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ABSTRACTS

The Frechet distribution which has a scale and shape parameters, has been found to have wide
application in modelling extreme events such as radioactive emission, flood, rainfall, seismic
analysis, wind speed, etc. In this research paper, the Bayesian analysis of scale parameter of
Frechet distribution was considered. It is necessary to know the best combination of prior
distribution and loss function for the parameter estimation. Posterior distribution was derived by
uniform and Jeffrey’s prior under the square error, Precautionary, Quadratic and Weighted balance
loss function. Bayes estimation and their corresponding risk was obtained by the above stated
priors and loss function. Monte Carlo simulations was conducted to compare the performance of
the estimators. It is evident that weighted balance loss function when used with uniform prior
provides the least posterior risk.
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INTRODUCTION

The Frechet distribution was named after a French
mathematician Maurice Rene Frechet who developed
it in the 1920s as a maximum value distribution. The
Frechet distribution is also known as extreme value
distribution(EVD) Type 1II, it is one of the four
distributions along with Gumbel distribution, Extreme
value distribution and Weibull distribution classified
under the general heading “extreme value
distribution” and therefore used as tool for quantifying
extreme events. The Frechet distribution has been
shown to be useful for modeling and analyzing of
several extreme events ranging from accelerated life
testing to earthquakes, radioactive emissions, floods,
rain fall, sea currents, horse racing, human lifespans
and wind speeds; Kamran et a/ 2012. Harlow (2002)
studied the Applications of the Frechet distribution in
various fields which showed that it is an important
distribution for modeling the statistical behavior of
materials properties for a variety of engineering
applications. Nadarajahet a/ (2008) discuss the
sociological models based on Frechet random
variables. Later, Ter (2009) study the unification of
the Frechet and Weibull distribution using unifying
parametrization. Also, Zaharimet a/ (2009) applied
Frechet distribution for analyzing the wind speed
data. Arora et a/ (2013) usedFrechet and Gumbell
distribution to fit maximum annual wind speed for
individual stations.

Mubarak (2011) studied the estimation of parameter
of Frechet distribution under progressive type II
censored data with binomial removals using maximum
likelihood estimation. He also constructs confidence
intervals for the parameters and percentile of the
failure time distribution. Kamran et a/ (2012)
estimated the scale parameter of Frechet distribution
using Maximum Likelihood Estimation, Probability
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weighted moment and Bayesian estimation methods
assuming known shape parameter of the Frechet
distribution.

Azamet al (2014) estimated the scale parameter of
Nakagami distribution under three priors; uniform,
inverse exponential and levy prior and three loss
functions; square error, quadratic and precautionary
loss functions. Relative posterior risk and Monte Carlo
simulation where used to assess the performance of
the estimators. It was discovered that the
precautionary loss function produces the least
posterior risk when uniform prior is used while
squared error loss function is best when inverse
exponential prior is used.

Wajihaet a/ (2015) studied the shape parameter of
Frechet distribution using the Gumbel Type — II and
the Levy prior under four loss functions. It was
observed that the Gumbel Type — II performed better
than the Levy Prior as its posterior risks is smallest
amongst the two assumed prior distributions.
Weighted balance loss function was found to be
better as its posterior risk was least among all the loss
functions. So, Gumbel Type - II with weighted
balance loss function provides less posterior risks as
compare to other loss functions and priors.

Aliyu and Abubakar (2016) studied the estimation of
shape parameter of Generalized Rayleigh distribution
with assumption of non - informative prior under
Squared error, Entropy and Precautionary loss
functions. Comparison was also made between the
performance of Maximum likelihood estimators and
Bayesian estimators, and it was concluded that Bayes
estimator under the entropy loss function is better
than that of Squared error loss function,
Precautionary loss function and that of Maximum
likelihood estimation.

The cumulative distribution function (CDF) and the
probability density function (PDF) for Frechet
distribution are given by
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where: the parameter @ > 0, is the shape of the distribution and £3 > Qis the scale parameter.

However, in this research paper we studied the Bayes estimation of scale parameter of Frechet distribution with
known shape parameter. We will use four loss function under uniform and Jeffrey prior.

Loss and Risk Functions

This section contains Bayes estimate and posterior risks of different loss functions.
In this research, we considered four loss functions. The details are given below.

i. Square Error Loss Function (SELF)

The squared error loss is defined as:

L(B.B)=(B-B)

(3)
where ﬁ ( ,BELF ) is the estimator of the parameter 3 under SELF.
The Bayes estimator is given as

[

Ber =E(BIX) =] BP(BIX)dB
(4)

.and the Bayes posterior risk is obtained as:
=E(#°)-[E(A)] =(#1x)-[E(B19)]
(5)

ii. Precautionary Loss Function (PLF)
Norstrom (1996) introduced an asymmetric precautionary loss function (PLF) which is defined as:

L(5.8) RCA ,;/3)
©)

where ﬁ ( ,BPLF ) is the estimator of the parameter B under PLF
and the Bayes estimator is given as

Bor =[E(B21Y)] " = || BP(B1)dB
(7)

The Bayes posterior risk is obtained as:

Rr.. =2 JE(F) ~E(B)|=2 s ~E(1X)]

BeeLr

(8)
iii. Quadratic Loss Function (QLF)
The quadratic loss function can be defined as

L N\2
\[B-B ]
L ﬂ,ﬂ = (—
(5.6)=[ 2
©)
where ﬁ ( ﬁQLF ) is the estimator of the parameter § under QLF

The Bayes estimator is given as:
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(1) [87P(B1X)dp
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and

The Bayes posterior risk is gotten as:

o [ ]
TR (]

(11)
iv. Weighted Balance Loss Function (WBLF)
The weighted balance loss function can be defined as

L(/B’,/B’*){ﬁ/}fgjz

(12)
where: ﬁ ( Bigir ) is the estimator of the parameter B under WBLF
The Bayes estimator is given as:

Ce(gix) 1FPBINas
ANBLF - E(,le) -

[BP(B1x)dp

(13)
and
The Bayes posterior risk is gotten as:

[E(BI]
e R (1

(14)
Posterior Distribution

To obtain the posterior distribution p(,ﬁ’| X) , We apply Bayes’ Theorem

o313 = POLKIA)
[ p(B)L(xIB)dB

—00

(15)
where p(,B) is the Prior distribution and L (X | ,8) is the likelihood function.
Likelihood Function
Let X, )(2K » X, be a random sample of size 77, drawn from the Frechet distribution. The Likelihood function is
given as

n na’n 1 ” _n éa
LxIA=a'B"Y| = | e?|x
i=1 )ﬂ
. (8]
LxIA DB e X (16)

Posterior Distribution using Uniform prior
The Uniform Prior relating to the scale parameter is defined as:

p(B) 01 0< f<w (17)
The posterior distribution for scale parameter of Frechet distribution under uniform prior is:
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p(B1x) =
s ok
(18)

which is solved by numerical integration technique.
Posterior Distribution using Jefferey’s Prior
The Jeffrey’s prior as non-informative prior with parameter g is gives as

1
1Y (,8) 0 E 0<f<ow
(19)
The posterior distribution of scale parameter of Frechet distribution using Jefferey’s prior is
na-1 _zn: ﬁ
e = )(I
P(B|x) = z
na-1 - 'B

j,B e ¥ x )"
(20)

which is solved by numerical integration technique.

Bayesian estimation under the assumption of different priors and loss functions

The scale parameter of Frechet distribution has been estimated under the assumption of two non — informative
priors and various loss functions including squared error loss function (SELF), quadratic loss function (QLF).
Precautionary loss function(PLF) and weighted balance loss function (WBLF). The results are given in the table
below.

Table 1: Bayesian estimation under the uniform and Jeffrey’s priors for different loss functions

Loss function Uniform Prior Jeffrey’s Prior
Bayes
Estimat n (a7 n/a\?
N e 2l
(1) £ L] i Fe m d
seL |1 peed g | fpree ) o
Poskterior : : -
Risks ] . ‘Z( ET ] . ‘i o )
(RﬁSELF) ‘([ ,Be'(;; dg- ‘([ 'Benl(; o lgm]e_iq@ * lgne_iﬂ.i
J',B”"e Zx dB J',B”"e T '([°° E EJH dﬂ_o—ﬁ
Iﬂa‘]eizl bt dﬂ Iﬂu‘lem
0 L
Bayes
Estimato a “
r N p—e] o e )
e [ 2 e | [[| s
oL 0 J- 'Bnae_iqu[x.) dg 0 J. ’Bna—le_;[xi] dg
0 0
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Simulation Study
We use simulation study to check the behavior and performance of prior distributions and loss functions. A
comparison in terms of magnitude of posterior risks is needed to check whether an estimator is admissible under
some loss function or prior distribution. We use Mathematica 11 package to generate N = 1000 random samples

of size n = 5, 10, 20, 30, 50, 70 and 100 from Frechet distribution using O'D(Z, 3) and ,BD(l.5, 2) . The

Bayes posterior risks are in Parentheses. The simulation results are summarized in the following tables.

Table 2: Bayes estimates and corresponding posterior risks (within parenthesis) under different
loss functions and Priors fora =2 and g = 1.5

N Uniform prior Jeffrey’s prior
a=2, B =15 a =2, L =15
SELF PLF QLF WBLF SELF PLF QLF WBLF
5 1.6556 1.6886 1.50135 1.7531 1.5795 1.6052 1.4157 1.6432
(0.1348) (0.0757) (0.0533) (0.0443) (0.1360) (0.0791) (0.0604) (0.0486)
10 1.5994 1.5820 1.4975 1.6127 1.5475 1.5674 1.4740 1.5915
(0.0633) (0.0374) (0.0259) (0.0235) (0.0621) (0.0389) (0.0273) (0.0246)
20 1.5324 1.5534 1.5055 1.5551 1.5109 1.5262 1.4778 1.5276
(0.0292) (0.0188) (0.0127) (0.0121) (0.0290) (0.0190) (0.0130) (0.0124)
30 1.5252 1.5256 1.4948 1.5397 1.5176 1.5241 1.4930 1.5243
(0.0193) (0.0124) (0.0084) (0.0081) (0.0194) (0.0126) (0.0085) (0.0082)
50 1.5234 1.5215 1.4992 1.5218 1.5102 1.5111 1.4945 1.5127
(0.0115) (0.0075) (0.0050) (0.0049) (0.0114) (0.0075) (0.0050) (0.0049)
70 1.5130 1.5173 1.5009 1.5201 1.5071 1.5081 1.4923 1.5103
(0.0081) (0.0053) (0.0035) (0.0035) (0.0081) (0.0053) (0.0036) (0.0035)
100 1.5083 1.5086 1.5013 1.5122 1.5034 1.5028 1.4970 1.5065
(0.0056) (0.0037) (0.0025) (0.0024) (0.0056) (0.0037) (0.0025) (0.0024)

Table 3: Bayes estimates and corresponding posterior risks (within parenthesis) under different
loss functions and Priors fora =2 and g = 2

N Uniform prior Jeffrey’s prior
a=2, p=2 a=2, p=2
SELF PLF QLF WBLF SELF PLF QLF WBLF
5 2.2209 2.2738 1.9883 2.3054 2.0986 2.1653 1.8880 2.2257
(0.2437) (0.1020) (0.0539) (0.0443) (0.2393) (0.1067) (0.0060) (0.0486)
10 2.0910 2.1410 2.0101 2.1527 2.0432 2.0942 1.9402 2.1008
(0.1083) (0.0506) (0.0259) (0.0235) (0.1087) (0.0520) (0.0273) (0.0246)
20 2.0604 20733 2.0085 20796 20348 2.0299 19753 2.0493
(0.0528) (0.0252) 01273 (00121 (0.0528 (0.0252) (0.0130) (00129
30 2.0389 20426 20010 20535 20194 20256 19753 20366
(0.0344) (00167) (0.0084) (0.0081) (0.0344) (00168 (0.0085) (0.0082)
50 20144 20217 1.9997 20316 20121 20185 19916 20307
(00202 (0.0099) (0.0050) (0.0049) (0.0203 (0.0100 (0.0050) (0.0049)
70 20135 20201 1.9969 20208 20103 20123 1.9953 20164
(00149 (0.0071) (0.0035) (0.0035) (0.0145) (0.0071) (0.0036) (0.0035)
100 2.0096 20130 2.0043 20070 20092 20091 1.9979 20085
(0.0100) (0.0052) (00025 (00029 (0.0101) (0.0050) (0.0025) (0.0029
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Table 3: Bayes estimates and corresponding posterior risks (within parenthesis) under different

loss functions and Priorsfor = and =
N Uniform prior Jeffrey’s prior
=3 =15 =3 =15
SELF PLF QLF WBLF SELF PLF QLF WBLF
5 15756 1.5929 14971 16141 1.5229 1.5638 1.4695 15638
(0.0553) (00339 (00243 (00212 (0.0551) (0.0356) (00262 (00226)
10 1.5298 1.5432 1.4957 1.5586 15129 15234 1.4803 1.5443
(0.0260) (00168 (00116) (00108 (0.0263) (00171 (0.0120) (00112
20 15154 15231 1.5410 1.5304 1.5081 15117 14923 15193
00127 (0.0083) (0.0056) (0.0059 (00128 (0.0089) (0.0057) (0.0055)
30 15115 15109 1.4992 15157 1.5094 15108 14932 1.5081
(00089 (0.0055) (00032 (0.0036) (0.0085) (0.0056) (0.0038) (00037
50 1.5087 1.5048 1.5001 1.5099 1.5051 15033 1.4949 1.5081
(0.0050) 0.0033 (00029 (0.0022) (0.0050) (0.0033) (0.0022) (00022
70 15030 1.5048 14974 1.5084 15033 15011 14975 1.5039
(0.0035) (00023 (0.0015) (0.0015) (0.0036) (0.0023) (0.0016) (0.0015)
100 1.5039 1.5046 1.4969 1.5059 15017 1.5040 14978 15077
(0.0025) (0.0016) (00011 (000110 (0.0025) (0.0016) (00011 (000110

Table 4: Bayes estimates and corresponding posterior risks (within parenthesis) under different

loss functions and Priorsfor = and =
N Uniform prior Jeffrey’s prior
SELF PLF QLF WBLF SELF PLF QLF WBLF

5 21079 21250 20135 21368 2.0500 2.0886 19522 21022
(0.0990) (0.0453) (0.0243) (00212 (0.1000) (00476) (00262 (0.0226)

10 20309 2.0599 20104 20656 20247 20204 1.9692 35518
(0.0460) (00224 (00116 (0.0108) (0.0471) 00227y (001200 (0.0501)

20 20164 20207 1.9920 20342 20167 20067 19832 20295
(0.0225) (00111 (0.0056) (0.0059 (0.0229) (00112 (00057 (00059

30 20108 20123 20016 20198 20045 20171 1.9903 20239
(00149 (0.0079 (0.0037) (0.0036) (0.0150) (00075 (00038  (0.0036)

50 20078 20115 20001 20103 20075 20019 19927 20109
(0.0089) (0.0049 (00022 (00022 (0.0090) (00044 (00022 (00022

70 20044 2.0085 20011 2.0066 20035 20061 1.9930 20133
(0.0063) (0.0031) (0.0015) (0.0015) (0.006% (00031) (00016) (0.0015)

100 20026 20071 20019 20078 20047 1.9998 1.9968 20061
(0.0049 (00022 (00011 (00011 (0.0049 (00022 (00011 (00011

From the above tables 5.1 down to 5.4, it is observed
that the estimated value of the scale parameter
approaches the true value and corresponding
posterior risks associated with each estimate
decreases with increase in sample size. The pattern of
risks is almost similar for each prior distribution and
under every loss function. It should also be noted that
the magnitude of risk under the four (4) loss function
are not muchly affected by the choice of prior from a
sample size greater than 20 and in terms of
magnitude of the parameter, it is observed that as the
value of @ increases, the magnitude of the risks
decreases. Furthermore, the performance of both the
QLF and WBLF are stable at various sample sizes as
their posterior risks are minimal but that of WBLF is
more stable. In terms of prior distributions used, the

because it estimates are associated with minimum risk
when compared to the Jefferey’s prior.
CONCLUSION

In this paper, Bayesian approach to estimation of
scale parameter of Frechet distribution is considered.
Bayes estimates and posterior risk was determined
using two non - informative prior under the
assumption of squared error, precautionary, quadratic
and weighted balance loss function. After After
conducting simulation study, comparison was made
among the various Bayes estimators in terms of the
magnitude of posterior risk obtained and it was
observed that the estimates under uniform prior
performed better than that of Jeffrey’s prior as it
posterior risk was smallest amongst the two-assumed
prior distribution. On the other hand, weighted

Uniform prior performs better than the Jefferey’s prior ¢ balance lose function performs better than the other



Bajopas Volume 11 Number 1 June, 2018

loss function as its posterior risk is least so, weight
balance loss function (WBLF) under uniform prior
provides less posterior risk as compared to the
combination of other loss function and prior and will
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