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Dilworth’s decomposition theorem characterizes the size of the largest 

antichain of any finite partially ordered set in terms of a partition of the 

order into a minimum number of chains. In this study, Dilworth’s theorem 

is generalized using multisets i.e., mathematical entities that admit         

repetition. The theorem is formulated analogously using a partially ordered 

multiset (or pomset), with combinatorial parameters defined in the multiset 

setting. Basic conditions are established for constructing antichains 

  of an ordered multiset such that no two elements are       

comparable or equal. These conditions are adopted in proving Dilworth’s 

theorem in the multiset setting, showing that the smallest number of chains 

in a partition of a pomset coincides with the size of the largest subpomset 

containing incomparable elements. Lastly, an algorithm for recursively 

constructing antichains of an ordered multiset is formulated. Python            

programming language is used in implementing this algorithm on an      

ordered multiset structure. It is decidable and runs in quadratic time      

complexity . For any finite pomset, the number of antichains     

constructed via this algorithm is the same as the size of a maximum      

multiset chain in the pomset.                                                                                                

Keywords: Ordered-multiset, multiset-chain (antichain),   maxi-

mum-multiset chain (antichain), maximal-multiset chain 

(antichain), partially ordered multiset, Dilworth’s theorem.  

  

1. INTRODUCTION 

The size of the largest chain (antichain) in any 

partially ordered set (or poset)  is the height 

(width) of  (see Schroeder, 2003 for details 

on posets). One of the goals of combinatorial 

research is to characterize combinatorial        

parameters. The height and width of a poset are 

important combinatorial concepts and, not        

surprisingly, a great deal of effort has gone into 

characterizing these parameters (Knauer et al., 
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2018; Joret et al., 2016; Streib and Trotter, 

2014; Dilworth, 1950). Dilworth proved that 

the minimum number of chains into which a 

finite poset  can be partitioned is the same as 

the width of . The size of the longest chain 

was characterized in Mirsky (1971). In the case 

of infinite posets, if there exists a partition of 

the order into finitely many chains, or if a finite 

upper bound exists for the size of an antichain, 

then the width of the poset is the same as the 

minimum number of chains in a partition of the 

order. The height of a partially ordered         

structure has been used in proposing interesting 

characterizations for its dimension i.e. the       

minimum number of linear orders needed to 

characterize it (Joret et al., 2016; Streib and 

Trotter, 2014; Kelly, 1981). For instance, Joret 

et al., (2016) proved that the dimension of a 

poset is bounded in terms of its height and         

tree-width of its cover graph. Ordered set        

theory has applications in different spheres of        

computer science, economics, and biology. In 

mathematics, ordered sets abound in fields like 

algebra, graph theory, fixed point theory, and 

category theory (Caspard et al., 2012). If the 

requirement for a set to contain distinct           

elements is relaxed, we would have a multiset 

(Yager, 1986). These are models of entities that 

admit repetitions. Multisets are defined on the 

basis of classical set theory; usually in terms of 

first-order predicate calculus with equality and 

the usual logical symbols. Thus, multiset theory 

generalizes the well-known Zermelo-Fraenkel 

set theory (Felisiak et al., 2020; Dang, 2014; 

Blizard, 1988 are good expositions on             

foundational works on multisets). Though a 

relatively new field of study, the theory of      

multisets is well-established and has various 

applications (Felisiak et al., 2020; Jurgensen, 

2020; Singh et al., 2007; Knuth, 1981). In      

particular, ordered multisets have applications 

in computer science, biology, and linguistics 

(Paun and Rozenberg, 2002; Basten, 1997;     

Dershowitz and Manna, 1979). In Dershowitz 

and Manna (1979), ordered multisets are used 

to prove that certain types of computer           

programs terminate. Basten (1997) defined a 

partially ordered multiset (or pomset) as a      

generalization of a string in which the total      

order has been relaxed to a partial order. Based 

on the LR-parsing technique, the author          

developed the fundamentals of a parsing theory 

for pomsets called PLR parsing. In the light of 

diverse applications of ordered multisets, it     

becomes imperative to generalize results on 

ordered sets and establish new results that are 

peculiar to multisets (Balogun et al., 

2020,2022; Girish and Sunil, 2009; Rensink, 

1996; Pratt, 1986). In this paper, Dilworth’s 

decomposition theorem for ordered sets is      

generalized using ordered multisets. We define 

basic combinatorial parameters and establish 

conditions under which Dilworth’s theorem 

holds in the multiset setting. The rest of the 

work is organized as follows: for convenience, 

we present basic terminologies to be used in 

this study in section 2. The concept of multiset 

partition is discussed in section 3. In section 4, 

an analogous form of Dilworth’s                      

decomposition theorem is presented and a proof 

of the theorem is provided using ordered          

multisets. Lastly, we present an algorithm to 

show that the conditions in the dual of  
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 dual of Dilworth’s result also hold for ordered 

multisets. 

2. Preliminaries 

Basic terminologies used will be presented here 

(see Balogun et al., 2021; Singh et al., 2007; 

Blizard, 1988 for details). 

2.1 Multisets: Unlike the classical set, a        

multiset admits repetition thus in multiset         

theory, the sets   and 

 do not coincide. The number 

of times an object occurs is the multiplicity of 

the object. The multiplicity of an object takes 

value from any of the sets of natural numbers, 

integers, or real numbers (Felisiak et al., 2020; 

Blizard, 1988, 1989). The root (or support) set 

of a multiset  is usually denoted by , 

Blizard (1988) established that 

 
through the separation schema of set theory. 

Blizard’s result showed that the root set   of 

a multiset  is the set containing the distinct 

elements of ; we will refer to these distinct 

elements as objects. In the example above,  

is the root set for the multiset . The multiset 

theory MST developed in Blizard (1988) is 

adopted for this work. As in MST, multisets 

used in this study are modelled by                   

integer-valued functions and the multiplicity of 

an object is assumed to be a (finite) positive      

integer. A multiset  is finite if its root set is 

finite and each object has a finite multiplicity, it 

is infinite otherwise; this study focuses on finite 

multisets. The cardinality of  is the sum of 

the multiplicities of all objects in . If we      

denote the class of all finite multisets defined 

on a set  by , then two multisets  

and  in  are related by inclusion as 

follows:  if  for all 

, and  if  for at 

least one , where  and        

represent the multiplicities of  in  and , 

respectively. For convenience, we will denote 

an arbitrary point in a multiset , i.e. an object 

together with its multiplicity, by ; this 

will represent the atomic formula . 

Thus the multiset  above would be written as 

. A new instance of the rela-

tion  in the three place predicate symbol 

 was proposed in Singh and Singh 

(2007). The symbol  (which they call 

dressed epsilon) was introduced, this indicates 

the minimum value that the multiplicity of an 

object can assume. For instance,           

implies  belongs to  at least  times. The 

predicate  is useful for modelling problems 

that do not require the exact value of the           

multiplicity of an object. Given any two           

multisets  and , the additive union (also 

https://dx.doi.org/10.4314/aujst.v5i1.6
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called multiset union) of  and , denoted 

by , for each object  is the multiset 

defined by  

For instance, given multisets  and  as 

above we have 

. The additive    

union of two or more multisets is assumed in 

sections 3 and 4 to obtain the number of         

elements in a partition of a given multiset. For 

more on multiset operations see Singh et al., 

(2007). 

2.2 Ordered Multisets: An ordered multiset 

is a multiset with a reflexive, antisymmetric 

and transitive multiset relation defined on it 

(details on multiset relations is presented in 

Girish and Sunil, 2009). Throughout this work, 

we will assume that the multiset  is defined 

on a partially ordered set . Also, 

 will be a partially ordered 

multiset (or pomset), where  is a finite      

multiset and  is a partial multiset order on 

 induced by the ordering .  

Definition 1.3: Let  be any two 

points of . Then  in  

if and only if  in . 

Remark 1.4:  The two points  

are comparable if 

, 

they are incomparable otherwise. 

Let  be a submultiset of . Then a          

subpomset  of  is a multiset 

chain if for any two points  and  

in , either  or 

, where  for all . A 

subpomset  is an antichain if it contains   

only incomparable pairs; we will write 

 whenever  and  

are incomparable in . A point  is 

maximal in  if it is not covered by any oth-

er point in the pomset i.e., if   

such that . Similarly,  

is minimal if   such that 

 (where  is the strict 

ordering on ). A subpomset of  is       

maximal if it is not strictly contained in any 

other subpomset, it is maximum if it contains 

the most number of elements. The height 

(width) of a pomset is the cardinality of a      

maximum multiset chain (antichain), we will 

denote this by  and , respectively.  

https://dx.doi.org/10.4314/aujst.v5i1.6
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3.1. MULTISET PARTITION 

In this section, the notion of a multiset partition 

is presented following Jouannaud & Lescanne 

(1982). The adopted multiset partition is         

particularly useful for constructing subpomsets 

of   such that no two elements are equal or 

comparable. 

Definition 3.1: Let  be a multiset then, 

 is a partition of  if and 

only if . 

Definition 3.2: If  is a multiset defined over 

a poset  and  is the 

pomset induced by . Then 

 is a partition of   if it 

satisfies the following conditions: 

, for each , where 

 represents the mul-

tiplicity of  in . 

  and  , 

 

. 

Remark 3.3: Each multiset  in the           

partition  will consist of incomparable          

elements. Unlike in classical set theory, the      

intersection of any two elements of the           

partition need not be empty since the structure 

admits repetition. By condition i of definition 

2.2,  holds , we have  

. 

We need the following result from Balogun et 

al., (2021). The lemma would be used in       

proving the generalized Dilworth’s                 

decomposition theorem, hence a detailed proof 

is provided here.  

Lemma 3.4: Suppose a finite pomset  is 

partitioned into multiset chains . 

If  is any antichain in , then at most one 

element of  occurs in each multiset chain in 

the partition, thus . 

Proof: Let  be a finite pomset 

induced by the poset . Suppose 

 is a partition of , 

where each  is a maximal multiset chain. If 

 is an antichain in , we need to show 

that the intersection of  and  has at most 

one element, for any . 

Since a multiset admits repetition, antichains of 

 will be constructed via definition 2.2 so 

that 

 
i.e., such that no two elements are comparable 

or equal in . We then show that 

62 

 for all .  
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Let  be a maximal multiset chain in  for 

all . Then the multiset, say , 

consisting of all maximal points from each  

will contain only incomparable points. Applying 

the construction in definition 2.2 to  gives a 

partition of the form , for an 

integer such that 

 i.e. 

. If  

and  are disjoint, the result is straight           

forward. Suppose , we need to 

show that . Suppose 

. Then  in  

with . This implies  and 

. This is a contradiction since all 

elements in  are comparable and no two       

elements in  are comparable. Hence for any 

antichain in , there is at most one element in 

the intersection. Thus  .  

4. DILWORTH’S DECOMPOSITION 

THEOREM FOR PARTIALLY      

ORDERED MULTISETS 

In this section, we present an analogous form of 

Dilworth’s decomposition theorem in the        

multiset setting and prove that the conditions of 

Dilworth’s theorem hold for ordered multisets. 

Lastly, an algorithm that establishes the           

conditions in Dilworth’s theorem and its dual is 

constructed and implemented on an ordered 

multiset structure. 

Theorem 4.1 (Generalized Dilworth’s            

decomposition theorem): Let  

be a finite pomset defined over a poset . 

If  is the width of the pomset , then  

has a partition into -many multiset chains. 

Proof: Firstly, antichains of the pomset  

are constructed following definition 2.2 with 

respect to the multiset order . If  is 

empty then the statement holds trivially. Also, 

the statement is true if , thus the         

statement holds if  is a trivial pomset with a 

single element   or point .  

Assume the statement is true for pomsets 

 with  for all . If  is 

a one-point antichain in , we have . 

Without loss of generality, we can have 

. Assume that  has more 

than one point and let  be maximal 

multiset chains in . By lemma 2.4, we know 

that  for all  with 

. For some , consider 
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the subpomset  and width(  

. Since | , therefore  can 

be partitioned into  multiset chains 

via the inductive hypothesis. The desired         

partition of  can be obtained by adding the 

multiset chain . Thus the pomset  can be 

partitioned into at most  multiset chains. It 

remains to show that there are exactly  (not 

fewer) multiset chains in the smallest partition 

of . Suppose the pomset  can be           

partitioned into a minimum of         

multiset chains with . Consider a        

maximum antichain, say , in  i.e. 

. Since  belongs to the set-based 

partition, every element of  must belong to a 

different multiset chain . Thus  

gives a contradiction. Therefore . 

4.2. Dual of Dilworth’s Decomposition       

Theorem 

The following is the dual of Dilworth’s result: 

A poset of height  can be partitioned into  

antichains. The proof of this is outlined in 

Mirsky (1971). 

Analogously, we have: The height  of a   

pomset  coincides with the minimum       

number of antichains in a partition of . 

By recursively removing the maximal elements 

(based on the defined ordering) from a pomset 

 and applying set-based partitioning 

(definition 2.2), we would have antichains 

 of   whose additive union 

 will be . 

Antichains of  can be constructed via the 

following steps: 

Step 1: Choose  to be the set of all maximal 

elements in  

Step 2: Choose  to be the set of all maximal 

elements after obtaining the set  

Step 3: Choose  to be the set of maximal 

elements after obtaining the sets  

 

Consequently,  obtained will be 

antichains. Also . 

The number of antichains thus constructed will 

be the same as the cardinality of a multiset 

chain with the greatest size possible in . 

Example 3.2: Consider  the multiset [8, 

2, 2, 6, 7, 4, 8, 3, 5, 6, 7, 2, 3, 5, 6, 3, 18, 24, 12, 

18, 18, 12, 10, 10, 10, 9, 9, 12] with the             

following ordering defined on it: 

 if and only if  and  are both even

(odd) and  (i.e. the natural ordering), 
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Anchor University Journal of Science and Technology , Volume 5 Issue 1                            Balogun et al. 

https://dx.doi.org/10.4314/aujst.v5i1.6  

clearly  is a partial order. 

Based on the definition of the multiset order 

(definition 1.3),  is a pomset 

induced by , where  is irreflexive and 

transitive. Hence,  if and 

only if   and  are both even (odd) and 

. 

5. ALGORITHM 

An algorithm for obtaining multiset chains 

and antichains of a pomset is constructed and 

implemented using example 3.2. The         

pseudocode for obtaining the desired output 

based on the input [8, 2, 2, 6, 7, 4, 8, 3, 

5, 6, 7, 2, 3, 5, 6, 3, 18, 24, 12, 18, 18, 12, 10, 

10, 10, 9, 9, 12] and the defined ordering is 

presented below. 

Pseudocode 

INPUT – [8, 2, 2, 6, 7, 4, 8, 3, 5, 6, 7, 2, 3, 5, 6, 3, 18, 24, 12, 18, 18, 12, 10, 10, 10, 9, 

9, 12] 

from collections import Counter 

# Read a list of numbers from the user 

input_str = input("Enter a list of numbers separated by spaces: ") 

# Split the input string into a list of strings 

input_list = input_str.split() 

# Define a function to duplicate elements based on their values in the dictionary 

def duplicate_elements(input_list, dictionary): 

+    duplicated_list = [] 

    for element in input_list: 

        if element in dictionary: 

            duplicated_list.extend([element] * dictionary[element]) 

        else: 

            duplicated_list.append(element) 

    return duplicated_list 

def remove_duplicates(input_list): 

      result_list = [] 

    for item in input_list: 

        if item not in unique_elements:  

            result_list.append(item) 

            unique_elements.add(item) 

    return result_list  
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        else: 

            duplicated_list.append(element) 

    return duplicated_list 

def remove_duplicates(input_list): 

    unique_elements = set() 

    result_list = [] 

    for item in input_list: 

        if item not in unique_elements: 

            result_list.append(item) 

            unique_elements.add(item) 

    return result_list 

# Convert the list of strings to a list of integers (or floats if needed) 

try: 

    numbers = [int(x) for x in input_list]  # Convert to integers 

    print('########################################') 

    print(numbers) 

value_counts = Counter(numbers) 

     

    # Sort the list in-place 

    numbers.sort() 

    a_lists = {} 

    c_lists = {} 

    chain = [] 

    chain1 = [] 

    chain2 = []          

    evenNum = [x for x in numbers if x % 2 == 0] 

    oddNum = [x for x in numbers if x % 2 != 0] 

    even=remove_duplicates(evenNum) 

    odd=remove_duplicates(oddNum)    

    chain.append(even) 

    chain.append(odd) 

    index = 0 

https://dx.doi.org/10.4314/aujst.v5i1.6
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 while index<len(chain): 

        chain_name = f"c_{index}" 

        c_lists[chain_name] = chain[index] 

        index+=1 

   print('########################################') 

    print(even) 

    print('########################################') 

    print(odd) 

    print('########################################') 

    print(c_lists) 

    # Apply the function to each inner list using a list comprehension 

    my_dicts=dict(value_counts) 

    duplicated_lists = {key: duplicate_elements(inner_list, my_dicts) for key, inner_list in c_lists.items()}   

    print('########################################') 

    #print(duplicated_lists)  

    total_elements = sum(len(i_list) for i_list in duplicated_lists.values())  

    i=0 

    while i <len(duplicated_lists) or total_elements!=0: 

        a_name = f"a_{i}" 

        a = [] 

        for key, in_list in duplicated_lists.items(): 

            if in_list: 

                max_value = max(in_list) 

                a.append(max_value) 

                duplicated_lists[key].remove(max_value)        

        total_elements = sum(len(i_list) for i_list in duplicated_lists.values())     

        a_lists[a_name] = a 

        i+=1 

    print('') 

    print('########################################')  

print(a_lists) 

except ValueError: 

    numbers = "contains an invalid number" 
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6. DISCUSSIONS 

Python programming language was used to 

implement the algorithm. The first step creates 

two arrays from the input: 

Root set , 

and 

Multiplicity   

The array  is then sorted based on the      

ordering . The multiplicity of the object 

 in  is also picked from the multiplicity 

array at each stage, and the following multiset 

chains are produced:  

  
i.e. 

   
and 

  

 i.e  

The multiset chain 

 

is a maximum multiset chain with , 

thus the height  of the pomset  is 16. 

The next stage of the algorithm sorts the       

elements into a minimum number of set-based 

antichains by picking the maximal element 

from each multiset chain.             

          

 

 

 

 

 

 

 

The minimum number of antichains in a        

partition of the pomset is 16. This coincides 

with the height  of the pomset. Thus the 

output establishes the conditions in the dual of 

Dilworth’s decomposition theorem. Also, the 

width  of the pomset based on the output 

of the above algorithm is 2 (i.e. the size of a 

maximum antichain), this coincides with the 

minimum number of multiset chains in a chain 

decomposition of the pomset, thus establishing 

the conditions in Dilworth’s decomposition 

theorem. The outputs are a consequence of the 

set-based partitioning method adopted.              

7. CONCLUSION 

Dilworth’s decomposition theorem was         

generalized using a partially ordered multiset 

structure. An algorithm that establishes the 

conditions in Dilworth’s theorem and its dual 

was constructed and implemented on an          

ordered multiset. The algorithm is decidable 

with a time complexity of . It is          

efficient for solving problems with large        

inputs. The approach proposed in this study 
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 can be employed in modeling application prob-

lems involving ranking and decision-making in 

a process that admits repetition. 

References 

Anusuya Ilamathi, V. S., & Vimala, J. (2018). 

Multi-criteria decision making on lattice        

ordered multisets. In: Thampi, S., Mitra, S., 

Mukhopadhyay, J., Li,KC., James, A., Berreti, 

S. (eds) Intelligent Systems Technologies and 

Applications. ISTA 2017. Advances in         

Intelligent Systems and Computing, vol 683.       

Springer, Cham. https://doi.org/10.1007/978-3-

319-68385-0_34  

Balogun, F., Singh, D. and Aliyu, S. (2022).  

Multiset linear extensions with a heuristic    

algorithm. Annals of Fuzzy Mathematics and 

Informatics 24(2), 129-136. 

Balogun, F., Singh, D. and Tella, Y. (2021). 

Maximal and maximum antichains of ordered 

multisets. Annals of Fuzzy Mathematics and 

Informatics 21(1), 105-112. 

Balogun, F., Singh, D. and Tella, Y. (2020). 

Realizers of partially ordered multisets. Theory 

and Applications of Mathematics and            

Computer Science, 10(2), 1-6. 

Basten, T. (1997). Parsing partially ordered 

multisets. International Journal of Foundations 

of Computer science, 8(4), 379-407. 

Blizard, W. (1988). Multiset theory. Notre 

Dame Journal of Formal Logic, 30(1), 36-66. 

Blizard, W. (1989). Real-valued multisets and 

fuzzy sets. Fuzzy Sets and Systems, 33(1),       

77-97. 

Caspard, N., Leclerc, B. and Monjardet, B. 

(2012). Finite ordered sets: concepts, results 

and uses. Cambridge University Press. 

Dang, H. (2014). A single-sorted theory of 

multisets. Notre Dame Journal of Formal       

Logic, 55(3), 299-332. 

Dershowitz, N. and Manna, Z. (1979). Proving 

termination with multiset orderings.              

Communications of the Journal of Association 

for Computing Machinery, 22, 465-476. 

Dilworth, R. P. (1950). A decomposition        

theorem for partially ordered sets. Annals of 

Mathematics, 51(1), 161-166. 

Felisiak, P. A., Qin, K. and Li, G. (2020).      

Generalized multiset theory. Fuzzy Sets and 

Systems, 380, 104-130. 

Girish, K. P. and Sunil, J. J. (2009). General 

relations between partially ordered multisets 

and their chains and antichains. Mathematical 

Communications, 14(2), 193-205. 

Joret, G., Micek, P., Milans, K., Trotter, W. T., 

Walczak, B. and Wang, R. (2016). Tree-width 

and dimension. Combinatorica, 36, 431-450. 

Jouannaud, J-P., and Lescanne, P. (1982). On 

multiset orderings. Information Processing      

Letters, 15(2), 57-63. 

Jürgensen, H. (2020). Multisets, heaps, bags, 

families: What is a multiset? Mathematical 

Structures in Computer Science, 30(2),          

139-158.  

Knauer, K., Micek, P., & Ueckerdt, T. (2018). 

The queue-number of posets of bounded width 

or height. In: Biedl, T., Kerren, A. (eds) Graph 

https://dx.doi.org/10.4314/aujst.v5i1.6
https://doi.org/10.1007/978-3-319-68385-0_34
https://doi.org/10.1007/978-3-319-68385-0_34


 

Anchor University Journal of Science and Technology , Volume 5 Issue 1                            Balogun et al. 

https://dx.doi.org/10.4314/aujst.v5i1.6  

 

70 

 
Knauer, K., Micek, P., Ueckerdt, T. 

(2018). The queue-number of 

posets of bounded width or height. 

In: Biedl, T., Kerren, A. (eds) 

Graph Drawing and Network. 

Mirsky, L. (1971). A dual of            

Dilworth’s decomposition           

theorem. American Mathematical 

Monthly, 78(8), 876-877. 

Paun, G., and Rozenberg, G. (2002). 

A guide to membrane computing. 

Theoretical Computer Science, 

287, 73-100. 

Pratt, V. R. (1986). Modelling concur-

rency with partial orders. Interna-

tional Journal of Parallel Pro-

gramming, 15, 33-71. 

Rensink, A. (1996). Algebra and theo-

ry of order-deterministic pomsets. 

Notre Dame Journal of Formal 

Logic, 37(2), 283-320 

Schroeder, B. (2003), Ordered sets. 

Boston: Birkhaeuser. 

Singh, D., Ibrahim, A. M., Yohanna, 

T. and Singh, J. N. (2007). An 

overview of the applications of 

multisets. Novi Sad Journal of 

Mathematics, 37(2), 73-92. 

Singh, D. and Singh, J. N. (2007). A 

note on the definition of multisub-

set. Association of Symbolic Log-

ic. In Annual Conference, USA . 

Streib, N. and Trotter, W. T. (2014). 

Dimension and height for posets 

with planar cover graphs. Europe-

an Journal of Combinatorics 32, 

474-489. 

Yager, R. R. (1986). On the theory of 

bags, International Journal of 

General Systems, 13; 23-37 

https://dx.doi.org/10.4314/aujst.v5i1.6

