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ABSTRACT 
The estimation of population mean is one of the challenging aspects in sampling theory and 
population study and much effort has been vigorously employed to improve the precision of 

estimates. In this research work, a modified rati

study variable Y using median and coefficient of variation of the auxiliary variable
random sampling scheme is proposed. T
have been obtained under large sample approximation, asymptotically optimum estimator (AOE) is 
identified with its approximate MSE formula. Estimator based on “estimated optimum values” was 
also investigated. Theoretical and empirical comparison of proposed estimator with some other 
ratio and product estimators justified the performance of the proposed estimators. A minimum of 
20 percent reduction in the MSE were observed from each of the existing esti
is found that the proposed estimator were uniformly better than all other modified ratio and 
product estimators and thus most preferred over the existing estimators for the use in practical 
application.  
Keywords: Finite population mean, bias, mean square error, auxiliary variable, optimum estimator, 
study variable. 

INTRODUCTION 
The use of auxiliary variable (supplementary variable) 

has been widely discussed in sampling theory. 
Auxiliary variables are in use in survey sampling to 
obtain improved sampling designs and to achieve 
more precision in the estimates of some population 

parameters such as the mean, or the variance of the 
variable under study. This information may be use at 
both the stages of designing a survey (design
execution and estimation stages).

established that ratio, linear regression, product are 
some good examples in this context. 

The estimation of population parameters, particularly 
mean is one of the challenging aspects in sampling 

theory and much effort has been vigorously employed 
to improve the precision of estimates. In sample 

survey literature, great classes of techniques for using 

auxiliary information by means of ratio, regression 
and product methods have been discussed in the 

presence of single and/or multi-auxiliary variables. A 
wide variety of estimators were proposed following 

distinct notions; different possible linear combinations 
and mixing together ratio, product, and/or linear 

regression estimators, each one exploiting the 
variables one at a time. It is also established that, if 
the regression line of the variable under study and the 
auxiliary variable passes through the origin and are 

positively correlated the best estimator to be used is 
ratio estimator (Singh and Espejo, 2003). In the sam
vein, if the regression line of the variable under study 
and the auxiliary variable pass through the origin but 

are negatively correlated the best estimator to be 
used is product estimator. On the other hand when 

the regression line does not passes throu
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has been widely discussed in sampling theory. 
Auxiliary variables are in use in survey sampling to 

ain improved sampling designs and to achieve 
more precision in the estimates of some population 

parameters such as the mean, or the variance of the 
variable under study. This information may be use at 

designing a survey (design, 
). It is well 

established that ratio, linear regression, product are 

The estimation of population parameters, particularly 
mean is one of the challenging aspects in sampling 

has been vigorously employed 
to improve the precision of estimates. In sample 

survey literature, great classes of techniques for using 

auxiliary information by means of ratio, regression 
and product methods have been discussed in the 

auxiliary variables. A 
wide variety of estimators were proposed following 

distinct notions; different possible linear combinations 
and mixing together ratio, product, and/or linear 

regression estimators, each one exploiting the 
a time. It is also established that, if 

the regression line of the variable under study and the 
auxiliary variable passes through the origin and are 

positively correlated the best estimator to be used is 
(Singh and Espejo, 2003). In the same 

vein, if the regression line of the variable under study 
and the auxiliary variable pass through the origin but 

are negatively correlated the best estimator to be 
used is product estimator. On the other hand when 

the regression line does not passes through the origin 

but makes an intercept along the y-axis and there is 
correlation either positive or negative between the 

auxiliary variable (X) and the variable of interest (

the best estimator to use is the linear regression 

estimator. It is observed though, that all these 
methods yield biased estimators and of course bias 
decreases with increase in sample size (Okafor, 
2002). 

BACKGROUND OF THE STUDY 

Consider a finite population
1 2

( , ,..., )P P P P=
N units, let a sample be drawn using simple random 

sampling without replacement (SRSWOR), let 

ix   represent the values of a respo

and auxiliary variable x respectively. The 

finite population are identifiable in the sense that they 

are uniquely labeled from 1 to N  and the label on 

each unit is known. Further, suppose in a sample 
survey problem, we are interested in estimating the 

population mean Y  of y , when the 

parameters of the auxiliary variable 

population mean X , knowledge  of coeffic

variation xC , the coefficient of skewness 

coefficient of Kurtosis ( )2
xβ , median 

auxiliary variable x  are known. Before dis

further about the modified ratio estimators and the 
proposed modified ratio estimator, the notation used 

in this research work are described below. 
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• N − population size 

• n − sample size  

• nf
N

= −sampling fraction 

• Y − study variable 

• X − auxiliary variable 

• Y , X −population means 

• y , x −sample means 

• ,y xS S − sample standard deviations 

• ,y xC C −co-efficient of variations 

• ρ − co-efficient of correlation 

• 

( )
( )( )

3

1

1 3
1 2

N

i

i

N x X

N N S
β =

−
=

− −

∑
,  coefficient of skewness of the auxiliary variable 

• 

( ) ( )
( )( )( )

( )
( )( )

4

2

1

2 4

1
3 1

2 31 2 3

N

i

i

N N x X
N

N NN N N S
β =

+ − −
= −

− −− − −

∑
, coefficient of Kurtosis of the auxiliary 

variable 

• 
dM − median of the auxiliary variable 

• ( ).B − bias of the estimator 

• ( ).MSE − mean square error of the estimator 

The traditional ratio and product estimators for Y are respectively given as,  

1R

X
T y

x

 =  
 

                                                                                                                              (2.1) 

1P

x
T y

X

 =  
 

                                                                                                                              (2.2)   

To the first degree of approximation the bias and mean squared errors of 
1RT ,

1PT  are respectively as, 

( ) ( ) { }2

1

1
1R x

f
bias T Y C K

n

−
 = −                                                                              (2.3)           

( ) ( ) 2

1

1
P x

f
bias T YKC

n

−
=                                                                                               (2.4)      

( ) ( ) { }2 2 2

1

1
1 2R y x

f
MSE T Y C C K

n

−
 = + −                                                                   (2.5)         

( ) ( ) { }2 2 2

1

1
1 2P y x

f
MSE T Y C C K

n

−
 = + +                        (2.6)                                                       

The modified ratio and product estimator by Subramani and Kumarapandiyan (2012) of Y  are respectively given 

as, 

2

x d

R

x d

XC M
T y

xC M

 +
=  + 

                                                                                                                 (2.7)                      

2

x d
P

x d

xC M
T y

XC M

 +=  + 
                                                                                                                 (2.8)       
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To the first degree of approximation the bias and mean squared errors of 
2RT ,

2PT  are respectively as, 

( ) ( ) { }2

2

1
R x

f
bias T Y C K

n
θ θ

−
 = −                                                                             (2.9)            

( ) ( ) { }2

2

1
R x

f
bias T Y C K

n
θ θ

−
 = −                                                                                (2.10)      

( ) ( ) { }2 2 2

2

1
2R y x

f
MSE T Y C C K

n
θ θ

−
 = + −                                                                      (2.11)    

( ) ( ) { }2 2 2

2

1
2

P y x

f
MSE T Y C C K

n
θ θ

−
 = + +                                                                (2.12)          

where
x

x d

XC

XC M
θ =

+
                                                                                  

                                                                                                              
Proposed estimator 
Motivated by Housila and Neha-Agnihotri (2008) and Subramani and Kumarapandiyan (2012), we defined a ratio-

product estimator of population mean using coefficient of variation and median of the auxiliary variable in simple 
random sampling as 

 ( )1x d x d

RP

x d x d

XC M xC M
T y y

xC M XC M
δ δ
    + +

= + −    + +    
                                                               (3.1) 

Where

1

1 n

i

i

y y
n =

= ∑  and 

1

1 n

i

i

x x
n =

= ∑ are unbiased estimators of the population means ( ),Y X   respectively, 

where ‘ xC ’ coefficient of variation and ‘ dM ’ median are the known characteristics positive scalars of the 

auxiliary variable X  respectively and δ  is a real constant to be determined such that the mean square error of 

RPT  is minimum. The family of estimators 
RPT  reduces to the following set of known estimators, 

�i� For ( ) ( ), , 0,1,
x d

C M δ = δ , RPT y→  (usual unbiased estimator)  

�ii� For ( ) ( ), , 0,1,
x d

C M δ = δ , 1RPT → Τ ( )1
X x

y y
x X

δ δ
    = + −   

   
 

which is due to Singh and Ruiz Espejo (2003) 

�iii� For ( ) ( ), , 1, ,
x d x

C M Cδ = δ , 2RPT → Τ ( )1x x

x x

X C x C
y y

x C X C
δ δ
    + +

= + −    + +    
                 

envisaged by Singh and Tailor �2005�,  where 
xC  is the known population coefficient of variation and 

dM  is 

the median of the auxiliary X respectively, many other ratio-product estimators can be generated from 
�� by 

putting any suitable parameters rather than values of ( ), ,
x d

C M δ . 

bias and Mean Square Error  

To obtain the bias and mean square error �M���of the proposed estimator 
RPT  in (3.1), we write 

Let 
( )

0

y Y
e

Y

−
=     and 

( )
1

x X
e

X

−
=  

Then ( )0
1y e= +   and ( )1

1x e= +                                                                                              

Such that ( ) ( )0 1
0E e E e= =   

( )2 2

0

1
y

f
E e C

n

−= , ( )2 2

1

1
x

f
E e C

n

−= , ( ) 2

0 1

1
x

f
E e e KC

n

−=   

Where n
f

N
= , y

x

C
K

C
= ρ , xy

x Y

S

S S
ρ = , 

y

y

S
C

Y
= ,

x

x

S
C

X
= . 
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( )( )
( )

1

1

N

i i

i
xy

x X y Y

S
N

=

− −
=

−

∑
, 

( )
( )

2

2 1

1

N

i

i

x

x X

S
N

=

−
=

−

∑
,

( )
( )

2

2 1

1

N

i

i

y

y Y

S
N

=
−

=
−

∑
. 

And expanding  �3.1�  in terms of e’s, we have 

( ) ( ) ( )( )1

0 1 11 1R PT Y e e e
− = + δ 1 + θ + − δ 1 + θ

 
                                                                     (3.2) 

We assume that 
1

1eθ < , so that the expression ( ) 1

1
e

−1 + θ  can be expanded to a convergent infinite series 

using binomial theorem. Hence from (3.2) we have. 

( ) ( ) ( )( )2 2 3 3 4 4

0 1 1 1 1 1
1 ... 1RPT Y e e e e e e = + δ 1− θ + θ − θ + θ + − δ 1+ θ   

( )( ) ( )( )( )2 2 3 3 4 4

0 1 1 1 1 0 1
1 ... 1 1Y e e e e e e e = δ + 1− θ + θ − θ + θ + − δ + 1+ θ   

( ) ( )( )2 2 2 2 2 3 3 4 4 3 3

0 1 1 1 0 1 0 1 0 1 1 1 0 0 1 1 0
1 ... 1 1Y e e e e e e e e e e e e e e e e e = δ + −θ +θ −θ +θ +θ −θ +θ −θ + + −δ + +θ +θ 

( )2 2 2 2 3 3 4 4 3 3

0 1 1 0 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1
1 1 ... 1Y e e e e e e e e e e e e e e e e e e e = + + θ + θ + δ + − θ − θ + θ + θ − θ + θ − θ + − − − θ − θ 

 

( )2 2 2 2 3 3 4 4 3 3

0 1 1 0 1 0 0 1 1 1 0 1 1 1 0
1 2 ...Y e e e e e e e e e e e e e e e = + + θ + θ + δ −2θ − θ + θ + θ − θ + θ − θ +   

( ) ( ) ( )2 2 2 2 3 3 4 4 3 3

0 1 1 0 1 1 0 1 1 1 0
1 1 2 1 2 ...Y e e e e e e e e e e e = + − − δ θ + − δ θ + δθ + δ θ − θ + θ − θ + 

, 

We assume that the contribution of terms involving powers in 
0

e  and 
1

e higher than the second is negligible, 

being of order 1
vn

, where 1v > . Thus, from the above expression we write to a first order of approximation, 

( ) ( ) 2 2 2 2

0 1 1 0 1 1 0
1 1 2 1 2RPT Y e e e e e e e ≅ + − − δ θ + − δ θ + δθ + δθ  ,   or 

( ) ( ) ( ) 2 2 2 2

0 1 1 0 1 1 0
1 2 1 2RPT Y Y e e ee e e e − = − − δ θ + − δ θ +δθ +δθ  ,                                      (3.3)    

Taking the expectation of both side of (3.3), we obtained the bias of ( )RPT  to the first degree of approximation 

as  

( ) [ ] 2
1

( ) ( 2 )
R P x

f
b ia s T Y K K C

n
θ δ θ

−
= + −                                                                           (3.4) 

will vanishes if   

( )
Kδ =

2Κ − θ
                                                                                                                          (3.5) 

Thus for 

( )
Kδ =

2Κ − θ
, RPT  is almost unbiased. 

Squaring both side of the equation (3.3), and neglecting the terms of 'e s  having power greater than two we 

have 

( ) ( ) ( ){ }2 2
2 2

0 1 1 0
1 2 1 2 2R PT Y Y e e e e − = + − δ θ − δ θ + 

                                             (3.6) 

Taking the expectation of both sides of (3.4), we get the mean square error MSE of 
��to the first order of 

approximation as  

( ) ( ) ( ) ( ){ }2
2 2

1
1 2 1 2 2RP y x

f
M SE T Y C C K

n

−
 = + θ − δ − δ θ + 

                                         (3.7) 

To obtain the value of δ  that minimizes the MSE of ( )RP
T , we take the partial derivative of the MSE of 

( )RP
T with respect to δ and equate it to zero. 

0

1

2

K δ = 1 + = δ θ 
(Optimum Value)                                                                                     (3.8) 

Putting (3.8) in (3.1), we get the Asymptotically Optimum Estimator (AOE) as 

1 1
2

x d x d

RPO

x d x d

XC M xC My K K
T

xC M XC Mθ θ
    + +   = + + −       + +       

                                                  (3.9) 

Substitution of (3.8) in (3.7) yield the minimum MSE of ( )RP
T or the MSE of asymptotically optimum 

estimator ( )AOE  RPT as  
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( ) ( ) ( ) ( )2 2

min

1
1

RP y RPO

f
MSE T S MSE T

n

−
= − ρ =                                                             (3.10) 

which is equal to the approximate MSE  of  regression estimator 

( )lry y X xβ= + −
)

                                                                                                           (3.11) 

Where $
2

xy

x

s

s
β =  , is the sample estimate of the population regression coefficient β  of y  on x . 

( )( )

( )
1

1

n

i i

i

xy

x x y y

s
n

=

− −
=

−

∑
,

( )
( )

2

2 1

1

n

i

i
x

x x

s
n

=

−
=

−

∑
. 

It is to be noted the AOE of ( )RPO
T  in (3.9) depends on K and θ , so the AOE of ( )RPO

T can be used in 

practice only when K and θ are known. Here it should be mentioned that θ is a function of known quantities 

( ), ,x dC M δ .  So only the value of K should be known for making the use of AOE of ( )RPOT in practice. 

The value of K can be made known quite accurately either from pilot study or past data or experience gathered 

in due course of time. This problem has been discussed among others by Murthy (1967), Reddy (1978), 

Srivankataramana and Tracy (1980). Thus, the value of K  can be guessed quite accurately and such an 
estimator can be used in practice. 
Allowable Departure 

Let 
0

k   be an estimate or guessed value of K with 

( )0
1k K= + η , then 

( )0 0

1 1 1

2 2 2

K K K
k K

η   δ = 1 + = 1 + + − = δ +   θ θ θ θ   
                                                              (4.1) 

Putting (4.1) in (3.7) we obtain the MSE of ( )RPT  as 

2 2 21
( ) ( )RP RPO y

f
MSE T T S

n

− = + ρ η 
 

 

2 2 21
( ) ( )RP RPO y

f
MSE T MSE T S

n

− 
⇒ − = ρ η 

 
 

( )
2 2

2

( ) ( )

( ) 1

R P R P O

R P O

M SE T M SE T

M SE T

 − ρ η
 ⇒ =
 − ρ 

                                                                               (4.2) 

It follows from  that the proportional increase in MSE of ( )RP
T over that of AOE of ( )RP

T is less 

than γ  if, 

( )
2 2

2
1

ρ η < γ
− ρ

 

i.e. ( )2

2

1 − ρ
η < γ

ρ
,                                                                                                               (4.3) 

Which clearly shows that to ensure only a small relative increase in MSE of ( )RPT , η  must be in the 

neighborhood of “zero” if ρ is high but can depart substantially from ”zero” if ρ is moderate. 

Efficiency Comparisons  

In order to compare the efficiency of the proposed a new ratio-product estimator with the various existing 
estimators we require the expressions of the MSE of the estimators, up to the first order of approximation. 
It is well known that under SRSWOR that 

( ) 21
y

f
Var y S

n

− =  
 

                                                                                                              (5.1)   

From (3.7) and (5.1) we have 

( ) ( ) ( ) ( )2 21
2 1 1 2 2

R P x

f
V a r y M S E T Y C K

n
θ δ δ θ− − = − − +    

 
 

which is non- negative if 

1 1 2 1 1 2
m in , 1 m ax , 1

2 2 2 2

K K      + < δ < +      θ θ      

                                                                    (5.2)    

( )3.25
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It is to be noted that for δ = 1, the estimator 
RPT  reduces to the ratio-type estimator 

2

x d

R

x d

X C M
T y

x C M

 +
=  + 

                                                                                                          (5.3) 

where for δ = 0 , the estimator RPT   turns out to be the product-type estimator 

2

x d

R

x d

x C M
T y

X C M

 +
=  + 

                                                                                                          (5.4) 

To the first degree of approximation the mean squared errors of 
2RT ,

2pT  are respectively given by 

( ) ( ) { }2 2 2

2

1
2R y x

f
M SE T Y C C K

n
θ θ

−
 = + − 

                                                                       (5.5)

( ) ( ) { }2 2 2

2

1
2P y x

f
M SE T Y C C K

n
θ θ

−
 = + + 

                                                                (5.6) 

From (3.7), (5.5) and (5.6), we have 

( ) ( ) ( ) ( )( )2 2

2

4 1
1R R P x

f
M SE T M SE T Y C K

n
θ δ δθ

−
− = − −                                                          

(5.7)      

( ) ( ) ( ) ( )2 2

2

4 1
1P RP x

f
MSE T MSE T Y C K

n
θ δ θ δ

−
− = − +                                                       (5.8) 

 It follows from (5.7) and (5.8) that the ratio-product estimator RPT  is more efficient than 

�i� The ratio type estimator 
2RT  if 

m in ,1 m a x ,1
K K   < δ <   θ θ   

                                                                                            (5.9)    

�ii� The product- type estimator 
2PT  if 

m i n 1 m a x 1
K K      + , 0 < δ < + , 0      θ θ      

                                                                 (5.10)    

Further, if we set ( ) ( ), 1,0
x d

C M =  in  (5.3) and  (5.4) the ratio-type estimator 
2RT  and product-type 

2PT  

estimators respectively reduces to 

2R

X
y

x
Τ →  (Usual ratio estimator)                                                                                        (5.11) 

2P

x
y

X
Τ →  (Usual product estimator)                                                                                   (5.12) 

Putting ( ) ( ), 1,0
x d

C M =  in (5.3) and (5.6) we get the mean squared errors of usual ratio and product 

estimators respectively as 

( ) ( ) { }2 2 2

1

1
1 2

R y x

f
M SE T Y C C K

n

−
 = + − 

                                                     (5.13)

( ) ( ) { }2 2 2

1

1
1 2P y x

f
M S E T Y C C K

n

−
 = + + 

                                                                (5.14) 

From (3.7), (5.13) and (5.14) we have 

( ) ( ) ( ) ( )( )2 2

1

1
1 2 1 2 2

R RP x

f
M SE T M SE T Y C K

n
θ δθ θ δθ

−
− = + − − − +                              (5.15) 

( ) ( ) ( ) ( )( )2 2

1

1
1 2 1 2 2P R P x

f
M SE T M SE T Y C K

n
θ δθ θ δθ

−
− = − + + + −                                 (5.16) 

From (5.15) and (5.16) we note that the ratio–product estimator 
RPT  is better than 

�i� The ratio type estimator 
1RT if 

m in , m ax ,
 1 + θ 2 Κ + θ − 1   1 + θ 2 Κ + θ − 1        < δ <          2 θ 2 θ 2 θ 2 θ          

                                          (5.17)    

�ii� The product- type estimator  
1pT  if 

m in , m ax ,
 θ − 1 2Κ + θ + 1   θ − 1 2Κ + θ + 1        < δ <          2θ 2θ 2θ 2θ          

                                          (5.18)    
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Estimator based on the Optimum value  

The optimum value of δ  in (3.8) is given by 

0

1

2

K δ = 1 + θ 
                                                                                                                       (6.1) 

Whereθ  is a known quantity and 

2

y y x y

x x x

C S X S
K

C S Y RR S

βρ ρ= = = =  

 Replacing β  and R  by their consistent estimators 

$
2

xy

x

s

s
β = and 

y
R

x
=

)
respectively. 

 From (6.1) we get a consistent estimator of 
0

δ  as 

0

ˆ1ˆ 1
2

Kδ
θ

 
= +  

 

                                                                                                                      (6.2)           

Where 
ˆ

ˆ
ˆ

K
R

β=    

If the experimenter is unable to guess the value of K , then it is worth advisable to replace K   by K
)

 in ( )3.21

. Thus, the estimator based on the estimated ‘optimum’ value. 

ˆ ˆ
ˆ 1 1

2

x d x d
R P O

x d x d

X C M x C My K K
T

x C M X C Mθ θ
       + += + + +       + +        

                                     (6.3)           

To obtain the MSE  of 
RPOT
)

 we write 

Let 
$( )

2

k K
e

K

−
= , then $ ( )2

1k K e= +   

with ( ) ( )1

2
E e K o n

−= + , expanding (6.3) in terms of 'e s we have 

 

( ) ( ) ( ) ( )2 2 3 3 4 4

0 2 1 1 1 1 2 1
ˆ 1 1 1 1 ... 1 1 (1 )

2
RPO

Y K K
T e e e e e e e eθ θ θ θ θ

θ θ
    = + + + + + + + + + − + +    
    

     (6.4)     

From (6.4) we have 

( ) ( ) ( ) ( ) ( ) ( )2 2

0 2 1 1 1 2 1 2 1 2 1 1 1 2
1 1 1 ... 1 1

2

Y K K
e e e K e e e K e e e e e K e e e
 = + + + −θ − + + θ + + + − + +θ − + θ θ 

 

( ) ( ) ( )2 2

0 1 1 2 1 2 1
1 2 2 ...

2

Y
e K e e e K e e e = + − + + θ + +     

( ) ( ) ( )2 2

0 1 1 2 1 2 1
1 1 ...

2

K
Y e K e e e e e e

θ = + − + + + +  
  

( ) ( ) ( )2 2 2 2

0 0 1 0 1 1 2 0 1 2 1 2 1 0 1 0 2 1
1 1 ...

2

K
Y e e K e e e e e e e e e e e e e e e e

θ = + + − + + + + + + + +  
 

Neglecting the terms of 'e s   having power greater than two we have 

2

0 1 0 1 1 2 1
ˆ 1 ( )

2
RPO

K
T Y e Ke K e e e e e

θ = + − − + +  
 or 

2

0 1 0 1 1 2 1
ˆ( ) ( )

2
RPO

K
T Y Y e Ke K e e e e e

θ − = − − + +  
                                                      (6.5) 

Now squaring both sides of (6.5) and neglecting the terms of 'e s  having power greater than the second we 

have 

2 2 2 2 2

0 1 0 1
ˆ( ) 2R P OT Y Y e K e K e e − = + −                                                         (6.6)    

Taking the expectation of both sides of (6.6) we get the mean square error (MSE�of  
���� to the first order of 

approximation as  

134 



Bajopas Volume 10 Number 1 June, 2017 

2 2 2 2 2

0 1 0 1
ˆ ˆ( ) ( ) 2 ( )R PO R P OM SE T E T Y Y E e K e K e e = − = + − 

 

( ) 2
2 2 2

1
2

y x y x

f
Y C K C K C C

n

−
 = + − ρ 

 

( ) 2

2
2 2

1
2

y y

y x y x

x x

C Cf
Y C C C C

n C C

 −    
 = + ρ − ρ ρ   
     

 

( ) ( )2
2 2 2

1
y y

f
Y C C

n

−
= − ρ  

( ) ( )2
2 2

1
y

f
Y C

n

−
= 1 − ρ  

( ) ( )2 2
1

y

f
S

n

−
= 1 − ρ                                                                                               (6.7)       

Which is equal to the minimum MSE of RPT  or the MSE of RPOT  given by (3.10). Thus, we established the 

result that the MSE  of the estimator ˆ
RPO

Τ  in (6.3) based on ‘estimated optimum value’ to the first degree of 

approximation is same as that of ˆ
RPO

Τ  in (3.9). So it is interesting to note the estimator ˆ
RPO

Τ  in (6.3) can be 

used as an alternative to the ˆ
RPO

Τ in (3.9) if the value of the parameter is not known. 

Numerical Comparison 

To see the merit of the suggested estimator RPT  over y , 1RT , 1PT , 2RT  and 2PT .  

Dataset: The populations considered in this study are real-life dataset comprises of population1 and2. The 
population 1 is taken from Singh and Chaudary (1986) given in page 177 and population 2 is taken from Murthy 
(1964) given in page 228. Table 1 below summarized the dataset for the study. 

 
Table 1: Summary of the Dataset  

Parameters Population 1: Y = output X =fixed capital Population 2: Y = output X =number 
of workers 

N  80 80 

n 20 20 

Y  51.8264 51.8264 

X  11.2646 2.8513 

ρ 0.941 0.9150 

yC  
0.3542 0.3542 

xC  
0.7507 0.9484 

dM  
7.575 1.4800 

 

Therefore, we see the merit of the proposed estimators RPT  over some existing Ratio and Product estimators

y , 1RT , 1PT , 2RT  and 2PT  in Table 2 and Table 3. 

Table 2: Ranges of δ under which the proposed estimator RPT  is better than y , 1RT , 1PT , 2RT  and 2PT . 

Populations → 1 2 

y  0.5 < δ <1.340  0.5 < δ <1.029  

2RT  0.842 < δ < 1.000  0.529 < δ < 1.000  

2P
T  0.00 < δ < 1.842  0.000 < δ < 1.529  

1RT  0.394 < δ < 1.448  0.255 < δ < 1.274  

1PT  −0.448 < δ < 2.2896  −0.274 < δ < 1.802  

δ 0.921 0.764 

 
 

134 

135 



Bajopas Volume 10 Number 1 June, 2017 

 

Table 3: The variance and MSE of y , 1RT , 1PT , 2RT  and 2PT and the proposed estimator RPT  

Populations → 1 2 

y  12.637  12.637  

2RT  1.843  10.461 

2PT  55.018  90.498  

1RT  18.995  63.216  

1PT  119.804  143.252  

RPT  1.447  2.057  

 

The Percentage relative efficiency (PRE) of different estimators T respect to y is defined as,

( ) ( )
( )

., 100
.

V y
PRE T y

V T
=  Χ  

 

Table 4: Percentage relative efficiency of different estimators with respect to y  

Populations

↓  
y  1RT  

1PT  
2RT  2PT  RPT  

1 100 < 100 < 100 685.69 < 100 873.23 
2 100 < 100 < 100 120.80 < 100 614.35 

 

DISCUSSION  
We have proposed an estimator of the ratio-product 
estimator and obtained the asymptotically optimum 
estimator (AOE) with its approximate MSE formula for 

the proposed estimator using the coefficient of 

variation and median of the auxiliary variable X  in 
simple random sampling. 
Theoretically, we have demonstrated that the 

proposed estimator is always more efficient than 

other estimators y , 1RT , 1PT , 2RT  and 2PT  under 

the effective ranges of δ and its optimum values. 

In addition, we support these theoretical results 
numerically using the data sets as shown in Table 1. 

Table 2 provides the wide ranges of δ along with its 

optimum values for which the proposed estimator

RPT  is more efficient than other estimators y , 1RT , 

1PT , 2RT  and 2PT  as far as mean squared error 

criterion is considered. It is also observed from Table 

2 that there is a scope for chosen δ to obtain better 

estimators than y , 1RT , 1PT , 2RT  and 2PT . 

Table 4 provides that there is a considerable gain in 
efficiency by using proposed estimator 
�� over the 

estimators y , 1RT , 1PT , 2RT  and 2PT . This shows 

that even if the scalarδ deviates from its optimum 

values ( )optδ . The suggested estimator RPT  will 

yield better estimate than y , 1RT , 1PT , 2RT  and 

2P
T .

 

( ) ( ) ( ) 2
2

1
0RP y

f
M SE y M SE T Y C

n

−
− = > , 

( ) ( ) ( ) ( )2 22

1

1
1 0R R P x

f
M SE T M SE T Y C K

n

−
− = + >  

( ) ( ) ( ) ( )2 22

1

1
1 0P R P x

f
M S E T M S E T Y C K

n

−
− = − >  

( ) ( ) ( ) ( )2 22

2

1
0

R RP x

f
M SE T M SE T Y C K

n
θ

−
− = + >  

( ) ( ) ( ) ( )2 22

2

1
0P R P x

f
M S E T M S E T Y C K

n
θ

−
− = − >  

. 
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CONCLUSION 

Evidence from the study revealed that the proposed 
estimator is more efficient than the already existing 
ratio, product and ratio- product type estimators 
based on some certain conditions and efficiency 

conditions. Therefore, there is always need to ensure 

that the auxiliary variable is highly correlated with the 
study variable and the population under consideration 

is homogeneously distributed, and when there is no 
correlation between the auxiliary variable and the 

study variable, the application of single- phase sample 

will not yield more efficient or the mean per unit will 
be more efficient. 
Hence we conclude that the proposed class of 
estimator 
�� is more efficient than the other 

estimators in case of its optimality in simple random 

sampling. Thus, it is preferred to use the proposed 
estimator 
�� in practice over �, 
��, 
��, 
�� and 
��. 
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