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ABSTRACT

Traditional financial forecasting methods often struggle to capture the complex interactions
and emerging patterns that precede financial crises. By leveraging on TDA, this research
aims to uncover potential topological features that might serve as early warning signals for
impending financial crises. The study adopts the utilization of Topological Data Analysis,
an initiative mathematical framework to explore and analyze the inherent topological
structures within financial data set, using secondary data from ”Yahoo Finance API”. The
results of the analysis conducted using Python indicate that persistence homology in TDA
successfully identifies key topology features associated with financial crises, implying
its potential for developing early warning systems in the financial sector. The insights
gained from this analysis could significantly enhance the early detection and proactive
management of system risks in financial market, thereby contributing to more robust risk
assessment and policy formulation strategies.
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1 Introduction

Financial crises are pivotal events characterized by a sudden disruption in the stability of financial markets
or systems. Clearly, a financial crisis refers to a situation where the value of financial institutions or
assets rapidly declines, leading to severe disruptions in the financial systems which is characterized by
stock markets crashes, disruptions in currency values, etc. Financial crises have significant impacts on
economies globally, necessitating robust methodologies for early detection and mitigation.

Financial history is punctuated with numerous market crashes like that of 1929, Black Monday in 1987,
and the more recent 2008 financial crisis. What’s common among these is their apparent unpredictability
and the profound impact they’ve had on global economies. Traditional indicators and models, built on the
assumptions of normalcy, often fail to anticipate these ‘black swan’ events. Here lies the potential of TDA,
which, by its very design, acknowledges and works with data’s inherent complexities.[11]

In the dynamic landscape of finance, the ability to foresee and navigate impending financial crises is
paramount. Managing and preventing financial crises is a key focus of financial institutions and policy
makers, hence this research project delves into an innovative approach, employing Topological Data Analysis
as a tool to enhance the forecasting of financial crises.

TDA is a recent field emerging from various in applied (algebraic) topology and computational geometry
during the first decade of the century [5]. TDA is a new research field that bridges computational methods
with the mathematical theory of topology [34]. TDA is mainly motivated by the idea that topology and
geometry provide a powerful approach to infer robust qualitative, and sometimes quantitative, information
about the structure of data [6].

While traditional data analysis is currently performed by comparing pairwise similarities between objects,
commonly using a metric such as the Euclidean distance, it disregards information such as shapes, including
loops and holes. For instance, a traditional clustering algorithm that connects geometrically close points
will fail to find sets of points that are spatially distant but that present similar structure, or shape.
Historically, topology was the field of mathematics created to study basic properties such as loops and
holes. TDA is a relatively novel approach designed to study and measure certain features of discrete
multidimensional data sets, commonly treated as point clouds embedded in Rn , using a combination of
statistical, computational and topological tools to find shape-like structures in data [5, ?, ?, 7, 8].

For TDA to be applied, data is usually encoded as a discrete geometrical sample naturally embedded in a
predefined topological space. TDA explores results from studying the persistence of certain homological
features, informally k-dimensional holes, that may arise when constructing simplicial complexes born from
our original data set. Accordingly, we use persistent homology [9, 10, 12, 19] as an essential tool to our
application.
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2 Literature Review

The 21st century has proven to be as economically tumultuous as the preceding 2 centuries. This period
has seen multiple crises striking nations, region and entire global economy [30]. In a financial crisis, asset
prices see a steep decline in value, businesses and consumers are unable to pay their debts, and financial
institutions experience liquidity shortages, and examples are stock market crashes, the bursting of financial
bubbles, etc [31]. In recent decades many mainstreams economists appear to have believed that the
financial crises were a thing of the past. They pay little attention to heterodox to researchers like Hyman
Minsky [17] who underlined the intrinsically volatile dynamics of financial markets [17]. Similarly, the more
traditional and rich literature on business cycles clearly demonstrates how important it is to include sections
of in the history of finance(financial crises over time) [3].

In the recent past the macro prudential authorities have developed early warning systems to try and predict
crisis. By constructing such an early warning system, Coudert and Idier [15] showed notably that indicators
associated with property prices, bank credit or debit are good predictors of banking crises, which varies
from other regions. But there are limitations of this tool, adopting this, economists can only forecast crises
whose warning signals are similar to those of past crises and it must contain the greatest number of relevant
indicators in order to cover all aspects of risk, but it greatly limits the choice since it is only possible to
use indicators that are available for a long time periods. For all these reasons, a statistical system will
never be sufficient to automatically predict the crises; it can only contribute to the assessment, use of TDA
independently or in combination with data analysis and statistical techniques will be of great help [4].

Understanding the patterns in financial data is crucial for predicting or forecasting financial crises. For the
following reasons:

• Insight into Relationships: Identifying patterns helps reveal relationships and correlations within
the data. This understanding can be instrumental in making predictions or drawing conclusions about
cause-and-effect.

• Effective Problem Solving: Recognizing patterns allows you to better understand the nature of a
problem or situation. This, in turn, enables more effective problem-solving and decision-making.

• Risk Mitigation: Understanding patterns in historical or current data can help in assessing risks.
By recognizing trends or anomalies, you can anticipate potential challenges and take proactive
measures to mitigate risks.

• Optimizing Processes: Patterns in data often highlight inefficiencies or opportunities for optimization.
Whether in business processes, manufacturing, or any other field, identifying patterns can guide
improvements and increase efficiency

• Data driven decision making: In a data driven approach, understanding patterns ensures that
decisions are based on evidence and analysis rather than intuition alone. This enhances the reliability
and validity of decisions.

• Performance Monitoring: Monitoring patterns over time allows for the assessment of performance
and the effectiveness of strategies. This continuous evaluation helps in adapting and refining decision-
making processes.
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• Predictive Modeling: Recognizing patterns lays the foundation for predictive modeling. By understanding
how variables interact and influence outcomes, you can build models to forecast future trends and
make decisions with a forward-looking perspective.

Financial data often exhibits various patterns that, when analyzed, can provide insights into the health and
stability of the financial system. This empowers decision-makers to navigate complexities, antincipate future
scenarios, and optimize strategies. For best results, employing TDA will serve as a powerful tool to uncover
intricate topological patterns within complex datasets, providing a unique perspective on the global structure
and relationships within the data. This specialized approach can enhance your understanding, particularly
in interdisciplinary fields and scenarios where traditional analytical methods may fall short in capturing the
nuanced features of the data.

TDA is a recent field that emerged from various works in algebraic topology and computational geometry
during the first decade of the century. Although one can trace back geometric approaches to data analysis
quite far into the past, TDA really started as a field with pioneering works of Edelsbrunner et.al [12]
and Zomorodian and Carlsoson [34] in persistent homology and was popularized in a landmark article
in Carlsson [16]. TDA is mainly motivated by the idea that topology and geometry provide a powerful
approach to infer robust qualitative, and sometimes quantitative, information about the structure of data.

Topological Data Analysis TDA [5, 14] refers to a combination of statistical, computational, and topological
methods allowing to find shape-like structures in data. The TDA has proven to be a powerful exploratory
approach for complex multi-dimensional and noisy data-sets. For TDA to be applied, a dataset is encoded
as a finite set of points in some metric space. The general and intuitive principle underlying TDA is based
on persistence of k-dimensional holes, e.g., connected components (k = 0), loops (k = 1), etc., in a
topological space that is inferred from random samples for a wide range of scales (resolutions) at which
data is looked at. Accordingly, persistent homology is the key topological property under consideration
[18, 13].

With the introduction of sensors in everything and online systems with click by click data on all user
activity, data science now touches nearly every field of study. However the traditional techniques of data
analysis have not always kept up with the exploding quantity and complexity of data since they often rely
on overly simplistic assumptions. The field of TDA has attempted to fill this void by producing a collection
of techniques stemming from the idea that data has shape that can be rigorously quantified in order to
investigate data. TDA focuses on the arrangement and proximity of data points rather than relying solely on
numeric attributes. This offers a fresh perspective on data analysis, allowing us to capture and understand
the qualitative relationships that shape our data [32].

The versatility of TDA is evident through its application across diverse range of fields. In biology, TDA
helps researchers understand complex protein structures and gene interactions. In neuroscience, it aids
in mapping the brain’s functional connectivity. In social sciences, it unveils hidden patterns in networks
of relationships. From materials science to economics, TDA is proving to be a valuable tool for gleaning
insights from complex datasets that were previously untapped. Hence TDA, combining it with other methods,
empowers us to see beyond the surface of data. As we navigate the complex world of modern data
analysis, Topological Data Analysis stands as a powerful tool, ready to reveal new insights and enhance
our understanding of the intricate patterns that permeate our data-rich world [32].
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A remarkable property of persistence homology is that both persistence diagrams and persistence landscapes
are robust under perturbations of the underlying data. That is, if the data set changes only little, the
persistence diagrams and/or persistence landscapes move only by a small distance. This feature is a
key ingredient for mathematically 2 well-founded statistical developments using persistence homology.

A standard procedure to compute the persistent homology associated to a point cloud data set relies on
the construction of a filtration of simplicial complexes; though there exists various work considering different
types of assemblies of complexes [5], a valid approach, both theoretical and computationally, is given
by the Vietoris-Rips scheme, which contrives complexes by setting a minimum distance parameter ε for
an edge of a simplex to form, e.g., σ = [p0, ..., pk] forms a k-simplex iff d(pi|, pj) < ε for all i, j. The
basic principle underlying this procedure relies on the fact that altering this distance parameter ε results
in modifying the construction and thus, homological attributes characterizing the simplicial complex are
intrinsically dependent on it.

We say a feature is more significant if it persists for a longer range of parameters, thus considering it relevant
qualitatively towards interpreting an underlying geometry; on the other hand, as features tend to persist
less they are considered to be of minor importance to determine any objective shape and hence, usually
referred to as noise. As features appear and disappear,associated parameters encode a birth − death
pair for every k-dimensional hole. This information is captured in a concise form using the means of a
persistence diagram. Assertively, every point in the diagram records as coordinates the birth and death
of every k-dimensional feature from the corresponding simplicial complex. The geometry of the natural
embedding space of persistence diagrams can be sometimes hard to work with. This is reflected mostly
when we wish to compare persistence diagrams between diverging data sets.

In today’s data-driven world, the amount of information in our fingertips has grown exponentially. As
we grapple with increasingly complex data-sets, traditional data analysis techniques often fall short in
uncovering the complex relationships and the hidden structures within the data but TDA rooted in mathematical
topology, offers a unique perspective. TDA works sufficiently when its applied to data with a higher dimension.
This is done by representing some aspect of the structure of the data in a simplified topological structure,
i.e. the persistence homology (persistence diagram represents loops and holes in the space by considering
connectivity of the data points for a continuum of values).

3 Data Collection

In this study, we collected adjusted closed price from stock in Nairobi Security Exchange NSE! (NSE!) using
Python YFinance, extracting historical data from Yahoo Finance API! (API!). The historical data fetched was
between January 1, 2015 and January 1, 2022 from the Yahoo Finance database. The python code to do
so is shown in listing 1, and this code can be modified to other markets.

Listing 1: A Python code that implements the data collection procedure.

def f e t ch da ta ( t icker name , s t a r t d a t e , end date ) :
” ” ” Fetch stock data from Yahoo Finance . ” ” ”
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raw data = y f . download ( t icker name , s t a r t = s t a r t d a t e , end=end date )
ad jus ted c lose = raw data [ ’ Adj Close ’ ] . dropna ( )
p r i ces = ad jus ted c lose . values
l o g r e t u r n s = np . log ( p r i ces [ 1 : ] / p r i ces [ : − 1 ] )

return ad jus ted c lose , l o g r e t u r n s

4 Data Cleaning and Preprocessing

The elegant art of data preprocessing not only enhances the overall analytical process but also ensures
that the results are both accurate and reliable, paving the way for innovation and success. In our research
project, after collecting the raw data, the data needed to be cleaned. It appeared that there was a data point
with a value of 0.20499999821186066, which might be an incorrect value or an outlier, so we removed it
from the list. After cleaning, we ended up with the times series data for 1821 distinct stocks. We used the
python code below for cleaning;

Listing 2: A Python code that implements cleaning. label

s tock da ta = s tock da ta [ s tock da ta [ ’ Adj Close ’ ] !=0.20499999821186066]

Figure 2 shows the time series after cleaning.

5 Topological Model

In our research project, we present an approach to data analysis that leverages the rich mathematical
framework of the topological model. Traditional methods often struggle to capture the underlying structures
and relationships within complex datasets, particularly those exhibiting high dimensionality or noisy characteristics.
Recognizing these challenges, we turn to the topological model, a powerful paradigm that offers a fresh
perspective on data analysis.
By embracing principles from algebraic topology, the topological model allows us to explore the inherent
geometric properties of our dataset in a manner that transcends traditional statistical techniques. In this
project, we harness the capabilities of the topological model to unravel the hidden complexities within our
data and extract meaningful insights that might otherwise remain elusive.
In this section, we outline the procedure we’ve used within the topological model, detailing the steps involved
and the rationale behind our approach. Through this innovative method, we aim to push the boundaries of
data analysis and unlock new avenues for understanding and interpretation. The procedures are shown in
a flowchart below.

i. Embedding of the time series into a point cloud and construction of point cloud sliding windows.

ii. To create a filtration on each window to provide a developing structure encoding each window’s
geometrical shape.
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Figure 1: Time Series Plot of NSE Adjusted Close Prices after Data Cleaning.

7



Vol 1(Iss. 1),pp.1-17,2024 African Scientific Annual Review https://www.asarev.net

iii. Using persistence homology, extracting the related features of those windows.

iv. By measuring the difference between these features from one window to the next, comparing each
window.

v. Constructing an indicator of crash based on this difference.

Time Series

Takens Embedding

Vietoris Rips Complexes

Persistence Diagram

Wasserstein Distances

Topological Indicator
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6 Analysis and Results

We want to analyze the trend of a stock, we can view it as a node in a topological space, with prices changes
represented by edges. By analyzing these edges using topology, we determine the volatility, complexity,
and stability of the stock price. If the stock price is highly volatile, then its topological space may be more
complex and require more edges to describe. If the stock price is more stable, then its topological space
is may be simpler and require fewer edges to describe. The application of topology in financial market
analysis is not limited to stock markets. It can also be applied to other data analysis in financial markets,
such as interests rates and foreign exchange rates.

At its core, TDA asks a simple yet profound question: What is the intrinsic shape or structure of my data?
It doesn’t care about the distances or specific locations as much as how data point are connected and how
the cluster together.

6.1 Persistence Homology
Persistence Homology is one of the key tools in TDA. At a high level, it helps us understand the ’holes’ in our
data at various scales. Mathematically, persistence homology is captures by a diagram called persistence
diagram. It’s a collection of intervals, where each interval represents a feature (like a hole) in the data. The
start and end of an interval tells us when a feature appears and when it disappears as we change scale.

[PH(D) = {[b,d] | b is birth time, d is death time of a feature in data D}]

6.1.1 Generating Persistence Diagrams

First we slice the time series data by taking segments of our log-return data, we aim to compare consecutive
periods, understanding how the market’s structure evolves. Persistence diagrams are topological constructs
capturing the birth and death of ”features” represent patterns or structures in price changes. The birth and
death of such features corresponds to the emergencies or disappearance of these patterns.
The persistence diagram is a way of summarizing the topology of this complex in a concise and interpretable
way. Each point in the diagram represents a “homology class”, which roughly corresponds to a loop or
higher-dimensional hole in the complex. The coordinates of the point correspond to the “birth” and “death”
times of the homology class, which represent the scales at which the loop or hole exists.
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Figure 2: Persistence Diagram of segment one.

Figure 3: Persistence Diagram of segment two.
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Each point in a persistence diagram represents a topological feature that appears and disappears as
the scale of observation changes. These points are usually denoted by (birth, death) pairs, where birth
represents the scale at which the feature is born or first appears, and death represents the scale at which
it disappears. The diagonal line y = x often serves as a reference, where points above this line represent
features that persist for a longer duration.

The birth of a feature refers to the scale at which it emerges or becomes noticeable in the dataset, while
death refers to the scale at which it ceases to exist or merges with another feature. The distance between
the birth and death points indicates the lifespan or persistence of the topological feature. Persistence
measures the significance or robustness of a topological feature. Features with longer persistence are
considered more stable or significant as they persist across a wider range of scales.
The comprehensive understanding of how the data structure evolves over time can be summarized as
follows:

• Persistence diagrams derived from the provided code offer a insightful information for analyzing the
structure and dynamics of the log returns data across two segments. By analyzing these diagrams,
we gain insights into how the topological features within the data change, persist, emerge, and
disappear across different segments.

• The first diagram provides a snapshot of the initial segment’s structure, highlighting its connectivity,
dominant trends, transient fluctuations, and overall complexity. Comparatively, the second diagram
enables us to track the evolution of these features over time, showcasing how they either persist or
transform across subsequent segments. Points that align closely between the two diagrams indicate
consistent trends, while new points in the second diagram reveal emerging features.

• Conversely, the absence of points in the second diagram suggests the disappearance of certain
features. This dynamic perspective allows for a deeper understanding of how the underlying structure
of the log returns data unfolds over time, offering valuable insights for analyzing trends, identifying
anomalies, and informing decision-making processes in the context of stock market dynamics.

6.2 Wasserstein Distance

Think of it as a measure to compare two Persistence Homologies. Mathematicaly, given two data points, the
Wasserstein Distance calculates the ”minimal moving cost” to match the points from one set to the other.
Formally, given two persistence diagrams D1 and D2, the Wasserstein distance measures the minimal effort
to match features from D1 to D2.

Wp(D1, D2) = (infγ∈Γ(D1,D2)

∑
x∈D1

∥ x− γ(x) ∥pp)1/p ( minimal effort to match points from D1 to D2)

We employ the Wasserstein distance on financial time series data. The essence is to compare and contrast
two sets of points, segments of log returns in this case, to qualify the divergence in their structural patterns.
This metric, while being inherently dynamic, offers insights into shifts in market dynamics, potentially hinting
at unforeseen market movements.
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The Wasserstein distance measures the ’cost’ of transforming one set of points to another - in this case,
segments of log returns. A spike in this distance can hint at significant market shifts. Taken together, both
segments underscore the transformative power of topological method in interpreting complex datasets.

6.2.1 Computing Wasserstein Distance

The computation of Wasserstein Distance serves as a pivotal analytical tool for understanding the dynamics
within financial time series data. This metric, originating from the field of TDA, facilitates the comparison of
two Persistence Homologies, each representing the topological features inherent in consecutive segments
of log returns. By quantifying the ”minimal moving cost” required to match features between these homologies,
the Wasserstein Distance offers a quantitative measure of structural divergence or similarity in the market’s
behavior over time. Through its application, we gain insights into the evolution of market patterns, allowing
us to identify significant shifts or anomalies in market dynamics. Moreover, the incorporation of visualizations
depicting the Wasserstein Distance over time enhances our ability to interpret and analyze these structural
changes.

7 Results

Figure 3 and 4 shows the temporal analysis of NSE through topology.
Figure 3 showcases the NSE stock prices over time. The puntunctuated red markers highlights significant
topological shifts in the market structure. These markers signify periods where consecutive segments of
log returns have substantial topological differences, potentially pointing to key market events or anomalies.
To be more clear, red dots indicates points where the Wasserstein distance exceeds the threshold. This
plot helps visualize price movements and significant changes.

Figure 4 is a plot of Wasserstein Distances between consecutive segments of log-returns, providing a
quatitative measure of these topologival changes. Peaks in this graph may correspond to structural shifts in
market dynamics. The green dashed line represents the threshold value. Any points above this line indicate
significant changes in the log returns.

Together, these visualizations offer a unique, topological perspective on market behaviours, revealing
hidden intricacies not immediately discernible through conventional analyses.
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Figure 4: NSE Adjusted Close prices over time.

Figure 5
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8 Conclusion and Recommendations

Can we predict market crashes with topology? The answer is multifaceted. While the topological method
does highlight periods of significant shifts that sometimes precede market downturns, it’s not an infallible
predictor. Markets are influenced by myriad factors, many of which are unpredictable by nature. Our
approach offers a novel angle, but as with all quantitative approaches in finance, it’s not a crystal ball.

In this project, we explored the application of TDA in forecasting financial crises. The objective was to
leverage the topological properties of financial time series data to identify patterns and signals indicative
of impending crises. We began by collecting daily adjusted closed prices from NSE and analyzed it using
persistence homology.

Next, we employed techniques from TDA to analyze the topological features of the data. Specifically, we
utilized persistent homology to capture the evolution of topological structures across different time periods.
By representing the data as a simplicial complex and computing its persistent homology, we were able to
extract topological signatures that characterize the underlying dynamics of the financial system.

To enhance the interpretability of our results, we employed dimensionality reduction technique, persistence
homology, to visualize the high-dimensional data in a lower-dimensional space. This facilitated the identification
of clusters and patterns that corresponds to critical states or transitions in the financial system.

8.1 Findings

Our analysis revealed several noteworthy findings:

(i.) Firstly, our findings indicate that TDA offers a novel and promising approach to financial forecasting.
By capturing the topological features of complex financial networks, TDA allows us to gain insights
that may not be discernible through traditional statistical methods alone. The ability of TDA to detect
subtle changes and disruptions in the underlying structure of financial data provides a valuable tool
for anticipating and mitigating systemic risks.

(ii.) Secondly, our results demonstrate the effectiveness of persistent homology—a fundamental concept
in TDA—in identifying critical topological features associated with financial crises. By analyzing the
persistence diagrams generated from various financial datasets, we were able to identify persistent
topological signatures that precede periods of instability and crisis. This suggests that persistent
homology has the potential to serve as a powerful tool for early warning system development in the
financial sector.

(iii.) Furthermore, our project highlights the importance of interdisciplinary collaboration in addressing
complex challenges such as financial crisis forecasting. By bridging the gap between mathematics,
finance, and computer science, we have been able to develop innovative methodologies and approaches
that have the potential to significantly enhance our understanding of financial systems and improve
risk management practices.
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8.2 Recommendation
The findings of this study have several implications for policymakers, financial institutions, and risk managers:

i. Early Warning Systems: The identification of topological anomalies can inform the development of
early warning systems for financial crises, enabling preemptive measures to mitigate systemic risks
and safeguard financial stability.

ii. Risk Assessment: TDA-based methods can complement existing risk assessment frameworks by
providing a novel perspective on the interconnectedness and resilience of financial systems.

iii. Model Integration: Future research may explore the integration of TDA techniques with traditional
econometric models to enhance the accuracy and robustness of financial crisis forecasting models.

iv. Further Research: The project lays the groundwork for future research into TDA’s application in
financial forecasting. Continued exploration into advanced TDA methods and their integration with
machine learning algorithms could yield even more accurate and robust crisis prediction models.
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