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ABSTRACT

This article delves into the numerical solutions of potential flow equations using finite
differences, aiming to enhance our understanding of fluid dynamics. The general
objective is to obtain numerical solutions to potential flow equations using finite differences,
with specific objectives including the investigation of potential flow equations, the solutions
of associated PDE and the analysis of the stability of employed numerical schemes.
The study employs a combination of numerical methods to achieve its objectives;
MATLAB is utilized as a computational tool, while the Gauss-Seidel and Jacobi’s iterative
methods are implemented for solving PDEs. Central differences are employed for
discretization. The study yields valuable insights into the behaviour of potential flow
systems. The significance of this research lies in its contribution to advancing our
comprehension of fluid dynamics with potential applications. Generally, this work provides
a foundation for further exploration and application of numerical methods in the study
of potential flow.
Mathematics Subject Classification: Primary 20K30; Secondary 16P10.
Keywords: Potential flow equations, computational tool, fluid dynamics
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1 Introduction
Fluid dynamics plays a pivotal role in understanding the behavior of fluids in various engineering

applications, ranging from aerodynamics and hydrwodynamics to heat transfer and chemical processing.
Potential flow, a fundamental concept in fluid dynamics, simplifies the study of fluid motion by assuming
irrotational and incompressible flow. While potential flow equations provide an elegant mathematical
framework, their analytical solutions are often limited to simple geometries and boundary conditions.Potential
flow describes the velocity field as the gradient of a scalar function: the velocity potential. As a result, a
potential flow is characterized by an irrotational velocity field, which is a valid approximation for several
applications. The irrotationality of a potential flow is due to the curl of the gradient of a scalar always
being equal to zero.

The complexity of real-world fluid dynamics problems necessitates the use of numerical methods to
obtain solutions. Numerical techniques, such as finite differences, have proven to be valuable tools
for solving partial differential equations, including those governing potential flow. Finite differences
discretize the spatial domain, allowing for the transformation of continuous equations into algebraic
systems that can be solved numerically on a computer. Numerical methods often operate iteratively,
refining solutions through successive approximations. This iterative nature enables us to converge
towards accurate solutions, providing a valuable mechanism for improving the precision of results and
gaining deeper insights into the behavior of models. This research proposal aims to explore and develop
an efficient numerical solution for potential flow equations using the finite differences method.

The accurate prediction of fluid behavior is crucial for the design and optimization of engineering
systems. Traditional analytical methods often fall short when addressing the intricacies of complex
geometries and boundary conditions. Numerical methods offer a viable alternative, providing the flexibility
needed to tackle real-world scenarios. This research is motivated by the need for advanced numerical
techniques that enhance the accuracy and efficiency of potential flow simulations, enabling more realistic
predictions of fluid behavior.

The proposed research on the numerical solution of potential flow equations using finite differences
is motivated by several compelling justifications, each emphasizing the broader impact and significance
of the study; Analytical solutions for potential flow equations are limited to simple geometries and
boundary conditions. As many real-world fluid dynamics scenarios involve complex structures and
diverse boundary conditions, the application of analytical methods becomes impractical. The proposed
numerical solution using finite differences serves as a bridge, offering a practical means to tackle the
complexities inherent in potential flow problems. While numerical methods have been widely employed
in fluid dynamics, there is a continuous need for advancements to improve accuracy, stability, and
computational efficiency. The study contributes to the ongoing evolution of numerical techniques by
exploring the application of finite differences to potential flow equations, potentially offering new insights
and methods that can be extended to other fluid dynamics problems.
The theoretical contribution of numerical solutions of potential flow equations using finite differences
lies in advancing computational fluid dynamics (CFD) techniques. It enhances our ability to model and
analyze fluid behaviour, offering more accurate predictions for various applications such as aerodynamics,
hydrodynamics, and heat transfer. This approach contributes to the understanding of potential flow
phenomena through the application of numerical methods, enabling simulations that can guide design
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processes and optimize engineering solutions. Numerical solutions of potential flow equations using
finite differences hold methodological significance in fluid dynamics. This approach allows for the
approximation of continuous mathematical models, providing insights into complex fluid behaviour. Finite
differences discretize the domain, enabling the analysis of fluid flow over intricate geometries that
may lack analytical solutions. Numerical solutions enhance our ability to study turbulence, vorticity,
and lift generation, providing valuable information for optimizing designs and predicting fluid dynamics
outcomes. This methodology bridges the gap between theoretical formulations and practical applications,
fostering advancements in fluid mechanics and engineering simulations.

Employing finite differences for solving potential flow equations contributes academically by advancing
numerical methods by introducing or improving finite difference methods for solving potential flow equations
that expands the repertoire of numerical techniques available for fluid dynamics simulations.Interest and
passion for understanding the intricacies of fluid behaviour and the desire to contribute to this field
motivated our pursuit. curiosity and the drive to explore the uncharted territories of numerical methods
in solving potential flow equations inspired us.

2 Methods

2.1 Investigation of Potential Flow Equations
To develop a clear and detailed formulation of potential flow equations, considering various boundary
conditions and geometries; Governing equations for potential flow will be extracted from the literature
review. Different formulations based on variations in assumptions and boundary conditions will be
examined. Mathematical derivations and physical interpretations associated with potential flow equations
will be considered. To identify critical factors influencing potential flow behaviour and understand their
implications for numerical solution; Sensitivity analyses will be conducted on key parameters such
as velocity, pressure, and geometric features. The impact of variations in boundary conditions on
potential flow solutions will be evaluated. The influence of different assumptions (e.g., incompressibility,
irrotationality) on the behaviour of potential flows will be investigated. To explore mathematical properties
and theoretical considerations associated with potential flow equations, the mathematical structure of
potential flow equations, including linearity, superposition, and conservation laws, will be examined. The
existence and uniqueness of solutions under various conditions will be investigated.

2.2 Solution of the PDEs Associated with Potential Flow
To apply finite difference methods to discretize the spatial domain of the potential flow equations;
Appropriate finite difference schemes, such as central differences, will be chosen to approximate spatial
derivatives within the discretized domain. We will use Gauss-Seidel and Jacobi’s iterative methods
to improve results obtained. To implement time integration schemes to advance the solution in time:
Implicit or explicit methods will be utilized based on stability and efficiency considerations. To develop a
numerical algorithm to solve the discretized potential flow equations: The algorithm will be implemented
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in a programming environment, utilizing suitable numerical libraries and tools. To validate the numerical
solution against known analytical solutions or benchmark cases; The correctness of the numerical
implementation will be verified through convergence studies and comparison with established results.

2.3 Analysis of Stability of Numerical Schemes
To conduct a von Neumann stability analysis to assess the stability properties of the finite difference
schemes; amplification factors and stability regions will be analyzed to identify conditions under which
the numerical solution remains stable. To investigate the influence of varying time steps on the stability of
the numerical solution; Optimal time step sizes will be identified to ensure both stability and computational
efficiency. To perform parametric studies to explore the effects of mesh size, boundary conditions, and
other numerical parameters on stability; the robustness of the numerical method across a range of
scenarios will be evaluated. To document the findings of the stability analysis in a clear and concise
manner; insights into the limitations and constraints associated with the numerical method’s stability will
be provided.

By implementing these methods, a systematic investigation into potential flow equations using finite
differences will be conducted, aligning with the research objectives outlined in the proposal.

3 Literature Review
Fluid dynamics, particularly potential flow, has been a subject of significant interest in the scientific
community due to its broad applications in engineering and physics. The quest for accurate and efficient
solutions to potential flow equations has driven researchers to explore various numerical methods. This
literature review provides an overview of existing literature, highlighting key contributions and gaps in
the field of numerical solutions for potential flow equations, with a focus on the application of finite
differences. The governing equations for potential flow describe irrotational and incompressible fluid
motion, simplifying the complexities of real-world fluid dynamics. These equations, derived from the
conservation of mass and the Bernoulli equation, form a set of partial differential equations (PDEs).
Analytical solutions to these equations are limited to idealized scenarios, prompting the need for numerical
methods to address real-world complexities.

[10] provides an extensive overview of finite difference methods applied to potential flow equations.
They explore the historical evolution, challenges, and recent advancements, offering a comprehensive
understanding of the strengths and limitations of finite differences in modelling potential flows. [5]
focuses on recent developments in numerical techniques for potential flow simulations, with an emphasis
on finite differences. They discuss innovations in spatial discretization, mesh refinement, and parallel
computing, providing insights into how these advancements contribute to the accuracy and efficiency
of numerical solutions. [4] conducted a comparative analysis of various finite difference schemes used
in solving potential flow equations. They evaluated the accuracy, stability, and computational efficiency
of different schemes, offering a critical assessment of their applicability to real-world fluid dynamics
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problems. [9] focused on adaptive finite difference methods, this explores strategies for dynamically
refining the computational mesh based on solution characteristics. They discussed challenges in adapting
finite differences to handle complex geometries and varying boundary conditions in potential flow simulations.
[3] specifically addressed the challenges and opportunities in applying finite differences to unsteady
potential flow scenarios. They discussed issues related to stability and accuracy, proposing methodologies
to extend the applicability of finite difference methods to dynamic fluid flow problems.

Numerical methods have become indispensable tools for solving potential flow equations, offering
the flexibility to tackle a wide range of scenarios. Finite difference methods, in particular, have gained
prominence due to their simplicity and computational efficiency. The discretization of the spatial domain
allows for the transformation of PDEs into algebraic systems, facilitating the implementation of numerical
algorithms on modern computing platforms. Finite difference methods involve discretizing the spatial
domain into a grid and approximating derivatives using finite differences. The accuracy and stability
of these methods depend on the choice of discretization schemes. Classic schemes such as forward,
backward, and central differences have been extensively employed, with modifications and higher-order
schemes developed to enhance accuracy.

While numerical methods offer practical solutions, challenges persist. Stability issues, numerical
dissipation, and dispersion effects are among the concerns that researchers have grappled with. The
literature highlights the importance of carefully selecting numerical parameters and discretization schemes
to mitigate these challenges. Several studies have undertaken comparative analyses of different numerical
methods applied to potential flow equations. These comparisons often assess accuracy, computational
efficiency, and applicability to diverse scenarios. While finite difference methods have shown promise,
some studies explore alternative numerical techniques, such as finite element and spectral methods,
providing insights into their comparative advantages and limitations. Recent literature reflects a growing
interest in hybrid and adaptive numerical methods for potential flow. Hybrid approaches combine the
strengths of different numerical techniques to overcome individual limitations. Adaptive methods dynamically
refine the grid based on solution characteristics, optimizing computational resources while maintaining
accuracy.

Despite the progress made, certain gaps in the literature persist. The application of finite differences
to three-dimensional potential flow problems, consideration of unsteady flows, and the exploration of
parallel computing for scalability are areas where further research is warranted. Additionally, emerging
trends, such as machine learning coupled with numerical methods, present exciting possibilities for
future investigations.

The literature reviewed underscores the evolution from analytical to numerical methods in solving
potential flow equations, with a specific emphasis on the role of finite differences. While finite difference
methods have shown promise, challenges persist, and ongoing research aims to address these challenges
and explore innovative approaches. This literature review sets the stage for the proposed research,
emphasizing the need for a robust numerical solution for potential flow equations using finite differences
and identifying areas for further exploration and refinement.
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4 Potential Flow Equation
Potential flow is a simplified model of fluid flow that is based on the assumption that the flow is irrotational
(i.e., the vorticity is zero). In potential flow theory, the velocity field can be derived from a scalar potential
function called the velocity potential.

The potential flow equations are typically derived from the conservation of mass and conservation
of momentum principles. The key equations in potential flow theory include:

1. Laplace’s Equation:
∇2Φ = 0 (4.1)

Where Φ is the velocity potential and ∇2 is the Laplacian operator. This equation represents the
irrotationality condition of the flow field.

2. Velocity Field:

u =
∂Φ

∂x
(4.2)

v =
∂Φ

∂y
(4.3)

w =
∂Φ

∂z
(4.4)

Where u, v, and w are the components of the velocity vector and Φ is the velocity potential. These
equations indicate that the velocity field can be derived from the gradient of the velocity potential.

3. Bernoulli’s Equation:

P +
1

2
ρ|V |2 + ρgZ = constant (4.5)

Where P is the pressure, ρ is the fluid density, V is the fluid velocity vector, g is the acceleration
due to gravity, and Z is the elevation. This equation represents the conservation of energy along
a streamline in a potential flow field.

4. Stream Function:
ψ = −Φ (4.6)

Where ψ is the stream function. The stream function is often used in 2D potential flow problems
to visualize streamlines and streamline patterns.

These equations are the foundation of potential flow theory and are commonly used in aerodynamics,
hydrodynamics, and other fields of fluid mechanics to analyze and predict fluid flow behavior in a
simplified manner.

5 Discretization of the laplace Equation
To discretize the Laplace equation in 2D within the interval [0, 1], we use a finite difference method. Let’s
assume we have a grid with Nx points in the x direction and Ny points in the y direction, and the interval
[0, 1] is divided into Nx − 1 intervals of size ∆x and Ny − 1 intervals of size ∆y.

Licensed Under Creative Commons Attribution (CC BY-NC)

61



Vol 1(Iss. 1),pp.56-70,2024 African Scientific Annual Review www.asarev.net

The grid points are located at:

xi = i ·∆x, i = 0, 1, 2, . . . , Nx

yj = j ·∆y, j = 0, 1, 2, . . . , Ny

Now, let ui,j represent the value of u at the grid point (xi, yj). The Laplace equation can be
discretized as:

ui,j =
1

4
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1)

This is the finite difference equation for the Laplace equation at each interior grid point (i, j).
At the boundaries (where i = 0, Nx or j = 0, Ny), boundary conditions need to be applied appropriately.

Common boundary conditions include Dirichlet, Neumann, or mixed boundary conditions.
Once the discretization is done, you can solve the resulting system of equations iteratively using

methods such as Jacobi, Gauss-Seidel, until convergence is achieved.

6 Finite Differential Approximation of the Laplace equation

6.1 standard 4-point formula
The standard 4-point formula for solving the Laplace equation in a rectangular domain is given by:

ui,j =
1

4
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1)

This formula represents an averaging of the values of the neighboring points to calculate the value
of the point at location (i, j) in the computational grid.

7 Improvement of Results

7.1 Jacobi’s Method
Jacobi’s method is an iterative numerical technique commonly used to solve linear systems of equations.
In the context of improving results obtained using the standard 4-point formula for Laplace’s equation,
Jacobi’s method can be applied to iteratively refine the solution until convergence is achieved. Let’s see
how Jacobi’s method can be used to enhance the results obtained from the standard 4-point formula for
the Laplace equation in 2D space.

Jacobi’s Method: Jacobi’s method is an iterative algorithm that updates the values of the solution
vector from the previous iteration. The method involves several steps:

1. Initialization: - Start with an initial guess for the solution vector u0 at all grid points.

2. Iteration: - For each grid point (i, j), update the solution using the discretized equation. - For the
Laplace equation, you will apply the discretized 4-point formula at each grid point.
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3. Update Rules: - The update rule for Jacobi’s method is:

u(k+1)(i, j) =
1

4

(
u(k)(i− 1, j) + u(k)(i+ 1, j) + u(k)(i, j − 1) + u(k)(i, j + 1)

)
4. Convergence: - Repeat the iteration process until the solution converges within a specified

tolerance.

Enhancing Results with Jacobi’s Method:

• By applying Jacobi’s method iteratively to the solutions obtained from the standard 4-point formula,
you can refine the solutions to better approximate the true solution of the Laplace equation.

• Jacobi’s method allows for improvement by considering the neighboring grid points and updating
the solution iteratively.

7.2 Gauss-Seidel Method
The Gauss-Seidel method is an iterative algorithm that updates the solution vector by taking into account
the most recent values of the solution obtained in the same iteration. The method involves the following
steps:

1. Initialization: - Start with an initial guess for the solution vector u0 at all grid points.

2. Iteration: - For each grid point (i, j), update the solution using the most recent solution values in
that iteration. - For the Laplace equation, you will apply the discretized 4-point formula using the
most recent values from the iteration.

3. Update Rules: - The update rule for the Gauss-Seidel method updates the solution simultaneously:

u(k+1)(i, j) =
1

4

(
u(k+1)(i− 1, j) + u(k)(i+ 1, j) + u(k+1)(i, j − 1) + u(k)(i, j + 1)

)
4. Convergence: - Repeat the iteration process until the solution converges within a specified

tolerance, typically checking the change in the solution values.

Advantages of Gauss-Seidel Method:

• Faster Convergence: The Gauss-Seidel method often converges faster than the Jacobi method
due to using updated values within the same iteration.

• Efficiency: Since newer values are used immediately, the method converges in fewer iterations.

Enhancing Results with Gauss-Seidel Method:

• By applying the Gauss-Seidel method iteratively to the results obtained from the 4-point formula,
you can refine the solutions more effectively, reducing error and increasing accuracy.
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8 Stability analysis using Von Neumann method
Suppose we use Jacobi iteration for solving a system of equations generated. The recurrence relation
for the laplace equation is then given by:

u
(k+1)
0 (i, j) =

1

4

[
u
(k)
0 (i+ 1, j) + u

(k)
0 (i− 1, j)

+u
(k)
0 (i, j + 1) + u

(k)
0 (i, j − 1)

] (8.1)

Let us define the error at the kth iteration as follows:

e
(k)
(i,j) = u

′(k)
(i,j)(Exact)− u

′(k)
(i,j)(Approximate) (8.2)

Since the exact solution satisfies the relation (5.1), so is the error. Hence,

e
(k+1)
i,j =

1

4

[
e
(k)
i+1,j + e

(k)
i−1,j

+e
(k)
i,j+1 + e

(k)
i,j−1

] (8.3)

The error term is represented in the form

e
(k)
l,m = Apq sin

(
pπl

m

)
sin

(qπm
m

)
, 1 ≤ p, q ≤ m− 1 (8.4)

Apq is an arbitrary constant. Following from (5.4), we have the following expressions:

e
(k)
i+1,j = Apq sin

(
pπ(i+ 1)

m

)
sin

(
qπj

m

)
= Apq sin

(
qπj

m

)[
sin

(
pπi

m

)
cos

(pπ
m

)
+ cos

(
pπi

m

)
sin

(pπ
m

)] (8.5)

e
(k)
i−1,j = Apq sin

(
pπ(i− 1)

m

)
sin

(
qπj

m

)
= Apq sin

(
qπj

m

)[
sin

(
pπi

m

)
cos

(pπ
m

)
− cos

(
pπi

m

)
sin

(pπ
m

)] (8.6)

e
(k)
i+1,j+e

(k)
i−1,j = 2Apq sin

(
qπi

m

)
sin

(
pπi

m

)
cos

(pπ
m

)
= 2 cos

(pπ
m

)
Apq sin

(
pπi

m

)
sin

(
qπj

m

)
= 2 cos

(pπ
m

)
e
(k)
i,j

(8.7)

e
(k)
i+1,j + e

(k)
i−1,j = 2Apq cos

(qπ
m

)
sin

(
pπi

m

)
sin

(
qπj

m

)
= 2 cos

(qπ
m

)
e
(k)
i,j

(8.8)

Substituting equations (5.7) and (5.8) into equation (5.3) yields:

e
(k+1)
i,j = ξe

(k)
i,j where ξ =

1

4
[2 cos

(pπ
m

)
+ 2 cos

(qπ
m

)
i]

(8.9)
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For stability; ∣∣∣∣∣e
(k+1)
i,j

e
(k)
i,j

∣∣∣∣∣ = |ξ| < 1 (8.10)

This implies that ∣∣∣∣14 [2 cos(pπm )
+ 2 cos

(qπ
m

)
i]

∣∣∣∣ < 1 (8.11)

Let p = q = 1. Therefore,

−1 <
4

4− cos (π/m)
< 1 (8.12)

For stability to be achieved, the above condition must be satisfied.
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Figure 1: This plot shows 3D surface plot showing the solution to the 2-D Laplace’s
equation using the Finite Difference Method with the specified parameters as follows:
Number of steps in space (x): nx = 5, Number of steps in space (y): ny = 5, Number
of iterations: niter = 1000, Width of space step (x): dx = 0.25, Width of space step (y):
dy = 0.25, Range of x: x = [0, 0.25, 0.5, 0.75, 1], Range of y: y = [0, 0.25, 0.5, 0.75, 1]

9 Results
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Figure 2: This plot shows 3D surface plot showing the solution to the 2-D Laplace’s
equation using the Finite Difference Method with the specified parameters as follows:
Number of steps in space (x): nx = 20, Number of steps in space (y): ny = 20,
Number of iterations: niter = 1000, Width of space step (x): dx = 0.0526, Width of
space step (y): dy = 0.0526, Range of x: x = [0, 0.0526, 0.1053, . . . , 1], Range of y:
y = [0, 0.0526, 0.1053, . . . , 1]
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Figure 3: This plot shows 3D surface plot showing the solution to the 2-D Laplace’s
equation using the Finite Difference Method with the specified parameters as follows:
Number of steps in space (x): nx = 100, Number of steps in space (y): ny = 100,
Number of iterations: niter = 1000, Width of space step (x): dx = 0.01, Width of
space step (y): dy = 0.01, Range of x: x = [0, 0.01, 0.02, . . . , 1], Range of y: y =
[0, 0.01, 0.02, . . . , 1]
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10 Conclusions
Here are the general observations based on the results for different values of nx = ny = (5, 10, 20, 50, 100):

Grid resolution increases with nx and ny: As the number of steps in space nx and ny increases,
the grid resolution becomes finer. This means that the interval is discretized into smaller increments,
allowing for a more detailed representation of the solution.

Decreasing step size with increasing nx and ny: With larger values of nx and ny, the width of the
space step dx and dy decreases. This indicates that the distance between adjacent grid points becomes
smaller, resulting in a more precise representation of the spatial domain.

Increasing number of grid points: As nx and ny increase, the number of grid points within the
spatial domain also increases. This leads to a denser distribution of grid points, allowing for a more
accurate approximation of the solution.

Consistency of range in x and y: Despite varying values of nx and ny, the range in x and y
remains consistent from 0 to 1. This ensures that the spatial domain is uniformly discretized across
different resolutions.

Stability:Stability analysis of the laplace’s equation using Von Neumann method shows that stability
is guaranteed when the condition below is satisfied:

−1 <
4

4− cos (π/m)
< 1 (10.1)

11 Recommendations
Optimizing Grid Resolution: Consider the required level of accuracy for the specific problem. Choose
nx and ny values that balance accuracy and computational efficiency. Higher values of nx and ny may
be needed for problems requiring high accuracy.

Efficient Resource Allocation: Be mindful of computational resources and time constraints. Avoid
excessively large values of nx and ny that may lead to unnecessary computational cost. Conduct
sensitivity analyses to identify optimal values.

Consider Problem Characteristics: Tailor the choice of nx and ny to the specific characteristics of
the problem. Problems with intricate features may require higher grid resolutions for accurate representation.

Verification and Validation: Verify the accuracy of the numerical solution against analytical solutions
or experimental data. Perform validation studies to ensure adequate capture of the problem physics by
the chosen grid resolution.

Iterative Refinement: Start with coarse grid resolutions and gradually increase nx and ny as
needed. Assess the impact on solution accuracy and computational cost at each step.
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