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ABSTRACT ARTICLE HISTORY
Background: For over a decade, resistance to newly synthesized antibiotics has been observed Received 19 August 2020
worldwide. The challenge of antibiotic resistance has led to several pharmaceutical companies Revised 4 November 2020
to abandon the synthesis of new drugs in fear of bacteria developing resistance in a short Accepted 10 November 2020
period hence limiting initial investment return. To this effect, alternative approaches such as KEYWORDS

the use of bacteriophages to treat bacterial infections are being explored. This review explores Antibiotics resistance;
the recent advances in phage-mediated antibacterial applications and their limitations. bacteriophages; phage
Methods: We conducted a comprehensive literature search of PubMed, Lib Hub and Google therapy; phage mediated
Scholar databases from January 2019 to November 2019. The search key words used were the biocontrol; phage efficacy
application of bacteriophages to inhibit bacterial growth and human phage therapy to extract

full-text research articles and proceedings from International Conferences published only in

English.

Results: The search generated 709 articles of which 95 full-text research articles fulfilled the

inclusion guidelines. Transmission Electron Microscopy morphological characterization con-

ducted in 23 studies registered Myoviruses, Siphoviruses, Podoviruses, and Cytoviruses phage

families while molecular characterization revealed that some phages were not safe to use as

they harbored undesirable genes. All in vivo phage therapy studies in humans and model

animals against multidrug-resistant (MDR) bacterial infection provided 100% protection. Ex vivo

and in vitro phage therapy experiments exhibited overwhelming results as they registered high

efficacies of up to 100% against MDR clinical isolates. Phage-mediated bio-preservation of

foods and beverages and bio-sanitization of surfaces were highly successful with bacterial

growth suppression of up to 100%. Phage endolysins revealed efficacies statistically compar-

able to those of phages and restored normal ethanol production by completely eradicating

lactic acid bacteria in ethanol fermenters. Furthermore, the average multiplicity of infection

was highest in ex vivo phage therapy (557,291.8) followed by in vivo (155,612.4) and in vitro

(434.5).

1. Background treatment and prophylaxis as well as growth promo-
tion have been implicated as one of the major drivers
for antibiotic resistance that may spillover to humans
[3-5]. Infectious food and water-borne illnesses are
acquired through the consumption of contaminated
food and water; and are the major cause of mortality
and morbidity worldwide owing to their extensive and
spontaneous transmission [6,7]. It was estimated that
water, sanitation, and hygiene (WSH) associated
infectious diseases are accountable for 4.0% of the
worldwide deaths and 5.7% of the universal disease
burden [7,8]. Furthermore, WHO reported that
600 million or 1 in 10 people fall ill worldwide as
a result of foodborne infections and more than
91 million people affected are in Africa [6].

The rate at which drug resistance emerges has
resulted in big pharmaceutical companies backing
away from developing new antibiotics since the latter

Currently, the world populace is deemed to be at
a great risk as a result of the ever-escalating prevalence
of antibiotic resistance bringing about an epoch where
many familiar bacterial infections are becoming
increasingly hard to treat [1]. Similar to many other
developing countries, Sub-Saharan Africa is experien-
cing an elevated burden of bacterial infectious diseases
which calls for the overuse of antibiotics and conse-
quently emergence of resistant microorganisms [1,2].
The development of antibiotic resistance is also con-
tributed by self-medication with uncontrolled over-
the-counter access to drugs without any guidance
from qualified medical practitioners. In addition,
there is excessive application of antibiotics in poultry,
aquaculture, and livestock production. The unrest-
ricted access and use of antibiotics for animal disease
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are rendered non-effective within a short period, mak-
ing the venture not cost-effective [9]. Therefore,
affordable alternative approaches such as the use of
probiotics, phytomedicines, and bacteriophages to
manage bacterial infections and control the emergence
of antibiotic resistance are highly commendable.

Bacteriophages (phages) are natural enemies of bac-
teria which are the most abundant replicating entities
on earth. Phages are viruses that specifically attack and
multiply in bacterial cells and have no effect on other
cell types. They are self-replicating and self-limiting as
long as the specific bacterial host cells exist. Similar to
other viruses, their genomes may either be double-
stranded or single-stranded DNA or RNA [10].
Phages have either a lytic or lysogenic type of replica-
tion cycle. The lytic cycle, also referred to as the virulent
cycle, results in the production of progeny viruses that
are released through cell lysis. The lysogenic or tempe-
rate cycle results in the incorporation of the phage
genome into the host chromosome without the produc-
tion of new virus particles. Depending on some circum-
stances, some phages can exhibit both replication cycles
[10]. Lytic phages are applied as bacterial growth inhi-
bitors, which can be categorized as phage therapy or
phage-mediated decontaminants. For therapy, phages
are mainly used like antibiotics, whereas for deconta-
mination, they are applied as disinfectants. Literally,
phage therapy is the application of phages as therapeu-
tic agents more especially in a clinical context to treat
bacterial infections while phage-mediated biocontrol
can be defined as the use of phages to suppress bacterial
growth on non-living surfaces. Safety and efficacy of
phage therapy or phage-mediated biocontrol relies on
isolation and use of only professional lytic phages,
which are obligately lytic or virulent but they are
neither temperate nor directly linked to temperate
phages [11]. Phage therapy is a proven eco-friendly
alternative approach to prevent and control pathogenic
bacterial infections [12,13].

Phages were used to treat bacterial infections in
Europe during the pre-antibiotic era. However, with
the discovery of antibiotics and the substandard med-
ical trials conducted in the western world without
putting into consideration that phages were specific,
phage therapy was shortly after deemed impotent in
the treatment of bacterial infections. Nevertheless,
phage therapy continued to be used for the treatment
of bacterial infections in the Soviet Union since 1940
[14]. The advantages of phage applications, such as
disruption of bacterial biofilms and nondependency
on the drug resistance status of the organisms, have
rekindled their use as antibacterial agents [15,16].
Furthermore, renewed attention to phage therapy has
been registered due to an overall decline in the total
reserves of effective antibiotics. Hence, phage therapy
clinical trials and experiments in poultry, aquaculture,
crop husbandry, model animals, in vitro model

systems, and humans have been widely carried out
[17,18]. Currently, the notable human phage therapy
under application is the compassionate use of phages
as individualized therapeutic options to manage MDR
bacterial infections unresponsive to all classes of con-
ventional antibiotics [19]. Furthermore, phage pre-
parations have been used and experimented with as
diagnostic tools for bacterial infections to supplement
the available methods [12].

For use as decontaminants, several studies have been
conducted to evaluate the efficacy of phages as bio-
control agents against food and beverage borne patho-
gens [20]. Phages have been experimented with in bio-
sanitization of equipment surfaces to eradicate biofilms
in food industries [21]; and bio-preservation of perish-
able processed foods to increase shelf-life. Some phage-
specific enzymes; such as lysins which degrade the cell
wall of gram-positive bacteria, have been applied to
processed foods to enhance their safety for human
consumption [18,22-24]. The use of bacteriophages in
food products in the US, Europe, and Australia has been
reported [25]. Indeed, some phage preparations have
been approved in the USA and are commercially avail-
able; such as LISTEX P100; LMP-102"™, Listshield"",
ECP-100™  (Ecoshield™), = SALMONELEX™,
AgriPhage™, and Biophage-PA [26].

This review expounds on the current level, limita-
tions, and prospects of phage applications such as
enhancing food safety and fermentation of biofuels;
phage therapy clinical trials and experiments in
humans and model animals; animal and plant disease
control and environmental bioremediation.

2, Methods
2.1. Literature search strategy

A comprehensive literature search of PubMed, Lib
Hub, and Google Scholar databases was conducted
from January 2018 to November 2018. The search
key words used were “application of bacteriophages
to inhibit bacterial growth” and “human phage ther-
apy,” Figure 1.

3. Study selection criteria

The search targeted articles published in English with-
out restriction on year of publication in an attempt to
capture all available literature about the application of
phages as antibacterial agents worldwide, Figure 1. In
addition, only full-text research articles and proceed-
ings from the International Conference on Prevention
& Infection Control were selected, Table 1-5, SI.
Review articles were excluded from this search. To
avoid bias, all the seven coauthors were involved in
the selection process. Articles were assigned to the
different coauthors blindly, review reports on the
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Articles generated from
Lib Hub (n=416)

Articles generated
from PubMed (n=51)

Articles generated from
Google Scholar (n=242)

Research articles excluded

(n=600)
- Replicated articles
(n=505)

Articles from Lib Hub
left (n=63)

Articles from
PubMed left (n=27)

Articles from Google
Scholar left (n=19)

Did not meet the
eligibility criteria

(n=90)
Full text articles were
not accessible (n=05)

Research articles excluded (n=14)

Research articles considered for this
systematic review (n=95)

- Reviewarticles containing general
data about phage application

Figure 1. Selection process of research articles for inclusion in this review.

Table 1. In vivo human phage therapy trials.

Serovar/
Phage therapy in humans Phage type Source of phages Pathogens targeted pathotype efficacy Ref
Treatment of diabetic toe Staphylococcal phage Sb-1 Eliava Institute S. aureus (MRSA and - 100%  [93]
ulcers MSSA)
Treatment of GIT MRSA polyvalent S. aureus bacteriophages L. Hirszfeld Institute S. aureus (MRSA) - 100%  [94]
infection collection
Treatment of burn infections - J. Soothill P. aeruginosa - 100%  [95]
Treatment of infected Pyophage in PhagoBioDerm films Eliava Institute P. aeruginosa, E. coli, - 76% [49]
venous stasis ulcers and S. aureus, Proteus,
other poorly healing and Streptococcus
wounds
Treatment of corneal S. aureus bacteriophage SATA-8505 ATCC VRSA - 100%  [96]
abscess and interstitial
keratitis
Treatment of Cocktail of P. aeruginosa phages 14/1 Merabishvili et al 2009 S. aureus and - 0% [69]
burn wound infection (Myoviridae) and PNM (Podoviridae) P. aeruginosa
and S. aureus phage ISP (Myoviridae)
Treatment of chronic otitis  Biophage-PA NCIMB MDR P. aeruginosa - 80% [97]
antibiotic-resistant
P. aeruginosa
Infection
Treatment of P. aeruginosa  PA Phage cocktail (Pyophage #051007)  Eliava Institute MDR P. aeruginosa - 100%  [98]
uTl
Treatment of acute bacterial T4-like coliphages cocktail Microgen-Russia E. coli - 0% [70]
diarrhea
Treatment chronic bacterial IET bacteriophage collection IIET bacteriophage Enterococcus faecalis - 100%  [99]
prostatitis collection sewage,
environmental, or
drinking water
Phage safety analysis Phage cocktail Coli Proteus Microgen Russia E. coli and proteus - - [30]

merits and demerits of the studies as per inclusion
criteria were submitted to the lead researcher (JLN)
and the entire selection process was conducted based
on the review reports by all the seven coauthors. In
case of any disagreement, powers were entrusted to
the most experienced researchers in bacteriophages
(JLN, DKB, and FE) to make the final decision.

4. Data extraction

A database was created in which the field of phage
application, type of phage or phage part used, source
of phages, level of phage application, type of bacteria

and strain or serovar challenged, level of phage effi-
cacy, physiochemical properties of phages, the multi-
plicity of infection (MOI) of phages and methods
used in the characterization of phages were included.
Studies where MOIs were not reported but the num-
ber of plaque-forming units/mL (PFU/mL) and the
number of colony-forming units/mL (CFU/mL)
given, MOIs were computed by dividing the PFU/
mL by CFU/mL units (O’Flynn et al., 2004). To
compare the MOI of different investigations, all stu-
dies were grouped into three categories namely;
in vivo phage therapy, ex vivo phage therapy, and
in vitro phage therapy.
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5. Data analysis

Data analysis was performed using Tukey’s multiple
comparisons test in STATA version 2018.1 to establish
whether; (a) the number of studies that reported
in vivo human phage therapy efficacy of 100% was
more pronounced than the number of studies that
recorded efficacy lower than 100%, (b) phages are
more efficient inhibitors of bacterial growth in ethanol
fermenters than phage endolysins, (c) there is
a considerable difference in in vitro phage therapy
outcomes against different species of clinical bacterial
isolates, (d) the outcomes of phage-mediated biocon-
trol in different fields are momentously dissimilar, (e)
MOIs used for ex vivo phage therapy/phage-mediated
biocontrol experiments, in vivo phage therapy and
in vitro phage therapy are soundly similar. A P value
of < 0.05 indicated a significant statistical difference.
For comparison of phage therapy and phage-mediated
biocontrol efficacy across the different fields, only
fields that had three or more studies reporting phage
therapy efficacy in percentages were considered for
Tukey’s multiple comparisons test to prevent skewing
of data.

6. Results and discussion
6.1. Literature search

A total of 709 articles were generated through an
electronic database literature search conducted
between January and November 2018. The databases
were PubMed, Lib Hub, and Google Scholar, which
yielded 51, 416, and 242 articles, respectively.

2500000

Following the removal of duplications, 204 articles
were screened on the basis of their titles and abstracts.
Of the 204 articles; 90 did not meet the specified
inclusion criteria; and five full-text articles were not
accessible. Finally, 109 full-text articles were reviewed,
of which 95 full-text research articles fulfilled the
inclusion guidelines for this review, Figure 1. Studies
included in this review were grouped into in vivo
human phage therapy, in vivo phage therapy in
model organisms, phages as biocontrol agents in bio-
fuels fermentation, phages as biocontrol agents in
foods and beverages, in vitro phage therapy experi-
ments using clinical isolates, in vivo phage therapy in
crop protection, application of phages as biocontrol
agents in water purification, in vivo phage therapy in
aquaculture, in vivo phage therapy in apiculture,
in vivo phage therapy in a piggery in vivo and
in vitro phage therapy in poultry, application of phages
as bio-sanitizers, and in vitro use of phages as biocon-
trol agents in creams, Table 1-5, Figure 3.

Phage characterization; a prerequisite for phage-
mediated biocontrol of bacterial growth and in vivo
phage therapy

Phage-mediated biocontrol and phage therapy rely
on the ability of lytic phages to infect bacterial host
cells, hijacking the host metabolism and utilizing it to
produce their progeny. As a result, the lytic phages lyse
bacteria cells to release multiple phage virions which
spread to infect other host cells [10]. Contrary to that,
after infecting the bacterial host cells, lysogeny phages
incorporate their genetic material into the host gen-
ome resulting in their permanent existence as pro-
phages within host cells and all their offspring.
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Figure 2. Comparison of mean MOIs between in vivo, in vitro, and ex vivo phage therapy. Tukey’s multiple-comparison test was
used to compute and compare MOIs P value of 0.0002 < 0.05 generated indicating significant variation between ex vivo/in vivo PT

and in vitro PT.
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Figure 3. Comparison of phage therapy (PT), phage-mediated biocontrol/diagnosis mean efficacy percentages. Tukey’s multiple-
comparison test was used to calculate and compare the mean percentage efficacies generating a P value of 0.148 > 0.05 after
exclusion of fields with less than three studies (water, piggery poultry, and apiculture).

Phages neither replicate into virions nor lyse bacteria
throughout their lysogeny life time, hence called tem-
perate phages [10]. Furthermore, the integration of the
phage nucleic acids into its host bacterium protects the
temperate phage genome and has the ability to modify
the phenotype of the host bacterium cell [27].
Unfortunately, temperate phages might harbor toxin
encoding genes, virulent genes, and genetic determi-
nants of antibiotic resistance acquired from other bac-
terial hosts. Therefore, temperate phages may
transform the phenotype of the host bacteria and all
their progeny from avirulent/less virulent and antibio-
tic susceptible strains to highly virulent and antibiotic-
resistant strains [28,29]. Appropriately professionally
isolated and characterized phages must be used to
prevent horizontal gene transfer of undesirable genes
through phage-mediated biocontrol and phage ther-
apy [18,30,31]. Therefore, phages must be character-
ized morphologically by TEM and SDS PAGE protein
profiling to establish their families or if they are novel
phages followed by molecular characterization by
WGS to confirm their families and to detect any inte-
grase, toxin, and virulent genes in addition to antibio-
tic resistance genes by cross-referencing with known
phage genomes, virulent factors, toxin genes, and anti-
biotic-resistant genes libraries. A cheaper but less-
sensitive alternative to detect the presence of known
integrase gene, virulent factors (VF) and genetic deter-
minants of antibiotic resistance in phages is PCR
amplification using conventional integrase gene VF,
toxin genes, and antibiotic resistance genes primers.
However, PCR amplification has limitations as it will
not detect any possible novel VF and antibiotic resis-
tance genes harbored by phages hence making

molecular characterization of phages by WGS
a prerequisite prior to phage-mediated biocontrol of
bacterial growth and in vivo phage therapy [32,33].
However, only 12.6% (12) of the studies included in
this review conducted WGS. Bioinformatics analyses
and annotation demonstrated that myophages B$C62
[34], DL52, DL60 and DL680 [35], DRA8S and phage
K [36], Ecolnf [37], coliphagesp APCEc01, pAPCEc02
and pAPCEc03 [38], Phage P100 [39], leB, leE and leN
[40]:, podophages DL54, DL 62 and DL 64 [35]:, fHe-
Yen3-01 [41] and siphophages EcoSau [37], phSE-1,
phSE-2 and phSE-5 [42], fHe-Yen3-01, fHe-Yen9-01,
fHe-Yen9-02 and fHe-Yen9-03 [41] were safe to use
since they harbored no undesirable genes while
siphophage HB10c2 had a gene encoding a putative
beta-lactamase like protein [43]. Additionally, PCR
detected Stx I and II proteins encoding genes and
lysogeny module genetic determinants in phages
CB60P, MFA60N, CCO103, CBO103, and CCO113
[44], Table S1. If such phages are used in phage ther-
apy and phage-mediated biocontrol, they can facilitate
the horizontal flow of undesirable genes. This exorbi-
tantly underlines the importance of screening phages
using very sensitive tools like WGS. Nevertheless, only
36.8% (39) research articles included in this review
attempted to characterize phages; 3.2% (3) used PCR
to detect VFs and lysogeny modules while only 12.6%
(12) studies carried out WGS to fully illustrate the
phage genomes indicating that there is still a big gap
in ensuring phage therapy safety as per all the
reviewed articles that were in English, though all the
phages used for in vivo human phage therapy were
previously characterized by committed phage research
hubs. Furthermore, the morphology of phages was
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determined by transmission electron microscopy
(TEM) in only 24.2% (23) studies. Basing on morphol-
ogy, the phages belonged to various families as follows:
Myoviridae; Siphoviridae; and Podoviridae in twenty,
nine and ten studies respectively. Whereas, one study
in each case reported phages as Bl morphology,
Phage-like particle, and Cytoviridae family, Table S1.

7. Phage stability

Establishing the abiotic conditions affecting phage activ-
ity and/or viability was done in 16.8% (16) studies. This is
an important criterion for selection since phage viability,
occurrence, and storage are affected by temperature, pH,
humidity, salinity, and other environmental conditions.
Deviation from the favorable physicochemical factors can
lead to the destruction of phages™ structural elements,
protein envelope, and loss of genetic material thereby
inactivating the phages [45,46]. These phages are isolated
from natural environments such as sewage, hospital, and
animal farm effluents, water bodies, foods, and beverages
and evaluated for in vitro, in vivo, and ex vivo phage
therapy and phage-mediated biocontrol where the pre-
vailing physicochemical factors are completely different,
Table 1-5. Hence, the need to establish the optimum
conditions for the highest phage efficacy. However, such
drawbacks can be mitigated by isolation of phages from
local geographical locations and similar hosts as for
in vivo phage therapy accompanied by assessing phage
stability via exposing them to different physicochemical
factors. Furthermore, during the preparation of commer-
cial phage-based remedy, physicochemical properties are
supposed to be investigated as they determine the shelf-
life of phages [47]. Despite that concern, only 9 (9.5%)
and 7 (7.4%) out of 95 research articles included in this
review evaluated the thermal and pH stability of phages,
respectively, Table S1. This partly explains why some
research articles reported very low or 0% phage efficacy
in in vivo studies.

8. Specificity of phages

Specificity restricts phage infections to only certain bac-
teria with corresponding receptors to which they can
bind; this determines the phage’s host range [48]. For
that reason, the application of phage therapy relies on an
accurate characterization of all the strains, pathotypes,
and serotypes of the target bacteria. Interestingly, if
phage therapy overcomes the current obstacles hindering
its approval universally, single phage and phage cocktail
formulations must be designed indicating the pharma-
ceutical dosage and the phage host range for a given
bacteria which calls for robust characterization of given
target host bacteria. Conversely, this review identified
gross deviation from the recommended procedure if
meaningful phage therapy outcomes are to be achieved
as only 55.8% (53) of studies reviewed attempted to use

identified bacterial host strains, serovars, and pathotypes,
Table 1-5. Worst still, no human in vivo phage therapy
trial reported characterization of the target bacteria to
their strains, pathotypes, and serotypes. Nevertheless, the
spectrum and efficacy of phages can be enhanced by the
use of phage cocktails. Phage cocktails also present
another advantage of preventing phage resistance [49,50].

9. Multiplicity of infection (MOI)

MOI is defined as PFU/CFU ratio [51]. MOI is an
imperative factor to be considered for prospective
phage therapy application. Increasing the PFU/CFU
ratio enhances the probability of phage particles
infecting their host bacteria. Therefore, in vivo and
ex vivo phage therapies require higher MOIs than
in vitro phage therapy as it is harder for phages to
locate and infect their hosts within living tissues, sur-
face of foods, and other materials being infected by
phages. Some studies recommend an MOI of over 100
for ex vivo and in vivo phage therapy and less than 10
for in vitro phage therapy [52]. This is in agreement
with the studies incorporated in this review that
reported MOI. The average MOI was highest in ex
vivo experiments (557,291.8), followed by in wvivo
phage therapy (155,612.4) and in vitro phage biocon-
trol experiments had the lowest average MOI of 434.5
significantly different from ex vivo and in vivo MOls,
Table S1 and Figure 2. Contrary to this, other studies
disregard the term MOI as it only describes the phage
quantities administered during dosing in relation to
the population of the target bacteria but does not put
into consideration the fact that; some phages fail to
penetrate tissues/materials and get inactivated before
adsorbing to the host cells, the host cell population is
liable to change before phage application, the bacterial
population may not easily be determined in case of
infections and physicochemical factors such as tem-
perature, pH, salinity, and humidity may inactivate
phages before adsorption. As a result, MOI input
may differ from the actual effective MOI [53].
Furthermore, to increase the prospect of phages
adhering and infecting their hosts; for experimental-
induced infections a very high MOI of >10 is recom-
mended [54] whereas in vivo phage therapy of natural
infection a very high titer value of > 1 x 10® PFU is
appropriate as bacterial host cells are lysed by simply
adsorption of phages before injection of their nucleic
acids into the host cells and replication [52,54].
However, phages are immunogenic when applied at
very high doses [55]; therefore, the host immune sys-
tem may identify and inactivate them. Additionally,
the MOI against biofilm infections should be higher as
indicated by the studies reviewed which compared
optimum MOI against bacterial suspension or free-
living bacteria to that against biofilms and/or immo-
bile bacteria, Table S1 and Figure 2. In in vitro



experiments, MOIs of 0.1, 1, and 10; and 100, 1,000,
and 10,000 [56]; 0.1 and 10 [36] were administered
against bacterial planktons and biofilms, respectively.
It is worth mentioning that in addition to high MOI,
the most suitable phages for phage-mediated manage-
ment of biofilm infections should encode polysacchar-
ide depolymerase which degrades the biofilm
polysaccharide matrix to ease phage interaction with
the host cells in the lower layers of the matrix [57].

10. Efficacy of phage therapy against drug
resistant and sensitive bacterial infections and
isolates

In vivo human phage therapy studies reported mixed
levels of efficacy ranging from 0% to 100%. The mode
and median efficacies were 100% while Tukey’s multiple
comparison test generated a P value of 0.009 < 0.05 indi-
cating that phage therapy efficacies of 100% were more
pronounced than efficacies lower than 100% in all the
in vivo human phage therapy. Interestingly, efficacies of
100% were scored when treating MRSA diabetic foot
ulcers, GIT MRSA infection, VRSA corneal abscess and
interstitial keratitis, and MDR Pseudomonas aeruginosa
UTI with phages. Furthermore, in vivo phage treatment
of MRSA osteomyelitis in Rabbits [58], carbepenem resis-
tant Acinetobacter baumanii infection in mice [34], MDR
Acinetobacter baumanii pneumonia in mice [59] and pan
drug resistant (PDR) Acinetobacter. baumannii infec-
tions in mice [60] provided 100% protection to model
animals against the super bugs while in vivo phage ther-
apy of MDR Pseudomonas aeruginosa ulcerative lesions
in catfish species achieved 100% success. It is also worth
noting that ex vivo phage therapy against MDR
Pseudomonas aeruginosa skin infections, MRSA biofilms
induced onto porcine skin burns, and PDR Acinetobacter
baumanni human HeLa cells infections recorded over-
whelming success. In vitro phage therapy against MRSA,
MDR Acinetobacter baumanni, MDR Pseudomonas aer-
uginosa scored an inhibitory efficacy ranging from 78% to
100% with an average of 95.4%. Data from around the
globe show an overall decline in the total reserves of
antibiotics efficacy: resistance to all first-line and last-
resort antibiotics is increasing [3]. For instance, in sub-
Saharan Africa, India, Latin America, and Australia,
MRSA incidence is still intensifying [3,6162], and esti-
mated at 47% in India in 2014, and 90% in Latin
American hospitals in 2013 [61][]. MRSA causes
35-46% of wound complication in Mulago referral hos-
pital [63,64]. The increased prevalence of community
acquired E. coli isolates coding for extended-spectrum
beta lactamases competent of hydrolyzing approximately
all beta lactams antibiotic except carbapenems has been
reported globally [65]. In more than a decade, carbape-
nem resistance in Enterobacteriaceae bacteria has been
observed yet Carbapenems such as imipenem, ertape-
nem, meropenem, and doripenem are the newest
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synthesized molecules with the broadest spectrum of
activity and consequently considered the first-line ther-
apy antibiotics in the treatment of multi-resistant gram-
negative bacterial infections [66,67]. The magnitude of
MDR Pseudomonas aeruginosa and Acinetobacter bau-
mannii is a great threat to the health sector worldwide
[68]. The promising outcomes of in vivo, ex vivo, and
in vitro phage therapy of MDR bacterial infections and
isolates exhibit that phage therapy if employed appropri-
ately is more effective than antibiotics and therefore can
replace or supplement antibiotics as a routine in the
management of both resistant and sensitive bacterial
infections. However, limited success was attained when
treating S. aureus and P. aeruginosa wound infection in
humans, acute human E. coli infections, MRSA nasal
infections in pigs and American foulbrood caused by
Paenibacillus larvae [43,69-71]. This is in contrary to
the in vitro experiments carried out in two of the studies
where total eradication of the bacteria was achieved
[43,71]. This can be attributed to the change in physiolo-
gical conditions: loss of phage viability due to deviation
from their optimum temperature and pH in unnatural
environments [46].

11. Endolysins versus phage particles

Phages code tail spike proteins for identification and
adhesion to receptors on the host cell surface. The tail
spikes proteins are often incorporated with peptidoglycan
hydrolases that locally hydrolyze the bacterial cell wall
peptidoglycan, thus creating an opening for injection of
phage nucleic acids which marks the initiation of the
infection process [72]. An additional type of phage-
derived enzymes; the peptidoglycan hydrolases called
endolysins degrade the peptidoglycan liberating the pro-
geny virions from the host cell at the end of the lytic phage
cycle [73]. Gram-positive bacteria do not possess
a shielding outer layer thereby making exogenous appli-
cation of endolysins achieve speedy and effective lysis.
This property makes endolysins promising possible alter-
native antimicrobial agents [23]. Several studies have
reported endolysins as potential therapeutic agents with
high efficacy and safety [74]. In addition, endolysins
possess an added advantage over conventional antibiotics
as; they exhibit great specificity exerting selective pressure
on target pathogenic bacteria populations [75,76], emer-
gence of resistance against endolysins is implausible given
that phage (endolysins) coevolve with their host bacteria,
the host receptor site where endolysins bind are highly
conserved thereby making their alteration highly detri-
mental to the host bacterium [76,77]. Furthermore, endo-
lysins degrade the cell wall externally without the burden
of entering the bacterial cell hence evading the common
antibiotic resistance mechanisms such as the active efflux
pump and decreased membrane permeability [78]. A lot
of ethical and safety concerns have been vehemently
expressed about the use of live viruses as therapeutics in
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the treatment of bacterial infections; currently, the
immediate hope lies in the use of phage endolysins in
the near future to combat the increasing antibiotic resis-
tance. Fortunately, to meet the high demand, endolysins
can be produced using recombinant DNA technology
[79-81]. This review compared the use of phages and
endolysins to suppress bacterial growth during ethanol
fermentation. Phages demonstrated superior efficacy
than recombinant phage endolysins with mean efficacy
of 99.5% for phages and 83.6% for phage endolysins but
not significantly divergent as revealed by one-way
ANOVA (P value of 0.13 > 0.05). This clearly supports
the use of phages and endolysins hand in hand as ther-
apeutic agents.

12. Application of phages in Biosanitization
and Biopreservation

Infectious food and water-associated diseases are the
major causes of mortality and morbidity worldwide
[6,7]. Irrational use of antibiotics in livestock has resulted
in antibiotic resistance which spillover to humans
through contaminated food, water, and environment [-
3-5,67]. Fortunately, in 2006 the US Food and Drug
Administration (FDA) approved the utilization of 6 inde-
pendently purified LMP-102 phages as biopreservative
antimicrobial agents in RTE meat and poultry products
against Listeria monocytogenes [82]. In this review, the
literature search yielded 21 (22.1%) research articles
reporting foods and beverages phage-mediated bio-
preservation with average, mode, median efficacy of
96.5%, 100%, and 100%, respectively. In a water deconta-
mination study, phages eradicated 95.4% of the coliform.
This is a clear indicator of the potency of phages as bio-
preservative and bio-decontamination agents and conse-
quently their approval to preserve food and decontami-
nate water following robust characterization should be
considered to prevent transmission of antibiotic-resistant
and susceptible food and water-associated infection.
Furthermore, the hospital environment polluted by
infected patients with antibiotic-resistant bacteria is
incriminated as the main route of transmission
[83,84]. This has been a result of the emergence of
bacterial resistance to the conventional disinfectants
[83]. The possibility of a horizontal flow of mobile
genetic elements encoding antibiotic resistance from
clinical to environmental bacteria within the hospital
is high hence advancing the evolution of new antibiotic-
resistant bacterial strains [85]. On a good note, bio-
disinfection using phages as demonstrated by this
review is promising: for instance, phage-mediated bio-
sanitization eradicated 90% of Staphylococcus aureus,
Escherichia coli, and Pseudomonas aeruginosa tainted
on plastic, glass, and ceramic materials mimicking hos-
pital surfaces [86] while phage-mediated sterilization
trial of the ICU reduced the prevalence of carbapenem-
resistant Acinetobacter baumanii by 47.5% [87]. In

another phage sanitization trial, phages completely
eliminated staphylococci, streptococci, enterococci, pro-
teus, Klebsiella pneumoniae, Klebsiella oxytoca,
Pseudomonas aeruginosa, and Escherichia coli from the
hospital environment [88] while phage-based sanitiza-
tion cream completely inhibited MRSA and
Propionibacterium acnes growth [89,90]. With those
laudable bio-sanitization results, the use of phages to
complement conventional disinfection strategies could
exhibit valuable outcomes.

13. Phages and endolysin as alternative
antibacterial decontamination agents

Lactic acid bacteria (LAB) are by far the commonest
bacterial contaminants of biofuel production facilities
and are believed to hamper the ethanol fermentation
process hence limiting ethanol production. Ethanol fer-
mentation presents an environment of high ethanol con-
centration, low pH, and low oxygen concentration
thereby favoring the growth of Lactobacillus sp which
are well adapted to survive under such conditions.
Currently, there is no appropriate strategy to combat
ethanol loss due to LAB contamination as all possible
measures have limitations [91]. Contrary to that, the four
experimental studies which employed phages and endo-
lysins to control LAB growth during ethanol fermenta-
tion analyzed in this review demonstrated eye-catching
bacterial growth suppression outcomes with mean effi-
cacy of 91.6%. Most importantly, phage and endolysins
mediated ethanol fermentation facility decontamination
restored normal ethanol yield without losing their viabi-
lity [37,92]. Because of the promising results, to eliminate
the use of antibiotics for decontamination in the ethanol
fermentation business, phages and endolysins should be
considered as alternatives.

14. Limitations

Hypothetically, all bacteria can be lysed by at least one
type of bacteriophage. In the light of this, phages are
considerably more efficacious than antibiotics.
However, phage antibacterial applications have limita-
tions. Most phages have demonstrated a broad spectrum
hence can lyse both the target pathogenic strains and
potentially beneficial bacterial strains. Additionally, it is
difficult to isolate phages without any undesirable genes
such as antibiotic-resistant genes, bacterial virulent genes,
and integrase genes. Phages with such genes may con-
tribute to the development of highly pathogenic antimi-
crobial-resistant bacteria. Furthermore, phage-based
therapeutic formulation and stabilization is still
a challenge as previous studies reported that the stability
of phage formulations for clinical use is stringently influ-
enced by the phage type. Thus, each phage type requires
its unique stabilization strategy and this is extremely
complicated for phage cocktail formulations. The



evolution of bacterial resistance against phages mainly
mediated by loss or alteration of the bacterial phage
receptors and bacterial secretions that prevent phage
adsorption has been implicated as another limitation
affecting phage therapy. Inactivation of phages by the
immune system has also been reported as a drawback of
phage therapy.

15. Conclusion

The high prevalence of MDR infections has resulted in
familiar bacterial diseases becoming difficult to treat.
Moreover, hospital-associated infections (both sensitive
and MDR) are mainly acquired through contaminated
surfaces and medical equipment. However, phage-
mediated bio-sanitization, in vivo, ex vivo, and in vitro
phage therapy experiments and trials analyzed by this
review showed that phages can mitigate the burden
caused by MDR infections and contamination of hospital
surfaces as well as medical devices. Furthermore, water
and food-borne bacterial infections have been implicated
as the major cause of mortality and morbidity globally
and LAB as the main cause of yield loss in the biofuels
fermentation industry. Analysis of phage/endolysin
mediated bio-preservation and bio-decontamination stu-
dies by this review showed that phages and endolysins
were highly effective. Thus, phage technology presents an
opportunity for developing alternative therapeutic, bio-
preservative, bio-decontamination, and bio-sanitization
approaches. Despite the undisputable efficacy of phage
therapy and phage-mediated biocontrol, rigorous inves-
tigations using highly sensitive techniques should be car-
ried out to ensure that only appropriate professionally
lytic and safe phages are used. Thus, for low- and middle-
income countries, there is a need to develop affordable
and appropriate methods for screening of phages for
undesirable genes. Moreover, the challenge of immuno-
genicity that may be associated with in vivo application of
phages needs to be explored further.
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