

Anchor University Journal of Science and Technology (AUJST)

A publication of the Faculty of Science Applied and Health Science, Anchor University Lagos

URL: journal.aul.edu.ng

In AJOL: https://www.ajol.info/index.php/aujst

Vol. 5 No 2, December 2024, Pp. 152-170 ISSN: 2736-0059 (Print); 2736-0067 (Online)

Integration of Heavy Metal Indexes and Health Risk Assessment in Groundwater Studies in Urban Area of Port Harcourt, Niger Delta Region of Nigeria

ABSTRACT

¹W.O. Osisanya, ²B.H. Akpeji, ³ I.F Agho, ⁴ S.A. Saleh, AS, ⁵O. E. Oyanameh

¹, Department of Physics, University of Benin,

Benin City, Edo State, Nigeria. ²Department of Chemistry, Federal University of Petroleum Resources, P.M.B 1221, Effurun,

Delta State. ³Department of Microbiology, University of Benin, Benin City, Edo state, Nigeria ⁴Department of Petroleum Engineering and Geosciences, Petroleum Training Institute, Effurun, Nigeria. Department of Earth Sciences, Anchor University, Lagos, Nigeria.

> *Corresponding author Email: wasiu.osisanya@uniben.edu Submitted 28 June, 2024 Accepted 20 September, 2024

Competing Interests. The authors declare no competing interests.

1. Introduction

Water is an important, infinite and expendable natural selective resource which forms a center of ecological system via precipitation, leaching of fertilizers, industrialization and hydrological cycle. According to Eyankware, et al. urbanization (Raju and Reddy 2007). So, an (2023), 96.5 % (1338 9 106 km³) of the world's water is understanding of its characterization and exploration is in oceans, but high salinity renders the oceans virtually helpful in groundwater sustainable management and unusable for humans. The remainder is distributed in quality (Raju et al. 1996, 2012; Reddy et al. 2000; glaciers (1.74 % or 24.1 9 106 km³), groundwater (1.70 Ayenew et al. 2008; Rao et al. 2013; Zouahri et al. % or 23.4 9 106 km³), permafrost, lakes, rivers and 2014). Quality of groundwater also depends on various atmospheric water as a freshwater stock. Groundwater is geogenic activities Highly localized factors such as considered safe from pathogens and other chemical topography and lithology cause quality to vary within contaminants due to natural infiltration capacity of short distances in the area studied (Kadam et al. 2021a, aquifer material and, thus, necessitates a little infection. 2021b; Huzefa et al. 2020; Subba Rao et al. 2018; Raju So, the groundwater has become an appropriate et al. 2009; Nageswara Rao et al. 2019). The quantity is alternative over surface freshwater reservoirs for also subject to weathering, groundwater movement, different purposes, such as drinking, irrigation and individual ion content and ion exchange, environment various industrial processes (Raju and Reddy 1998; and time variability in the recharge and discharge cycle. Nampak et al. 2014; Singh et al. 2015). Geochemical The geochemistry of waters is governed by the following behaviour of groundwater course of time while circulating in the hydrological cycle semi-arid climate with abundant water in monsoon and and streaming from recharge to discharge areas. Through scarcity of water in summer (iii) interchange among factors such as rock weathering, aquifer lithology, aquifers due to pressure differentials resulting from

The Niger Delta region of Nigeria is faced with a serious environmental hazard from heavy metal (HM) pollution in groundwater, mostly as a result of local oil corporations' operations within the communities and its suburbs.. Physical characteristics such as pH, and Ec, heavy metals (Fe, Pb, Mn, As, Ni, Co, Cu, Zn, and Cr) were measured in 17 groundwater samples that were collected. The influence of heavy metals on groundwater chemistry is revealed by the principal component analysis (PCA) analysis results. According to the child population's dermal techniques, findings showed that 6 % of samples with low risk, 41 % with medium risk, and 51 % with high risk. Yet, 29 % of adults are at medium risk and 71 % of adults pose insignificant to low risk. According to the evaluated Carcinogenic Risk (CR) scores of the groundwater samples that were considered in this study, there was a very high propensity to effect the development of cancer in consumers, including adults and children. The research area's Heacy Metal Pollution Index (HPI) ranges from 7.15 to 63.08 with an average value of 27.16 according to the HPI data. This suggests that there is generally safe water because the HPI throughout the research area is below 100. Fe was found to be positive in 12 (70.59%) samples (FET/01,02,03,07,08,10,11,12,14,15,16, and 17) and zero in 5 (29.41%) samples (FET/04/05/06/09,13) based on the results of the Quantification of Contamination (QoC).For Ni, 58.82% of samples (FET/01, 02, 03, 08, 09, 10, 11, 12, 14, and 16) had negative QoC scores, while seven (41.18%) samples (FET/04, 05, 06, 07, 13, 15, and 17) had positive QoC scores. These findings underscore the urgent need for continued groundwater monitoring and implementation of effective purification technologies before consumption to mitigate health risks associated with heavy metal contamination in the Niger Delta region.. The present investigation concluded that this location's groundwater needed to have its HM level measured

Keyword s: Contamination, Pollution, Standard, Analysis, Hydro-chemical

evaporation, cation exchange, quality of recharge water, uptake vegetation, atmospheric by becomes altered in due factors: (i) the geochemistry of rocks and soils (ii) the

continuous withdrawal (iv); contamination of ground _6°59'E. The research region is tropical, with two water by polluted surface water; (v) direct entry of sewage water into wells of poor design; and (vi) the extent of use of water. Rock or mineral composition is reflected by its elemental constituents in the form of major elements or trace elements (Karunanidhi et al., 2019). While non-detrimental non-detrital rocks like argillaceous and calcareous sedimentary rocks, chemical analysis is diagnostic value, in the case of detrimental detrital rocks of sedimentary origin, determination of grain size, fabric, roundness, and sphere shape of grains is used to decipher their genetic history (Subba Rao, 2018; Alomran et al. 2016). This may reflect the nature of the source material, conditions of transport and environmental conditions of deposition. Though the uniformity of chemical composition is expected over wide areas, because of the uniformity in the environmental conditions of deposition with low amplitude of fluctuation, the conditions are usually far from ideal and ever changing both in time and space affecting considerable change in the composition of different lithological units, either vertically or horizontally (Adams et al. 2001).

2. Location and accessibility

The research area is situated in Port Harcourt, River State, as indicated in Fig. 1a, it is physically positioned between latitudes 4°47'N-5°04'N and longitudes 6°41'N

distinct seasons namely the rainy and dry .. Orii et al. (2022) reported that the research area experiences 1000-2000 mm of rainfall on average. They also noted that the rainy season lasts from mid-April to early November, with July and October seeing the highest amounts of precipitation. The research region has a temperature range of 26 to 28 degrees Celsius, and its vegetation is primarily mangrove swamp forest, while human activities like farming, logging, and exploration have significantly changed it and frequently replaced it with grassland. The Tropical Continental Air Mass, also known as the North-East Trade winds, originate from Arabia-Eurasia with a high pressure belt and are associated with cloudy, dry, and dusty winds (Nwankwor et al., 2016). According to Edokpa and Nwagbara (2017), the coastal region of the Niger Delta experiences an average monthly wind speed pattern ranging from 0 to 3 m/s, with periods of lower and greater trend noted during the night and evening hours. The research region has mild topography, with an average elevation of roughly 18 meters above sea level, and few prominent hills rising over the surrounding terrain. After rain, flooding is frequently encouraged by the area's fop and low-relief features. Many streams with a dendritic drainage pattern cross the study area, and some of their tributaries discharge into the Atlantic Ocean.

Fig. 1: Topographic Map of the study area.

2.1. Geology and Hydrogeology

A large saline/brackish mangrove swamp belt separates the study region from the sea, particularly along the coast

(Oteri and Atolagbe, 2003). The saline mangrove swamp and its associated sandy islands and barrier ridges along the coast are the only places with salinity-related water supply difficulties. Short and Stauble (1967) divided the Niger Delta Formation into three groups: Akata, Agbada, and Benin (Fig. 1). In the 3. Methods and Materials delta, the Benin Formation is a system of several aquifers made up primarily of huge, extremely porous sands and gravels with thin shale/clay interbeds. Although numerous boreholes into the Benin Formation aquifers have been drilled with encouraging results, many of them have been abandoned because of excessive salinity (Oteri and Atolagbe, 2003). According to Weber and Daukoru (1976), the Benin Formation, which was created during the Niger Delta's continental period, has a sediment thickness of roughly 2100 m. According to Onyeagocha (1980), the Benin Formation is largely made up of sandstone, sands, and gravel, with clays appearing in lenses. Sands and sandstones are fine to coarse grained, partially unconsolidated, and of varying thickness. The Benin Formation is mostly made up of high-resilience fresh water-bearing continental sand and gravel with intercalations of clay and shale (Oteri 1990). In the Niger Delta Basin, which is made up of large, porous sands and gravels, there is a multi-aquifer system. In the HNO3. At a temperature of 4°C, the obtained samples unconfined

overlays sea water. In most confined aquifers within the to prevent evaporation (Singh et al. 2005; Sehgal et al. study region, fresh water is underlain by salt water. 2012). The samples were chemically analyzed using a With water-bearing sands in specific zones of the Niger spectrophotometer for heavy metals (Fe, Cu, Co, Br, Delta, saltwater intrusion into limited aquifers has Mn, Zn, Cr, Ni, and Pb (AAS). Even though the occurred. Salt water-bearing sands are then laid on top temperature of each sample was taken with a potable of these Oteri and Atolagbe (2003). The Niger Delta thermometer, the pH values were obtained using a also unconfined and confined aquifers. Freshwater lens float electrode accessories. All data collection and analysis above the salt water-bearing sands that are present in were done following APHA guidelines (1995, 2012). the unconfined aquifers of coastal beach ridges or sandy

islands within the saline mangrove belt (Oteri, 1990). Based on the depth of occurrence of saline water sands, the Benin Formation's confined aquifers were further divided into two major areas: areas where freshwater sands are encountered at shallow depths underlain by saline water sands, and areas where saline water sands encountered at shallow depths underlain are successively by freshwater sands and saline water sands (Oteri and Atolagbe, 2003).

A total of 17 water samples were collected systematically from various water sources across the study area (see Fig. 2). After the collection of the samples, they were stored in polypropylene beakers for examination. The sample beakers/containers to be utilized were well-cleansed and immersed in distilled water acidified with 1.0 ml of HNO3 for three (3) days before the field sampling exercise.. To obtain a representative sample that genuinely represents the water resources, borehole samples were collected after 5 - 10 min. of pumping. After rinsing the bottle with the aliquot, each sample was filtered into a sample bottle using disposable filters with a diameter of 0.45 m to ensure that all suspended pollutants were removed completely. To minimize the heavy metal (HM) precipitation, the samples were acidified in the field with 1.0 ml of conc. HNO3. To avoid sorption, new syringes were used in adding the three drops of were appropriately stored in ice-packed beakers that aquifer of the coastal beach ridges, a freshwater lens were tightly sealed. The temperature was kept constant salt water-bearing sands overlying fresh fast sequential (FS) (Varian 240 AA) atomic absorption experiences saltwater intrusion into both portable pH meter (WGS 84) with temperature

(1)

Fig. 2: Geology map of the study.

3.1. Metal Pollution Index (MPI)

The combined effect of individual heavy metals on water calculated with the following formula: quality was calculated by MPI (Horton, 1965; Eyankware and Akakuru, 2022), was evaluated using Caeiro et al. (2005) Equation 1:

$$MPI = \sqrt[n]{M_1 \times M_2 \times M_2} M_2 M_2$$

Where Mn = concentration of the metal.

3.2. Nemerow Pollution Index (NPI)

PNI (Nemerow 1974) is another numerical index that incorporates multiple factors into a single factor. The NPI value, on the other hand, represents the combined water quality level of various pollution parameters. In terms of empirical validity, using an integrated water quality index to evaluate an intrinsic groundwater risk assessment is preferable to merely examining the concentrations of one or two specific contaminants (Kowalska et al. 2018; Kong et al. 2019). NPI

(PI_{Nemerow}) pollution and takes into account the contents of all heavy

metals tested (Gong et al., 2008; Cheng, et al., 2007). It's

$$PI_{nemerow} = \sqrt{\frac{\left(\frac{1}{n}\sum_{i=1}^{n}PI\right)^2 PI_{max}^2}{n}}$$
(2)

where PI represents calculated Single Pollution Index values, PI max represents the highest value for the Single Pollution Index of all heavy metals, and "n" represents the number of heavy metals.

3.3. Modified Degree of Contamination (mC_d)

According to Eyankware and Akakuru, (2022) and Hakanson (1980) equation for determining the overall degree of contamination for a given sample or coring site is as follows: (i) The degree of contamination is defined as the sum of all contamination factors for a given set of estuarine pollutants divided by the number of analyzed pollutants; (ii) The mean concentration of a pollutant element is determined from at least three samples; and assesses the total degree of water (iii) The baseline concentrations are calculated using the modified formula. standard earth materials. Eqn. 3 is a

contamination using an extended process.

$$mC_d = \frac{\sum_{i=1}^{l=n} c_f^i}{n} \tag{3}$$

where n is the number of elements examined and denotes the contamination factor. The use of this broad

mC_d allows the and vague formula to determine the study to include as many metals as it wants with no upper restriction.

3.4. Quantification of contamination (QoC)

determine the source of a pollutant (geogenic or anthropogenic).

It was determined by the use of using equation 4

$$\frac{C_n - B_n}{C_n} x \frac{100}{1} \tag{4}$$

where QoC denotes the contamination index, Cn denotes

the metal concentration in the sample, and Bn denotes RfD stands for reference dose (mg/kg/day) for a given the background metal concentration.

3.5. Contamination factor (CF)

The CF was calculated using the Hakanson (1980) formula

$$CF = \frac{c_n}{B_n}$$
(5)

Where Cn represents the metal concentration and Bn hazard index (HI) of the water samples. represents the background/target value (Eyankware and Akakuru 2022).

The concentration configuration and dispersion trend in the area were modeled using Microsoft Excel and Surfer 12 software. The Statistical Package for Social Science (SPSS) version 23 was used to calculate Pearson's correlation coefficient.

3.6. Health risk assessment

The non-carcinogenic risk associated with drinking contaminated river water was calculated using the criteria of the US Environmental Protection Agency (USEPA, 1989). In equation 6 the risk was calculated non-carcinogenic risk.

modified equation for estimating the degree of using the following function for both children and adults.

$$CDI = \frac{CW X IRW X EF X ED}{BW X AT}$$
(6)

where CDI denotes Chronic Daily Intake or exposure dose (mg/kg/day), Cw denotes contaminant concentration in water (mg/L), IRW denotes ingestion rate (for adults, IRW is 2 L/day, while for children, IRW is 1 L/day), EF denotes Exposure Frequency (equivalent to 365 days/ year), ED denotes exposure duration (for adults and children, ED is 70 and 6 respectively QoC is a pollution assessment technique used to (Bortey-Sam et al., 2015; Duggal et al., 2017; Barzegar The non-carcinogenic risk posed by et al., 2018). various elements in equation 7 was evaluated using the hazard quotient (HQ), as defined by Li et al. (2016) and Zhang et al. (2018):

$$HQ = \frac{CDI}{RFD}$$
(7)

element. RfD for various elements is similar to 0.7 (Fe), 0.3 (Zn), 0.0001 (Hg), 0.03 (Co), and 0.0035 (Co), according to Duggal et al. (2017) and Barzegar et al. (2018). (Pb). Finally, using equation 7 the total HQ values for the elements is computed to determine the

$$HI = \Sigma HQ$$
 (8)

when HI and HQ values larger than 1 indicate that the given element's non-carcinogenic risk exceeds the limit of acceptance (HI = 1), while values less than 1 show that the non-carcinogenic risk is within acceptable limits (USEPA 1989; Su et al., 2017). As reported by Bortey-Sam et al. (2015), Barzegar et al. (2015), Table 1 illustrates the USEPA (1989) classification of

Anchor University Journal of Science and Technology, Volume 5 Issue 2

https://dx.doi.org/10.4314/aujst.v5i2.1

 Table 1: The United States Environmental Protection Agency (USEPA) classified non-carcinogenic risk in

 1989.

Risk Level	Hazard Index (HI)	Chronic risk
1	<0.1	Negligible
2	0.1-1	Low
3	1-4	Medium
4	>4	High

Table 2: Results of Heavy metals

Sam-	Ec	pН	Fe	Pb	Mn	As	Ni	Со	Cu	Zn	Cr
pling	(µs/		(mg/	(mg/	(mg/	(mg/	(mg/	(mg/	(mg/	(mg/	(mg/
Points/	cm)		L)	L)	L)	L)	L)	L)	L)	L)	L)
Code											
FET/01	464.2	6.2	1.002	BDL	0.090	BDL	0.012	0.011	0.002	0.021	0.002
FET/02	739.3	7.3	0.920	BDL	0.010	BDL	0.001	0.001	0.001	0.010	0.001
FET/03	189.3	7.1	0.422	BDL	0.030	BDL	0.027	0.001	0.011	1.382	0.022
FET/04	930.8	7.0	0.261	BDL	0.07	0.001	0.131	0.011	0.012	0.027	0.035
FET/05	742.1	7.2	0.0262	BDL	BDL	0.0001	0.272	0.012	0.001	0.811	0.026
FET/06	1092.1	7.4	0.0991	BDL	0.021	BDL	0.362	0.0001	BDL	1.223	0.011
FET/07	628.2	6.9	0.869	BDL	0.036	BDL	0.426	0.0010	0.037	0.021	0.002
FET/08	829.0	6.9	1.021	BDL	0.001	BDL	0.001	0.0001	0.003	0.532	0.010
FET/09	378.2	7.1	0.179	BDL	BDL	0.0010	0.029	0.001	0.001	0.202	0.020
FET/10	893.1	7.6	0.826	BDL	0.002	BDL	0.005	0.001	0.002	1.028	0.032
FET/12	749.4	6.9	1.087	BDL	0.012	BDL	0.012	0.0001	0.100	1.292	0.002
FET/13	682.3	7.0	1.002	BDL	BDL	BDL	0.016	0.001	0.001	0.827	0.011
FET/14	900.7	7.2	0.254	BDL	BDL	0.001	0.183	0.0001	0.001	BDL	0.003
FET/15	739.2	7.4	0.823	BDL	0.001	0.001	0.019	0.0012	0.011	0.101	0.037
FET/16	469.2	7.1	1.002	BDL	BDL	0.005	0.102	0.0001	0.001	0.272	0.012
FET/17	207.2	6.9	0.918	BDL	0.011	0.001	0.063	0.001	0.010	0.138	0.036
FET/18	330.2	6.8	0.715	BDL	0.002	0.001	0.109	0.001	0.002	0.321	0.003
Min.	189.3	6.2	0.02		0.001	0.0001	0.0001	0.001	0.001	0.01	0.001
Max.	1092.1	7.6	1.087		0.09	0.005	0.426	0.1	0.1	1.382	0.037
Aver.	644.52	7.04	0.65		0.02	0.0001	0.115	0.0029	0.0165	0.53	0.015
						62					9

4. Results and Discussions

The result for the measured heavy metals are shown in Table 2. The Health Risk Assessment considers two routes of human contamination by chemical substances. Equation. 6-8 shows the calculation of the dose for the exposure pathways used for human health risk assessment. These equations were taken from the U.S.

EPA (2018) guidelines. The parameters used in these calculations were obtained from (USEPA, 2018). It is well known that the physicochemical properties of chemicals and the duration of exposure determine how severe their effects are (Egbueri, et al., 2020a). Chemical exposure are both carcinogenic and non-carcinogenic effects, which are handled differently when calculating

carcinogenic consequences, which are random in nature. determine, and Pb, which was not detectable in any of Once a dosage threshold is exceeded, the non- the samples based on the analytical results, all of the carcinogenic effects start to manifest. The non- assessed contaminants were used for the evaluation carcinogenic hazard carcinogenic risk (CR) are determined from Equation 8.

4.1. Non-carcinogenic risk assessment.

4.1.1. Hazard Quotient due to dermal contact.

Table 3: HQ for dermal in children population

risk. No safe dosage threshold exists for the Except for Fe, whose RfD the authors were unable to quotient (HQ) and the potential of non-carcinogenic risk assessment for both ingestion and dermal contact exposure routes. This assessment was completed for the adult and children groups. The findings of this study are presented in Tables 3 and 4.

	Non-Carci	nogenic						Carcinogenic		
HQder	As	Co	Cu	Zn	Cr	Ni	Мп	AS	Cr	NI
m										
FET/D	0	0.01119	0.002713	0.005697	0.542527	0.036168	0.796099	0	0.002517	0.000302
	0	0.001017	0.000000	0 000700	0.07/000	0.0000//	0.000/55	п	0.00000	
7E1/U 2	U	U.UUIUI/	0.001356	U.UUZ /I3	U.Z /IZb3	0.003014	U.U88455	U	0.001259	2.325-03
FET/D 3	0	0.001017	0.014919	0.374886	5.967793	0.081379	0.265366	0	0.027688	0.00068
FET/D 4	0.13232 4	0.01119	0.016276	0.007324	9.494216	0.394839	0.619188	4.49E-05	0.04405	0.003297
FET/D 5	0.01323 7	0.012207	0.001356	0.219995	7.052846	0.819818	0	4.49E-06	0.032723	0.006847
FET/D 6	0	0.000102	0	0.331755	2.983896	1.091081	0.185756	0	0.013844	0.009112
FET/D 7	0	0.001017	0.050184	0.005697	0.542527	1.28398	0.31844	0	0.002517	0.010723
FET/D 8	0	0.000102	0.004069	0.144312	2.712633	0.003014	0.008846	0	0.012586	2.52E-05
FET/D 9	0.13232 4	0.001017	0.001356	0.054795	5.425266	0.087407	0	4.49E-05	0.025171	0.00073
FET/1 D	0	0.001017	0.002713	0.278859	8.680426	0.01507	0.017691	0	0.040274	0.000126
FET/11	0	0.000102	0.135632	0.350472	0.542527	0.036168	0.106147	0	0.002517	0.000302
FET/1 2	0	0.001017	0.001356	0.224335	2.983896	0.048225	0	0	0.013844	0.000403
FET/1 3	0.13232 4	0.000102	0.001356	0	0.81379	0.551569	0	4.49E-05	0.003776	0.004606
FET/1 4	0.13232 4	0.001221	0.014919	0.027398	10.03674	0.057267	0.008846	4.49E-05	0.046567	0.000478
FET/1 5	0.66161 8	0.000102	0.001356	0.073784	3.25516	0.307432	0	0.000225	0.015103	0.002567
FET/1 B	0.13232 4	0.001017	0.013563	0.037434	9.765479	0.189884	0.097301	4.49E-05	0.045308	0.001586
FET/1 7	0.13232	0.001017	0.002713	0.087076	0.81379	0.32853	0.017691	4.49E-05	0.003776	0.002744
Min.	0	0.000102	0	0	0.271263	0.003014	0.0		0.001259	0.0000252
Мах.	0.66162	0.012207	0.135632	0.374886	10.03674	1.28398	0.796099	0.000225	0.046567	0.010723
Aver- age.	0.0864	0.002615	0.015637	0.130972	4.228516	0.313814	0.148813	2.93465E- 05	0.019619	0.0026208

	Non-Carcin	ogenic						Carcinogenic		
HQ _{DERM}	As	Со	Cu	Zn	Cr	Ni	Mn	As	Cr	Ni
FET/01	BDL	0.017976	0.015345	0.002859	0.092456	0.184626	0.164983	0	0.002537	0.000302
FET/02	BDL	0.001634	0.007673	0.001361	0.046228	0.015386	0.018331	0	0.001259	2.52E-05
FET/03	BDL	0.001634	0.084399	0.188125	1.017011	0.415409	0.054994	0	0.027704	0.00068
FET/04	0.317335	0.017976	0.092072	0.003675	1.617972	2.015505	0.12832	5.29E-05	0.044075	0.003297
FET/05	0.031734	0.01961	0.007673	0.110397	1.201922	4.184865	BDL	5.29E-06	0.032741	0.006847
FET/06	BDL	0.000163	BDL	0.166481	0.508506	5.569563	0.038496	0	0.013852	0.009112
FET/07	BDL	0.001634	0.283887	0.002859	0.092456	6.554238	0.065993	0	0.002519	0.010723
FET/08	BDL	0.000163	0.023018	0.072419	0.462278	0.015386	0.001833	0	0.012593	2.52E-05
FET/09	0.317335	0.001634	0.007673	0.027497	0.924556	0.44618	BDL	5.29E-05	0.025186	0.00073
FET/10	BDL	0.001634	0.015345	0.139937	1.479289	0.076928	0.003666	0	0.040297	0.000126
FET/11	BDL	0.000163	0.767263	0.175874	0.092456	0.184626	0.021998	0	0.002519	0.000302
FET/12	BDL	0.001634	0.007673	0.112575	0.508506	0.246169	BDL	0	0.013852	0.000403
FET/14	0.317335	0.000163	0.007673	BDL	0.138683	2.815553	BDL	5.29E-05	0.003778	0.004606
FET/15	0.317335	0.001961	0.084399	0.013749	1.710428	0.292325	0.001833	5.29E-05	0.046593	0.000478
FET/16	1.586676	0.000163	0.007673	0.037026	0.554733	1.569325	BDL	0.000265	0.015111	0.002567
FET/17	0.317335	0.001634	0.076726	0.018785	1.6642	0.969289	0.020165	5.29E-05	0.045334	0.001586
FET/18	0.317335	0.001634	0.015345	0.043696	0.138683	1.677023	0.003666	5.29E-05	0.003778	0.002744

Table 4: HQ for dermal in Adults population

HQ to not pose a risk immediately to the population. 1; HI < 0.1), low risk (risk level 2; HI \ge 0.1<1), medium Nonetheless, the assessed HQ scores indicate the risk (risk level 3; HI \geq 1<4), and high risk (risk level 4; following pollutants' order of impact for both adults and HI > 4) for the purpose easy evaluation of the potential children based on the Ni>Mn>Zn>As>Cu>Co>Cr.(Table 1). Only pollutants, however, were shown to have a stronger for the children population as shown in Table 5.6% of influence on the water samples' chronic risk status (Cr the total samples pose low risk, 41 % pose medium risk and Ni) with HQ > 1. Pollutants, such Mn, Zn, Co, As, while high risk. On the other hand, for the adult and Cu, were seen to have HQ <1. table 1. reveals that 64.7% of the entire sample population had HQ>1 for chromium (Cr) and 18% for nickel.

4.1.2. Health Hazard Index (HI) due to dermal contact.

The study uses the health hazard index (HI) to determine the combined effects of the different HQs. HI is the sum of more than one hazard quotient that reflects the cumulative impact of the pollutants on the water

A level of exposure below RfD (HQ<1) is judged by the samples. It can be categorized as insignificant (risk level dermal route: risk hazard(US-EPA 2018; Mgbenu and Egbueri, two 2019;Egbueri, et al.,2020a). Based on the dermal routes population, 71 % pose negligible to low risk while 29 % pose medium risk as shown in Table 6. However, the evaluation based on the ingestion route for the children population, reveals that 30 % of the total samples pose negligible to medium risk, 41 % pose a medium risk and 29 % pose a high risk. On the other hand, 41 % pose negligible to low risk, 41 % pose medium risk and 18 % pose high risk to the adult population.

HQing	As	Со	Cu	Zn	Cr	Ni	Mn
FET/01	0	0.027425	0.024932	0.00349	0.033242	0.299178	0.097558
FET/02	0	0.002493	0.012466	0.001662	0.016621	0.024932	0.01084
FET/03	0	0.002493	0.137123	0.229702	0.365662	0.673151	0.032519
FET/04	0.49863	0.027425	0.149589	0.004488	0.581735	3.266027	0.075878
FET/05	0.049863	0.029918	0.012466	0.134796	0.432146	6.78137	0
FET/06	0	0.000249	0	0.203275	0.182831	9.025205	0.022764
FET/07	0	0.002493	0.461233	0.00349	0.033242	10.62082	0.039023
FET/08	0	0.000249	0.037397	0.088424	0.16621	0.024932	0.001084
FET/09	0.49863	0.002493	0.012466	0.033574	0.33242	0.723014	0
FET/10	0	0.002493	0.024932	0.170864	0.531872	0.124658	0.002168
FET/11	0	0.000249	1.246575	0.214743	0.033242	0.299178	0.013008
FET/12	0	0.002493	0.012466	0.137456	0.182831	0.398904	0
FET/13	0.49863	0.000249	0.012466	0	0.049863	4.562466	0
FET/14	0.49863	0.002992	0.137123	0.016787	0.614977	0.473699	0.001084
FET/15	2.493151	0.000249	0.012466	0.045209	0.199452	2.543014	0
FET/16	0.49863	0.002493	0.124658	0.022937	0.598356	1.570685	0.011924
FET/17	0.49863	0.002493	0.024932	0.053353	0.049863	2.717534	0.002168

Table 5: HQ for Ingestion Route in the Children population

Table 6: HQ for Ingestion Routes in Adults population

	Non- Carc	inogenic						Carcinogenic		
HQing	As	Co	Cu	Zn	Cr	Ni	Mn	AS	Cr	NI
FET/01	0	0.016481	0.014983	0.002098	0.019977	0.179795	0.058629	0	0.002517	0.000302
FET/02	0	0.001498	0.007491	0.000999	0.009989	0.014983	0.006514	0	0.001259	2.52E-05
FET/03	0	0.001498	0.082406	0.138042	0.219749	0.404538	0.019543	0	0.027688	0.00068
FET/04	0.299658	0.016481	0.089897	0.002697	0.3496	1.962757	0.0456	4.49E-05	0.04405	0.003297
FET/05	0.029966	0.017979	0.007491	0.081007	0.259703	4.075342	0	4.49E-06	0.032723	0.006847
FET/06	0	0.00015	0	0.12216	0.109874	5.423801	0.01368	0	0.013844	0.009112
FET/07	0	0.001498	0.277183	0.002098	0.019977	6.382705	0.023451	0	0.002517	0.010723
FET/08	0	0.00015	0.022474	0.053139	0.099886	0.014983	0.000651	0	0.012586	2.52E-05
FET/09	0.299658	0.001498	0.007491	0.020177	0.199772	0.434503	0	4.49E-05	0.025171	0.00073
FET/10	0	0.001498	0.014983	0.102683	0.319635	0.074914	0.001303	0	0.040274	0.000126
FET/11	0	0.00015	0.749144	0.129053	0.019977	0.179795	0.007817	0	0.002517	0.000302
FET/12	0	0.001498	0.007491	0.082606	0.109874	0.239726	0	0	0.013844	0.000403
FET/13	0.299658	0.00015	0.007491	0	0.029966	2.741866	0	4.49E-05	0.003776	0.004606
FET/14	0.299658	0.001798	0.082406	0.010088	0.369578	0.284675	0.000651	4.49E-05	0.046567	0.000478
FET/15	1.498288	0.00015	0.007491	0.027169	0.119863	1.528253	0	0.000225	0.015103	0.002567
FET/16	0.299658	0.001498	0.074914	0.013784	0.359589	0.943921	0.007166	4.49E-05	0.045308	0.001586
FET/17	0.299658	0.001498	0.014983	0.032063	0.029966	1.633134	0.001303	4.49E-05	0.003776	0.002744

Osisanya *et al*

The information provided by the evaluated HI indicates and southeastern part of the study areas. Findings from while very low values were found at the northeastern Port Harcourt, River State Nigeria.

that the water samples present a greater threat to Fig. 3b showed HI (adult) increase towards the the children population due to ingestion. Results from southwestern parts of the study area, while low value Fig. 3a revealed that HI (child) values increase towards was observed around the selected parts of northeastern the to northwestern and southwestern parts, extremely and southeastern parts of the study area, this is in line high values were found to be around PPMC oil company with study conducted by Eyankware, et al., (2023) in

4.1.3. Carcinogenic Risk due to dermal contact.

Additionally, an assessment of the carcinogenic risk population is at insignificant to low risk, 41 % is at (CR) associated with dermal exposure to water was medium risk, and 18 % is at high risk. The data from conducted for both adults and children. The cumulative the assessed HI indicates that the water presents a risk of developing cancer throughout a lifetime as a greater danger to youngsters because of ingesting result of drinking water contaminated with carcinogens contact with the toxins. However, to further evaluate was calculated using the CR evaluation (Egbueri the combined risk posed by the water to the entire 2020a). benchmark indicates that, on average, roughly, 1 in based on the exposure pathways evaluated. Deductions 1,000,000 individuals (consumers) will probably from Fig. 4a suggested that CR (child) values increase acquire cancer as a result of exposure to a carcinogen towards to northwestern, and (US-EPA 2018; Mgbenu and Egbueri, 2019; Egbueri, et southeastern and northeastern (Okirika, PPMC oil al.,2020a). The findings of this study demonstrated that company, and Okochiri) of the study area. Deductions the majority of the carcinogens (As, Cr, and Ni) from Fig. 4b suggested that CR (adult) values increase examined were higher than the threshold of $< 1 \times 10-6$. towards to northwestern, and All consideration in this study showed a very high company, and Okochiri) of the study area. Aggregate propensity to affect the development of cancer in risk refers to the overall impact of the HI for several consumers, including children and adults, based on the exposure paths. The total health risk associated with the evaluated CR scores of the samples (Table 7).

4.1.4. Ingestion route

based on the ingestion route shows that 29 % pose high population of adults as well as children. danger, 41 % post medium risk, and 30 % pose minimal

to medium risk. Conversely, 41% of the adult The acceptable CR value is $\leq 1 \times 10^{-6}$ population, the study evaluated the aggregated risk selected parts selected parts of the groundwater samples taken into southeastern and northeastern (Okirika, PPMC oil pollutants in the water that were examined was determined by adding up the two exposure routes, as However, the assessment of the children's population indicated in Table 8. This was calculated for the

Non-Carcinoger	nic risk assessm	ent			Carcinogenic risk assessment				
	HI(child)	HI(adult)	HI(child)	HI(adult)	ΣCR(child)	ΣCR(adult)	ΣC(child)	ΣCR(adult)	
FET/01	1.394393	0.186283	0.485825	0.291962	3.29E-05	1.98E-05	0.004691	0.002819	
FET/02	0.367819	0.049138	0.069013	0.041474	5.37E-06	7.18E-07	0.002136	0.001284	
FET/03	6.705361	0.895797	1.440651	0.865776	0.000118	1.58E-05	0.047204	0.028368	
FET/04	10.67536	1.426165	4.603773	2.76669	0.000248	3.31E-05	0.07886	0.047392	
FET/05	8.119454	1.084712	7.440559	4.47149	0.000146	1.95E-05	0.065851	0.039574	
FET/06	4.592591	0.613543	9.434324	5.669666	5.91E-05	7.89E-06	0.038199	0.022956	
FET/07	2.201843	0.294153	11.1603	6.706913	1.07E-05	1.44E-06	0.022031	0.01324	
FET/08	2.872976	0.383813	0.318296	0.191284	5.37E-05	7.18E-06	0.020984	0.012611	
FET/09	5.702166	0.761776	1.602597	0.963099	0.000167	2.23E-05	0.043174	0.025946	
FET/10	8.995776	1.201783	0.856986	0.515016	0.000172	2.3E-05	0.067225	0.0404	
FET/11	1.171047	0.156445	1.806996	1.085935	1.07E-05	1.44E-06	0.004691	0.002819	
FET/12	3.258829	0.435361	0.73415	0.441196	5.91E-05	7.89E-06	0.023707	0.014247	
FET/13	1.49914	0.200276	5.123674	3.079131	7.57E-05	1.01E-05	0.014022	0.008427	
FET/14	10.27872	1.373177	1.745292	1.048853	0.000258	3.45E-05	0.078358	0.04709	
FET/15	4.299451	0.574382	5.293541	3.181214	0.000362	4.84E-05	0.029777	0.017895	
FET/16	10.237	1.367604	2.829683	1.70053	0.000253	3.38E-05	0.078106	0.046939	
FET/17	1.38314	0.184779	3.348973	2.012604	7.57E-05	1.01E-05	0.010923	0.006564	

Table 7: Health Index assessment and Carcinogenic Risk assessment

Figs. 4: Spatial distribution (a) Carcinogenic Risk (Child) and (b) Carcinogenic Risk (Adult)

The findings demonstrated that a number of the health risk assessment for the adult population revealed pollutants provide serious combined risks to adult and that just 24 % of it posed a minimal risk. children populations' health. For non-carcinogens, their Overall, the adult population's scores were lower, average values were higher than the limit of 1, while for suggesting that children are more susceptible to health HQ average ratings, the combined non-carcinogenic risk non-cancerous ones. This findings is synonymous with assessment for children reveals that just 6 % of the total the observation from the study carried out by Egbueri, samples had a minimal effect (Table 8). However, the et al. (2020a) on evaluation of the Groundwater Quality Additionally, the location's overall non-carcinogenic carcinogenic and non-carcinogenic threat.

carcinogens, it was greater than 1×10^{-6} . Based on their hazards that might cause cancer as well as total carcinogenic health risk for children indicated that of the Ameka Region of Southeast Nigeria and find out there is a carcinogenic risk present in every sample. that the children population are more vulnerable to both

Table 8: Health Index Aggregate for the children and Adults population.

Locations	Non-Carcinog	enic risk as-	Carcinogenic risk assessment		
	sessment				
	$HI_{agg}(child)$	$HI_{agg}(adult)$	CR _{agg} (child)	$CR_{agg}(adult)$	
FET/01	1.880217	0.478245	0.004724	0.002839	
FET/02	0.436832	0.090613	0.002142	0.001284	
FET/03	8.146012	1.761573	0.047322	0.028384	
FET/04	15.27913	4.192856	0.079108	0.047425	
FET/05	15.56001	5.556202	0.065996	0.039593	
FET/06	14.02692	6.283209	0.038258	0.022964	
FET/07	13.36215	7.001067	0.022042	0.013242	
FET/08	3.191271	0.575096	0.021038	0.012618	
FET/09	7.304763	1.724875	0.043341	0.025968	
FET/10	9.852762	1.716799	0.067397	0.040423	
FET/11	2.978043	1.24238	0.004702	0.002821	
FET/12	3.992979	0.876556	0.023766	0.014255	
FET/13	6.622814	3.279407	0.014098	0.008437	
FET/14	12.02401	2.42203	0.078616	0.047124	
FET/15	9.592992	3.755596	0.030139	0.017943	
FET/16	13.06669	3.068134	0.078359	0.046973	
FET/17	4.732113	2.197384	0.010999	0.006574	

4.2. Heavy metal indexes 4.2.1. Contamination factor (CF)

The contamination factor is a single pollution index method that evaluates the contribution of individual contaminants to the overall water quality. Cf < 1, Low contamination; $1 \leq CF \geq 2$, Moderate contamination, 3 < CF > 6. Significant Contamination and CF > 6. Verv High Contamination (Bhutiani et al., 2017). Table 9 reveals the entire samples shows low contamination for Mn, As, Co, Cu, Zn and Cr. Meanwhile about 29.4% of the entire samples has CF value less than unity indicating low contamination for Fe, while 29.4 % and 41.2 % (FET/03, 7, 10, 15,18 and FET/01, 02, 08, 12, 13, 16, 17) indicate moderate and significant contamination. 35 % of the sample population (FET/03,4,7,13,,16,17) reveals moderate contamination for Ni, while 12 % (FET/05, and 06) and 6 % (FET/07)

fell within the significant and very high contamination categories. The cumulative effect of the contaminants on the water was evaluated using modified contamination index. MCd give the overview of the water quality. Mcd \leq 1.5, Nil to very low; 1.5 \leq MCd < 2 low; 2 \leq Cd <4, moderate; $4 \le Mcd < 8$, High; $8 \le Mcd < 16$, Very high; $16 \leq Mcd < 32$, Extremely High; ≥ 32 , Ultra High (Vineethkumar et al., 2020). The evaluated MCd in Table 8 reveals that 100 % of the samples has MCd \leq 1.5, indicating Nil to low contamination. Observations from Mcd (Fig. 5a) showed that the value of Mcd increases towards the southwestern parts of the study area. Extreme low values of Mcd were noticeable towards the northeastern, and selected parts of southeastern parts of the study area.

https://dx.doi.org/10.4314/aujst.v5i2.1

CF	Fe	Mn	As	Ni	Со	Cu	Zn	Cr	MCd
FET/0 1	3.34	0.225	N/A	0.171429	0.157143	0.001	0.0042	0.04	0.562682
FET/0 2	3.066667	0.025	N/A	0.014286	0.014286	0.0005	0.002	0.02	0.448963
FET/0	1.406667	0.075	N/A	0.385714	0.014286	0.0055	0.2764	0.44	0.371938
FET/0	0.87	0.175	0.1	1.871429	0.157143	0.006	0.0054	0.7	0.485621
FET/0	0.087333	N/A	0.01	3.885714	0.171429	0.0005	0.1622	0.52	0.691025
5 FET/0	0.330333	0.0525	N/A	5.171429	0.001429	N/A	0.2446	0.22	1.003382
FET/0	2.896667	0.09	N/A	6.085714	0.014286	0.0185	0.0042	0.04	1.307052
FET/0	3.403333	0.0025	N/A	0.014286	0.001429	0.0015	0.1064	0.2	0.532778
o FET/0	0.596667	N/A	0.1	0.414286	0.014286	0.0005	0.0404	0.4	0.223734
FET/1	2.753333	0.005	N/A	0.071429	0.014286	0.001	0.2056	0.64	0.527235
FET/1	3.623333	0.03	N/A	0.171429	0.001429	0.05	0.2584	0.04	0.59637
FET/1	3.34	N/A	N/A	0.228571	0.014286	0.0005	0.1654	0.22	0.66146
FET/1	0.846667	N/A	0.1	2.614286	0.001429	0.0005	N/A	0.06	0.603813
J FET/1	2.743333	0.0025	0.1	0.271429	0.017143	0.0055	0.0202	0.74	0.487513
4 FET/1	3.34	N/A	0.5	1.457143	0.001429	0.0005	0.0544	0.24	0.799067
5 FET/1	3.06	0.0275	0.1	0.9	0.014286	0.005	0.0276	0.72	0.606798
6 FET/1 7	2.383333	0.005	0.1	1.557143	0.014286	0.001	0.0642	0.06	0.52312

Table 9: Contamination factor and modified degree of contamination

Fig.5 (a). Spatial Distribution of modified contamination index Fig.5 (b). Spatial Distribution of heavy metal pollution index (HPI)

4.2.2. Heavy metal pollution index (HPI)

understanding on the quality state of the water. The summarizes the overall effect of the heavy metals to the results from the quality rating evaluations (Table 10) reveal that 70.5 % of the total samples has quality ratings above 100 for Iron, this include FET/01, 02, 03, 63.076 with an average value of 27.164. This implies 07, 08, 10, 11, 12, 14, 15, 16 and 17 where the percent-% - 92 %. Meanwhile 47 % of the entire samples has the MCd's observations. The MCd, like the Cf, rates the quality rating greater than 100 for Nickel this include overall level of water quality in classes, whereas HPI FET 04, 05/06/07/13, 15 and 17, having percentage provides a comprehensive evaluation of the water. contribution ranging from 23 % to 92 %. This findings Figure 5b shows that HPI values increase towards the compliment the observation from CF, nevertheless both PPMC oil company Okirika and Okochiri axis of the the Cf and qi reveals that approximately 71 % of the study area. Low HPI values were particularly noticeable entire samples are contaminated with Fe. It is therefore in Nest oil and Abuloma areas. important to understand that while qi gives individual

evaluation of each elements, the CF rate the degree of HPI method was further utilized to gain better contamination of each element. However, the HPI water. The results obtained from the HPI has shown that the HPI across the study area ranges from 7.152 to that the HPI across the study area is generally below age contribution of iron to the total HPI varies from 12 100, which implies safe water. This is consistent with

Table 10: Quality ratings and heavy metal pollution index

Qi	Fe	Mn	As	Ni	Со	cu	zn	Cr	HPI=∑Wi*Qi/ Wi
FET/ 01	334.0	22.5	0	17.1	15.7	0.1	0.42	4	11.084
FET/	306.7	2.5	0	1.4	1.4	0.1	0.2	2	7.152
FET/	140.7	7.5	0	38.6	1.4	0.6	27.64	44	12.539
FET/	87.0	17.5	10	187.1	15.7	0.6	0.54	70	36.312
FET/	8.7	0	1	388.6	17.1	0.1	16.22	52	44.926
65 FET/ 06	33.0	5.25	0	517.1	0.1	0.0	24.46	22	51.307
60 FET/ 07	289.7	9	0	608.6	1.4	1.9	0.42	4	63.076
FET/	340.3	0.25	0	1.4	0.1	0.2	10.64	20	10.056
FET/	59.7	0	10	41.4	1.4	0.1	4.04	40	16.840
FET/	275.3	0.5	0	7.1	1.4	0.1	20.56	64	14.994
FET/	362.3	3	0	17.1	0.1	5.0	25.84	4	9.993
FET/	334.0	0	0	22.9	1.4	0.1	16.54	22	12.273
FET/	84.7	0	10	261.4	0.1	0.1	0	6	33.132
FET/	274.3	0.25	10	27.1	1.7	0.6	2.02	74	24.551
FET/	334.0	0	50	145.7	0.1	0.1	5.44	24	55.950
FET/	306.0	2.75	10	90.0	1.4	0.5	2.76	72	30.778
FET/ 17	238.3	0.5	10	155.7	1.4	0.1	6.42	6	26.833

in the study area, it was necessary to also utilize the were positive in 7 (41.18 %) samples which are QoC model for heavy metal source analysis. Therefore, FET/04, 05, 06, 07, 13, 15 and 17) and negative in the QoC model was introduced in this study to verify 58.82the source apportionment. Obtained QoC values for each analyzed heavy metal are presented in Table 10. Traditionally. positive OoC values indicate anthropogenic influence while negative QoC values indicate geogenic influence (Bhutiani et al.,2017; Egbueri, et al., 2020). In regards to this, the QoC values for Mn, As, Co, Cu, Zn, and Cr were all negative indicating a geogenic source. However, Fe was positive in 12 (70.59 %) samples , negative in 5 (29.41

Since heavy metals were seen as the major pollutants %) samples (FET/04/05/06/09,13). QoC scores for Ni % of samples including (FET/01,02,03,08,09,10,11,12,14, and 16) as shown in Table 11. This finding is synonymous with the finding of (Egbueri, et al., 2020) who used Quantification of contamination (QoC) successfully in demarcating the proportions of contribution by geogenic and anthropogenic activities in the pollution of drinking water sources in Ojoto area, South Eastern Nigeria. Elsewhere in Niger Delta of Nigeria, Izah et al., (2017) also successfully evaluated the anthropogenic influence of contaminants in soil from cassava processing mill.

Table 11: QoC for each heavy metal analyzed in this study

Sampling	Fe	Mn	As	Ni	Co	Cu	Zn	Cr
FET/01	70.06	-344.4	BDL	-483.3	-536.4	-99900.0	-23709.5	-2400.0
FET/02	67.39	-3900.0	BDL	-6900.0	-6900.0	-199900.0	-49900.0	-4900.0
FET/03	28.91	-1233.3	BDL	-159.3	-6900.0	-18081.8	-261.8	-127.3
FET/04	-14.94	-471.4	-900	46.6	-536.4	-16566.7	-18418.5	-42.9
FET/05	-1045.04	BDL	-9900	74.3	-483.3	-199900.0	-516.5	-92.3
FET/06	-202.72	-1804.8	BDL	80.7	-69900.0	BDL	-308.8	-354.5
FET/07	65.48	-1011.1	BDL	83.6	-6900.0	-5305.4	-23709.5	-2400.0
FET/08	70.62	-39900.0	BDL	-6900.0	-69900.0	-66566.7	-839.8	-400.0
FET/09	-67.60	BDL	-900	-141.4	-6900.0	-199900.0	-2375.2	-150.0
FET/10	63.68	-19900.0	BDL	-1300.0	-6900.0	-99900.0	-386.4	-56.3
FET/12	72.40	-3233.3	BDL	-483.3	-69900.0	-1900.0	-287.0	-2400.0
FET/13	70.06	BDL	BDL	-337.5	-6900.0	-199900.0	-504.6	-354.5
FET/14	-18.11	BDL	-900	61.7	-69900.0	-199900.0	BDL	-1566.7
FET/15	63.55	-39900.0	-900	-268.4	-5733.3	-18081.8	-4850.5	-35.1
FET/16	70.06	BDL	-100	31.4	-69900.0	-199900.0	-1738.2	-316.7
FET/17	67.32	-3536.4	-900	-11.1	-6900.0	-19900.0	-3523.2	-38.9
FET/18	58.04	-19900.0	-900	35.8	-6900.0	-99900.0	-1457.6	-1566.7

4.3. Correlation Matrix, Component Analysis and underlying patterns within the datasets retaining most **Source Attribution** of the variance.

4.3.1. Correlation Matrix

The degree of the linear relationships between every pair of variables is displayed in the correlation matrix. This study used the Pearson correlation coefficient to quantify the strength of the relationships between the variables (Table 12). Principal Component Analysis (PCA) in Table 13, was utilized alongside the correlation matrix to identify the most significant

4.3.2. Component Analysis and Source Attribution

Component 1 accounts for 25.22% of the variance and has high factor loadings for Mn and Co (0.911 and 0.850). This suggests that Mn and Co originate from the same source. This observation is supported by the positive correlation coefficient between Mn and Co (r = 0.395), as shown in Table 12.

		Fe	Mn	As	Ni	Со	Cu	Zn	Cr
	Fe	??	.495	.356	.426	.107	.106	.322	.149
	Mn	.495	??	.222	.359	.003	.395	.203	.415
	As	.356	.222	??	.450	.295	.245	.106	.365
Sig (1 tailed)	Ni	.426	.359	.450		.326	.096	.461	.273
Sig. (1-tailed)	Co	.107	.003	.295	.326		.282	.232	.180
	Cu	.106	.395	.245	.096	.282		.118	.194
	Zn	.322	.203	.106	.461	.232	.118	??	.431
	Cr	.149	.415	.365	.273	.180	.194	.431	??

Table 12: Correlation Matrix of the data set

Table 13: Principal Component Aanlysis

Rotated Component Matrix ^a				
	Component			
	1	2	3	4
Fe	079	.806	094	.442
Mn	.911	018	.018	.148
As	295	.070	730	059
Ni	.064	881	025	.578
Co	.850	171	017	292
Cu	003	.240	.536	.521
Zn	327	058	.819	121
Cr	.049	.077	.031	876

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 6 iterations.

inants (QoC) results, which reflect geogenic sources of (0.578, 0.442, and 0.521). This suggests a possible origin. Component 2 explains 19.66% of the total common source for these elements. However, the QoC variance with a high factor loading for Fe (0.806) and a findings contradict this, showing that Ni and Cu may low factor loading for Cu (0.240). Despite this, the not share the same origin. This is supported by the cor-Pearson correlation matrix (Table 13) reveals a very relation coefficient between Ni and Cu (r = 0.096). The weak correlation between Fe and Cu (r = 0.106), which correlation coefficient between Ni and Fe (r = 0.426) could be attributed to dilution effects. This observation further indicates that anthropogenic activities are likely is in agreement with the QoC findings. Component 3 the major sources of Ni and Fe in the groundwater, as accounts for 18.11% of the variance and shows high reflected in the QoC results. The use of the Pearson factor loadings for Cu and Zn (0.536 and 0.819). This correlation matrix, in conjunction with QoC, to indicates that Cu and Zn are derived from similar delineate sources of contaminants has also been sources. However, the QoC data confirm geogenic demonstrated in the assessment of metal contamination sources of these contaminants. This is supported by the risk in sediments of the Hara Biosphere Reserve, weak and positive correlation between Cu and Zn (r = southern Iran, by Zarei (2014). 0.118). Component 4 explains 14.82% of the total

The findings are consistent with the Quality of Contam- variance with high factor loadings for Ni, Fe, and Cu

5. Conclusion

environmental hazards due to heavy metal pollution in wastewater groundwater, largely attributed to the operations of American Public Health Association (APHA). (2012). local oil corporations. This study assessed the Standards methods for the examination of water and contamination levels of various heavy metals, including wastewater (22nd ed., p. 1360). American Public Fe, Pb, Mn, As, Ni, Co, Cu, Zn, and Cr, across 17 Health groundwater samples. The principal component analysis (PCA) revealed substantial correlations among the measured traits, indicating that both saline water and heavy metal contamination intrusion are influencing groundwater chemistry. The Carcinogenic Risk (CR) scores highlighted a very high potential for cancer development due to groundwater consumption, affecting both children and adults. Specifically, the study found that 6% of samples posed a low risk, 41% a medium risk, and 51% a high risk for children, while 29% of samples posed a medium risk and 71% a low to insignificant risk for adults. The Heavy Metal Pollution Index (HPI) ranged from 7.15 to 63.08, with an average of 27.16, suggesting generally safe water with respect to HPI values below 100. However, the presence of Fe and Ni at varying levels-70.59% of samples testing positive for Fe and 41.18% for Ni-points to significant anthropogenic contributions to contamination. Given these findings, there is an urgent need for ongoing groundwater monitoring and the implementation of effective purification technologies to mitigate health risks. The study underscores the critical need for continuous evaluation and management of heavy metal levels in groundwater to protect public health, particularly in vulnerable populations such as children. Both geological and anthropogenic sources contribute to the contamination, highlighting the complexity of the issue and the need for comprehensive strategies to address and remediate heavy metal pollution in the Niger Delta.

References

Al-Omran AM, Aly AA, Al-Wabel MI, Sallam AS, Al-Shayaa MS (2016) Hydrochemical characterization of groundwater under agricultural land in arid environment: a case study of Al-Kharj, Saudi Arabia. Arab J Geosci 9:68-85. doi:10.1007/s12517-015-2136-

American Public Health Association (APHA). (1995). The Niger Delta region of Nigeria faces significant Standard methods for the examination for water and (19th ed.). Byrd Prepress. Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF).

> Barzegar R, Moghaddam AA, Adamowski J, Nazemi AM (2018) Assessing the potential origins and human health risks of trace elements in groundwater: a case study in the Khoy plain, Iran. Environ Geochem Health. https://doi.org/10.1007/s1065 3-018-0194-9

> Barzegar R., Asghari Moghaddam A.A., Nadiri A., Fijani E.,(2015). Using different fuzzy logic methods to optimize DRASTIC model case study: Tabriz plain aquifer, Sci. Quart. J. Geosci. 24 (95) (2015) 211-222.

> Bortey-Sam, N., Nakayama, S.M., Ikenaka, Y., Akoto, O., Baidoo, E., Yohannes, Y.B; Mizukawa, H.,

> Ishizuka, M. (2014). Human health risks from metals and metalloid via consumption of food animals near gold mines in Tarkwa, Ghana: Estimation of the daily intakes and target hazard quotients (THOs). Ecotoxicol. Environ. Safety.

111, 160

Edokpa DO, Nwagbara MO (2017) Atmospheric stability pattern over Port Harcourt, Nigeria. J Atmos Pollut 5(1):9-17

Egbueri, J. C., Ameh, P. D., & Unigwe, C. O. (2020b). Integrating entropy-weighted water quality index and multiple pollution indices towards а better understanding of drinking water quality in Ojoto area, SE Nigeria. Scientific African, 10, e00644.

Eyankware, M. O. & Akakuru, O. C. (2022). Appraisal of groundwater to risk contamination near an abandoned limestone quarry pit in Nkalagu, Nigeria, using enrichment factor and statistical approaches. Int. J. Ener. Water Resour. https://doi.org/10.1007/s42108 -022-00186-0

Izah, S. C., Bassey, S. E., & Ohimain, E. I. (2017). Huzefa, S., Himanshu, G., Ajaykumar, K., & Bhavana, Geo-accumulation index, enrichment factor and U. (2020). Hydrogeochemical characterization of quantification of contamination of heavy metals in soil groundwater from semiarid region of western India for receiving cassava mill effluents in a rural community in drinking and agricultural purposes with special the Niger Delta region of Nigeria. Molecular Soil reference to water quality index and potential health Biology, 8.

Bhutiani, R., Kulkarni, D. B., Khanna, D. R., & Gautam, A. (2017). Geochemical distribution and environmental risk assessment of heavy metals in groundwater of an Onyeagocha AC (1980) Petrography and depositional India. Energy, ecology and environment, 2, 155-167.

(2015). Assessing heavy metal contamination in Sado and Geology, 26(2), 225-229. estuary sediment: An index nnuivsis approach. Oteri, A. U., Atolagbe, F. P. (2003). Saltwater intrusion Ecological Indicators, 5, 151–169.

Cheng J, Shi Z, Zhu Y (2007) Assessment and mapping of environmental quality in agricultural soils of Zhejiang Province. China J Environ Sci 19:50-54

Edokpa DO, Nwagbara MO (2017) Atmospheric stability pattern over Port Harcourt, Nigeria. J Atmos Pollut 5(1):9-17

Egbueri, J. C., Ameh, P. D., Envigwe, M. T., & Unigwe, C. O. (2020a). Entropy-based analysis of the impact of environmentally sensitive elements on groundwater quality of the Ameka region of southeast Nigeria: medical geology implications. Analytical letters, 54(7), 1193-1223.

Umayah, S. O., Ukor, K. P. (2023). Assessment of M., & Marghade, D. (2018). Quality and degree of heavy metal pollution on groundwater quality in the pollution of groundwater, using PIG from a rural part of Niger Delta Region of Nigeria. Sustainable Water (2023)9:189. Resources Management doi.org/10.1007/s40899-023-00955-7

Gong Q, Deng J, Xiang Y, Wang Q, Yang L (2008) Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. J China Univ Geosci 19:230-241

Hakanson, L. (1980) An Ecological Risk Index for Sedimentological Aquatic Pollution Control а 975-1001. Approach. Water Research, 14, http://dx.doi.org/10.1016/0043-1354(80)90143-8

risks assessment. Applied Water Science. https:// doi.org/10.1007/

s13201-020-01287-z

industrial area and its surroundings, Haridwar, environment of the Benin Formation, Nigeria. J Min Geol 17:147-151

Caeiro, S., Costa, M. H., Ramos, T. B., Fernandes, F., Oteri, A. U. (1990). Delineation of sea water intrusion Silveira, N., Coimbra, A., Medeiros, G., & Painho, M. in a coastal beach ridge of Forcados. Journal of Mining

> into coastal aquifers in Nigeria. The Second International Conference on Saltwater Intrusion and Coastal Aquifers

> Orji Prince Orji, Obiegbuna Dominic Chukwuebuka, Robert James James (2022). Assessment of seasonal variation of rainfall over tropical Monsoon zone of Nigeria. The international journal of Science & technoledge. Vol 10 Issue 2 DOI No.: 10.24940/ theijst/2022/v10/i2/ST2202-004

> Raju, N. J (2007) Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru river basin, Cuddapah district, Andhra Pradesh, South India. Environ Geol 52:1067-1074

Subba Rao, N., Sunitha, B., Rambabu, R., Nageswara Eyankware, M.O., Akakuru, O. C., Osisanya, W. O., Rao, P. V., Surya Rao, P., Spandana, B. D., Sravanthi, Telangana State India. Applied Water Science., 8, 227. https:// https://doi.org/10.1007/s13201-018-3950864-x.

> Short, K. C., Stauble, A. J. (1967) Outline of Geology of Niger Delta. Bull AAPG 51(5), 761-779

> US Environmental Protection Agency. (2018). 2018 Edition of the drinking water standards and health a dvisories tables.

> Vineethkumar, V., Sayooj, V. V., Shimod, K. P., & Prakash, V. (2020). Estimation of pollution indices and hazard evaluation from trace elements concentration in

coastal sediments of Kerala, Southwest Coast of India. *Bulletin of the National Research Centre*, 44, 1-16.

Weber KJ, Dankoru EM (1976) Petroleum geology of Niger Delta, Tokyo. In: 9th World Petroleum Congress Proceedings, London Applied Publishers, Ltd., 2, 209–221