, comparison was made 
among the various Bayes estimators in terms of the 
magnitude of posterior risk obtained and it was 
observed that the estimates under uniform prior 
performed better than that of Jeffrey’s prior as it 
posterior risk was smallest amongst the two-assumed 
prior distribution. On the other hand, weighted 
balance lose function performs better than the other 226 
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loss function as its posterior risk is least so, weight 
balance loss function (WBLF) under uniform prior 
provides less posterior risk as compared to the 
combination of other loss function and prior and will 

in turn provide the best efficient estimate of the scale 
parameter of Frechet distribution. 
The study can be further extended by using 
informative prior distributions and some other loss 
functions. 
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