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ABSTRACT 
The presence of metals in concentrations that exceed safe thresholds have the capacity to endanger food 

production and human health security through bioaccumulation in animals and plants. The antagonistic 

effects of the potentially toxic metals (PTMs) may potentially cause a decline in soil fertility which eventually 

results in crop growth decline, impaired development and decreased productivity. This study seeks to evaluate 

the concentration of PTMs in soils of sandstone origin in a tropical rainforest in Cross River State, Nigeria. A 

profile pit was sunk in each of crest, middle slope and valley-bottom along a landscape in the Agoi Ibami-

Mfamosing area. The landscape extended from the Agoi Ibami area to Mfamosing. Soil samples were collected 

and subjected to physico-chemical analyses and heavy metals extraction by aqua regia mixture of 3 parts of 

HCl and 1 part of HNO3. The extract was analyzed using inductively coupled plasma optical electron 

spectroscopy (model iCAP 7000). The particle sizes were dominated by sand with amounts exceeding 600 g kg-

1, while bulk density was lower than 1.6 Mg m-3 and soil pH ranged from strongly acid to neutral (5.3-7.2) 

across all sampled locations. Amongst the potentially toxic metals studied, arsenic (As), boron (B), barium 

(Ba), beryllium (Be), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), antimony 

(Sb), vanadium (V) and zinc (Zn) were reported in the study area, however, only Be (1.85-4.16 mg kg-1), Cd 

(0.21-1.88 mg kg-1) and Sb (1.87-4.48 mg kg-1) exceeded the required threshold across the entire study area. 

Lead concentration was found to exceed the required threshold only in Agoi Ibami. Hence, Be, Cd, Sb and Pb 

are most likely to be a threat to the activities of micro and macro fauna and flora in the area. There is therefore 

the need to embark on a full-scale evaluation with larger sample size to ascertain the status of potentially toxic 

metals’ concentration in the Cross River State tropical rainforest soils.  
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INTRODUCTION 

Soil is a dynamic non-renewable natural resource 

that is necessary for the survival of man. Soils 

contain natural levels of heavy metals. This is as a 

result of the lithology from which the soils are 

derived (De Temmerman et al., 2003). However, 

human activities like agricultural activities such as 

pesticides, fertilizers, insecticides and fungicides 

usage, mining, aerial deposition from industrial 

sites, construction sites, surface depositions at 

waste-sites as well as from automobiles have 

contributed in raising the natural levels of these 

metals (Kang et al., 2020; Zhao et al., 2022). The 

presence of potentially toxic metals (PTMs) that 

exceed safe thresholds may be a threat to food 

security as the metals become bio-accumulated in 

exposed crops and animals. For instance, Zandsalimi 

et al. (2011) found a positive correlation between 

arsenic levels in soils and plants. This accumulation 

of the PTMs in soils tends to cause a decrease in soil 

productivity as the PTMs interact with nutrients 

leading to a decline in crop growth, development and 

yield (Kabata-Pendias, 2011; Tyopine et al., 2022).  

Plants take up various metal complexes leading 

to the bio-accumulation of toxic metals in their 

tissues. When these crops are eventually consumed 

by man, it may result in health-related complications. 

Several international organizations (World Health 

Organization, Food and Agriculture Organization of 

the United Nations, etc.) collaborate to shield man 

away from excessive metals intake, especially Cd 

and Pb in plant food, for which threshold limits have 

been established (Kabata-Pendias and Mukherjee, 

2007). Potentially toxic metals entering plants in 
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active forms alter their metabolic processes and 

become bio-accumulated or stored in inactive forms 

in cells, tissues and membranes, leading to changes 

in the chemical makeup of organisms without 

causing physical injury (Jaishankar et al., 2014). 

Such nonvisible changes are even more dangerous 

to humans upon consumption. 

Despite variability in toxicity levels, mercury, 

copper, nickel, lead, cobalt, cadmium, silver, 

beryllium and antimony have been identified as the 

most lethal metals in plants, animals and soils 

(Kabata-Pendias, 2011). Cadmium is eco-toxic and 

exhibit adverse effects on biological processes in 

plants, man and other animals, and causes detrimental 

effects on the ecosystem and quality of food 

(Kabata-Pendias, 2011). Potentially toxic metals, 

particularly Cd, Cu, Zn, and Ni occur in available 

forms and are bioavailable in tropical soils (Kabata-

Pendias, 2011), whereas Ma (1983) reported 

harmful concentrations of Zn at 3500 mg kg–1 in 

environments where earthworms occur in large 

numbers compared to other soil faunal biomass. 

The tropical rainforest areas of Cross River State 

is of rich biodiversity due to soil micro flora/fauna, 

the plants growing on the soil, and the animals that 

rely on the plants (Ediene et al., 2016). Most of such 

plant and animal species are consumed by man 

several kilometers away without any consciousness 

of the organism’s chemical makeup. It is, therefore, 

necessary to study the sandstone soils in Agoi 

Ibami-Mfamosing rainforest landscape to ascertain 

the concentration of PTMs. The objective of this 

study was to ascertain the natural concentration of 

potentially toxic metals in soils of sandstone origin 

in a tropical rainforest in Cross River State - Nigeria. 

 

MATERIALS AND METHODS 
Study Area 

Agoi Ibami and Mfamosing are located at 05° 42′ 
40′′, 05° 44′ 20′′ N and 08° 10′ 0′′, 08° 11′0′′ E, and 

05° 3′ 30′′, 05° 5′ 0′′ N and 08° 30′ 0′′, 08° 32′30′′ E, 
respectively. Agoi Ibami and Mfamosing are located 

about 119 and 44.6 km away from Calabar, the 

capital city of Cross River State, respectively. Both 

locations are agrarian communities that are found in 

the interlocking Yakurr-Akamkpa area in the tropical 

rainforest of Cross River State. Farming is the major 

occupation of the inhabitants of the area with crops 

like cassava, oil palm, yam, plantain and banana 

commonly cultivated. However, mining, hunting and 

wood logging are some common activities in the area. 

The lithology of Cross River State is best defined 

by a complex of igneous and metamorphic rocks as 

well as Sedimentary Basin without any clear 

boundary between both geologies (Figure 1) 

(Ekwueme, 1987). Sediment-fill of Cretaceous to 

Tertiary ages in Nigeria’s Niger-Delta characterize 

the Sedimentary Basin (Fatoye and Gideon, 2013). 

Recent alluvial sediments dominate the coastal areas 

adjoining rivers and streams whereas, limestone and 

sandstone lithologies of Cretaceous and Tertiary 

ages intercalate with shale and siltstone, as well as 

fine-grained sandstone (Ofem et al., 2020). The 

study areas are geologically characterized by their 

unique limestone, sandstone, and alluvial lithologies.  

The climate of Cross River State is humid 

tropical (Ofem et al., 2022). Rainfall amount ranges 

from minimum amounts of 1760 and 2109, to 

maximum of 2684 and 3771 mm per year in Agoi 

Ibami and Mfamosing, respectively (Sambo et al., 
2016). Similar temperature of 23 to 32 °C 

characterize both locations. 

 

Field and Laboratory Procedures 

The digital elevation model (DEM) of the study area 

was obtained at 30 m from USGS explorer. From the 

DEM, contour-topographic map of the study area 

was generated highlighting various high and low 

points using ArcGIS 10.8. A soil pit was dug in the 

crest, middle-slope and valley positions extending 

from Agoi Ibami to Mfamosing (Figure 2). Within 

each position, the profile pits were sunk by the free-

soil survey method. The soil pits were excavated at 

length of 200 cm and breadth of 150 cm to a variable 

depth of x cm depending on the depth to water table 

and impenetrable layer. Three profiles were dug for 

the research: two in Agoi Ibami (AI1 and AI2) and 

one in Mfamosing (MF1). The field study lasted 

three months, from December 2018 to February 2019. 

Ten soil samples were collected from predetermined 

depths of 0-30, 30-60, 60-90, 90-120, 120-150, 150-

180 and 180-200 cm, and processed for laboratory 

analyses. Vertically-drilled core cylinder samples 

were used for bulk density determination. The core 

samples were saturated and dried to constant weight 

in an oven at a temperature of 105 °C. Then, soil 

bulk density was calculated by dividing mass of dry 

soil by volume of soil in core (Obi and Obalum, 2016). 

Soil samples from three points within a depth range 

were bulked to form composite samples.  

The samples were air-dried and the peds crushed, 

made to pass through 2-mm aperture sieve before 

laboratory analyses. Particle size analysis was by 

Bouyoucous hydrometer method. Soil pH-H2O was 

determined in a soil: water ratio of 1:2.5 with a glass 

electrode pH meter. Organic carbon content was 

obtained using the procedures of Walkley–Black 

modified acid–dichromate, while basic cations in the 

soils’ exchange complex were extracted with 1 N 

ammonium acetate at neutral pH. The Ca and Mg in 

the extract were ascertained by the Versenate EDTA 

titration method, and K and Na by the flame photo-

meter method. Soil cation exchange capacity (CEC) 

was obtained by extraction using 1 N NH4OAc at pH 

= 7.0. All laboratory analyses were carried out by 

the procedures in Soil Survey Staff (2014). Pseudo-

total concentrations of arsenic (As), (boron) B, 

barium (Ba), beryllium (Be), cadmium (Cd), cobalt 

(Co), chromium (Cr), copper (Cu), nickel (Ni), 

antimony (Sb), vanadium (V) and zinc (Zn) were 
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extracted from the soils with aqua regia mixture. The 

mixture is comprised of 3 parts of HCl and 1 part of 

HNO3. The extract was analyzed using inductively 

coupled plasma optical electron spectroscopy 

(model iCAP 7000) and separated into three 

fractions and analyzed in triplicates and the average 

taken. The extraction and recording procedures are 

reported in Cools and De Vos (2016).  

 

Statistical Analysis 

Correlation analysis was performed in the 

STATISTICA 12 software environment to check the 

relationship between soil properties. Also, simple t-
test was performed to check for significant (p < 0.01 

or 0.05) difference between landscape positions. 

 

Figure 1: Geology map of Cross River State 
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    Figure 2: Topography and DEM maps of Cross River State indicating Agoi Ibami - Mfamosing 

 

RESULTS AND DISCUSSION 
Physical and Chemical Soil Properties 

Physicochemical properties of the soils are shown in 

Table 1. The soils were characterized by sand-sized 

particles. Sand fraction exceeded 600 g kg–1 at all 

depths irrespective of landscape positions. However, 

clay amount increased with depth as also reported 

for coarse-textured soils of the derived savanna 

(Obalum et al., 2013a), whereas silt content varied 

in an irregular manner within the soil profile. High 

amount of sand in the soils reflects its sandstone 

lithology (Souza et al., 2019). Such sand-dominated  

 

soils are defined by high porosity, infiltration rate, 

and leaching of basic cations, and when occurring in 

high-rainfall areas like the study location, generally 

are of low fertility status (Ofem et al., 2021; Ifeanyi-

Onyishi et al., 2024). Clay and sand amounts varied 

significantly (p < 0.05) between the surface soils of 

the landscape positions such that highest clay content 

was in the middle slope and sand content in the crest 

(Table 1). This suggests greater ease of movement 

of clay particles compared to sand. Least sand in the 

valley bottom is due to the difficulty with which 

sand is carried down the slope by surficial erosion. 
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Sandstone derived soils are sandy, erodible, have 
low soil pH, and are marginal in terms of 
productivity (Bulktrade, 1989; Udoh, 2015; Ofem 
et al., 2020). Results that are similar to those in this 
study were reported by Laffan et al. (1998) in the 
soils derived from sandstone in New Zealand. 

Bulk density was between 1.0 and 1.6 Mg m–3 

and tended to increase with depth. Highest values at 

the surface were obtained in the middle slope and 

significantly varied from other landscape positions 

at p < 0.05 (Table 1). Bulk density values in the 

surface soils ranged from 1.1 to 1.4 Mg m–3 which is 

considered optimum for plant growth and root 

penetration (Donahue et al., 1983; Esu, 2010).  

Soil pH (H2O) ranged from 5.3 to 7.2. These 

values are within the strongly acid to neutral range 

on the scale of Holland et al. (1989). Such soil pH is 

optimum for microbial activities and the availability 

of most soil nutrients. Low pH (< 5.5 pH units) in 

the studied soils is as a result of low soil base status 

(Souza et al., 2019) emanating from leaching. Such 

values indicate that high concentrations of exchange- 

able Al3+ and H+ are present in the soils to influence 

plant growth (Esu, 2010). Soil organic carbon content 

was generally below 15 g kg–1 with values ranging 

from 0.69 to 13.73 g kg–1 in the soils and decreased 

steadily with soil depth (Table 1). The values were 

rated low to medium on the scale of Holland et al. 
(1989). The decreasing values with soil depth indicate 

the dominance of organic matter accumulation over 

mineralization in the tropical rainforest area. Thus, 

low soil organic carbon in the tropics is often 

attributed to organic matter mineralization, loss to 

leaching, and bush burning. The values obtained in 

this study are within the range of 0.80-15.4 g kg–1 

obtained by Ofem et al. (2020) and Bulktrade (1989) 

on similar soils in the Bekwarra area. 

The exchange complex of the soils was mainly 

occupied by exchangeable Ca such that Ca > Mg > 

K > Na with ranges of 0.8-6.0, 0.4-2.2, 0.0-0.11 and 

0.0-0.06 cmol(+) kg–1, respectively. Exchangeable 

Ca was higher in the valley than the crest and middle  

slope positions, however, the values did not vary 

significantly. The concentrations of Ca and Mg in 

the exchange complex were rated medium, whereas 

K and Na were rated low on the scale of Holland et al. 
(1989). The soil exchangeable bases, particularly Ca 

and Mg are weakly held in the soil exchange complex 

(Ofem et al., 2021). Such weak attachments 

predispose the cations to easy leaching especially as 

the soils are porous and sandy. Soils that are leached 

of K+, especially those with coarse soil textures may 

not be very suitable for crop production in the 

tropics (Ofem et al., 2016). In this current study, 

significant variation in exchangeable Na and K in 

the surface soils was observed. The highest values 

were obtained in the valley bottom position (Table 1). 

A study by Ofem et al. (2020) reported 4.0-7.6 and 

0.8-1.8 cmol(+) kg–1 for the concentration of Ca and 

Mg in the exchange complex of surface sandstone 

derived soils of Bekwarra area.  

Cation exchange capacity was higher (though 

not significantly) in the valley bottom (19.2-19.6 

cmol(+) kg–1) than the crest (12.0-19.6 cmol(+) kg–

1) and middle slope (4.4-15.2 cmol(+) kg-1) positions 

with values in the crest and middle slope positions 

increasing regularly in a similar fashion as the clay 

amount with r = 0.39 at p < 0.05, compared to r = –
0.13 with organic carbon (Table 2). Comparatively 

higher values were also obtained in the subsurface 

soils. Based on the rating scale of Holland et al. 
(1989), the crest and valley bottom soils are medium, 

while the middle slope soil is low. Values of CEC 

below 8.8 cmol(+) kg–1 were reported in an earlier 

study by Souza et al. (2019) in Brazil, while Ofem 

et al. (2020) reported a range of 14-50 cmol(+) kg–1 

for similar sandstone-derived soils. Udoh (2015) 

reported lower values of CEC for similar soils in the 

Niger Delta of Nigeria. The relatively higher CEC 

values in subsurface soils like the clay distribution 

with depth suggests that the soils are of low structure 

stability and points at clay and not organic matter as 

a likely factor responsible for the soils exchange 

capacity (Obalum et al., 2013b; Ofem et al., 2020). 

Table 1: Selected physical and chemical properties of the soils 
Soil depth 

(cm) 

Clay Silt Sand BD pH SOC Na K Mg Ca CEC 

g kg–1 (Mg m–3)  g kg–1 cmol(+) kg–1 

Agoi Ibami: Crest: Sandstone (N05o43.435ʹ, E008o09.029 ʹ, 93 m) 
AI1 0-30 100 60 840 1.19 7.2 8.92 0.05 0.09 1.0 3.9 12.0 

AI1 30-60 140 80 780 1.46 6.4 3.43 0.02 0.05 1.2 2.0 17.6 

AI1 120-150 260 70 670 1.59 5.3 2.1 0.02 0.05 0.5 1.3 18.6 

AI1 180-200 290 70 640 1.53 5.4 2.4 0.02 0.05 0.8 0.8 19.6 

Agoi Ibami: Middle slope: Sandstone (N05o44.386ʹ, E008o10.660 ʹ, 80 m) 
AI2 0-30 160 120 720 1.35 6.7 7.55 0.04 0.07 1.4 1.6 4.4 

AI2 30-60 160 100 740 1.59 5.7 4.12 0.02 0.06 0.8 1.6 5.2 

AI2 60-90 180 100 700 1.59 5.7 4.12 0.02 0.06 0.8 1.6 5.2 

AI2 90-120 220 140 640 1.49 6.5 3.43 0.02 0.05 2.2 5.6 15.2 

Mfamosing: Valley bottom: Alluvium (N05o04.714ʹ, E008o30.541 ʹ, 58 m) 
MF1   0-30 140 180 680 1.29 6.6 13.73 0.06 0.11 0.6 6.0 19.2 

MF1 60-90 200 130 770 1.39 5.6 0.69 0.0 0.0 0.40 5.6 19.6 

t-ratio (p = 0.05) 0.017* NS 0.004* 0.001** 0.001** NS 0.013* 0.016* 0.049* NS NS 

SOC - soil organic carbon, BD - bulk density, CEC - cation exchange capacity;  

*significant at p < 0.05, **significant at p < 0.01, NS - not significant 
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Concentrations of Potentially Toxic Metals 

Metals concentrations in the soils are presented in 

Table 3. Arsenic had concentration ranging from 

1.35 from 2.03 mg kg–1, boron concentration ranged 

from 1.85 to 2.11 mg kg–1, while barium ranged 

from 32.98 to 1076.79 mg kg–1 (Table 3). The 

contents of As and B were less than the respective 

world soil averages of 6.83 and 42.0 mg kg–1 

(Kabata-Pendias, 2011). However, values of Ba 

(1076.79 mg kg–1) exceeded the world soil average 

of 460 mg kg-1 in AI1 (120-150 cm). Areas with low 

anthropogenic activities such as the tropical rainforest 

areas adopted for the current study but having raised 

concentrations of Ba require an evaluation to 

examine the mobility and bioavailability of Ba 

(Biondi et al., 2011). Nriagu et al. (2007) opined that 

high toxicity of As is a threat to human health and 

global ecosystems. The average of As in the earth’s 
crust is 1.8 mg kg–1, and in untampered soil bodies 

falls below 10 mg kg–1 (Mench et al., 2009). Arsenic 

often gets accumulated since it has low mobility in 

soils (Mench et al., 2009; Beesley and Marmiroli, 

2011). In agreement with these results, Njoku et al. 
(2021) reported that As concentration in southeastern 

Nigeria suggests extremely polluted conditions. 

Cobalt, chromium, copper, nickel and lead had 

concentrations values with ranges of 0.50-9.22, 

1.63-8.38, 3.44-16.23, 1.25-14.44 and 4.97-36.04 

mg kg-1 compared to their respective world soil 

averages of 11.3, 59.5, 38.9, 29.0 and 27.0 mg kg–1, 

respectively (Table 3). Amongst these metals, Cr 

recorded the highest mean value whereas Co 

recorded the lowest mean values. This negates the 

report of Tyopine et al. (2022) in Ikwo soils that Sb 

> B > As. However, Pb contents in AI1 (180-200 cm) 

exceeded 27.0 mg kg–1 representing the world soil 

average. The transfer potential of cobalt from soil to 

fruits, seeds, leaves, roots and other edible parts of 

crops is slow (Luo et al., 2010). The metal has been 

reported to play important roles in human health. 

However, in excess concentrations, Co can result in 

damages to the lungs and heart (Agency for Toxic 

Substances and Diseases Registry, 2004). Positive 

correlation of Co with Mg2+ (Table 2) indicates 

increasing values of Co when Mg2+ increases in 

soils. Prolonged exposure to raised doses of Cr may 

cause detrimental effects to the liver and kidney. 

Soils with such raised concentrations may rarely be 

remediated in-situ as the process can be quite 

complicated (Palmer and Wittbrod, 1991; Pagilla 

and Canter, 1999). It would be especially important 

to control a further buildup in order to regulate 

raised concentrations of Cr in the soil.  

The values of Ni, Pb and Zn in this study were 

comparatively higher with ranges of 0.98-14.14, 

4.97-36.04 and 7.93-25.39 mg kg–1, respectively, 

while Cu and Cr were comparatively lower than 

those reported by Santos and Alleoni (2013) with 

ranges of 3.44-16.23 and 0.86-8.38 mg kg–1, 

respectively. Njoku et al. (2021) reported polluted 

concentration of Ni in southeastern Nigeria, while 

Santos and Alleoni (2013) obtained the concentrations 

of 2.1 mg kg–1 (Ni), 9.0 mg kg–1 (Pb), 3.0 mg kg–1 

(Zn), 20.6 mg kg-1 (Cu) and 44.8 mg kg–1 (Cr). 

According to Fishet (2014), raised contents of Cu in 

soils is mainly due to the activities of man. For 

example, mining and agricultural use of chemicals 

farmlands most often introduce these PTMs to soil 

bodies. Raised levels of Ni adversely affect the man 

by degrading the immune and reproductive systems 

(Agency for Toxic Substances and Diseases Registry, 

2005). The mobility of Ni and its potential for 

bioavailability is among the least compared to other 

PTMs (Ma and Rao, 1997), hence its low concen-

Table 2: Concentrations of potentially toxic metals in the studied soils 
Soil depth  

(cm)  

As B Ba Be Cd Co Cr Cu Ni Pb Sb V Zn 

mg kg–1 

Agoi Ibami: Crest: Sandstone (N05o43.435ʹ, E008o09.029 ʹ, 93 m) 
AI1 0-30 2.03 2.11 243.54 1.98 0.21 0.62 5.34 16.23 1.93 15.03 1.87 7.48 9.87 

AI1 30-60 1.85 1.85 274.75 1.85 0.44 0.50 6.09 14.51 1.72 13.98 2.25 11.16 12.68 
AI1 120-150       1.66 1.85 1076.79 1.85 0.56 0.50 6.74 9.76 1.25 11.27 2.25 14.63 11.67 

AI1 180-200       1.35 1.85 180.45 1.85 1.42 0.50 8.38 3.87 2.35 36.04 3.54 21.02 13.36 

Agoi Ibami: Middle slope: Sandstone (N05o44.386ʹ, E008o10.660 ʹ, 80 m) 
AI2 0-30 1.85 1.85 122.02 1.85 0.21 0.50 0.86 5.12 0.98 4.97 2.25 1.43 7.93 

AI2 30-60 1.85 1.85 84.96 1.85 1.88 0.50 3.94 7.12 5.24 15.93 4.48 7.48 22.35 

AI2 60-90 1.85 1.85 270.98 1.85 1.21 0.50 1.63 5.87 3.47 11.50 2.25 4.80 19.51 
AI2 90-120 1.85 1.85 296.53 4.16 1.51 9.22 2.41 16.14 14.14 23.14 2.25 6.21 25.39 

Mfamosing: Valley bottom: Alluvium (N05o04.714ʹ, E008o30.541 ʹ, 58 m) 
MF1 0-30 1.85 1.85 32.98 1.85 0.73 0.50 5.67 3.44 4.81 12.72 3.64 7.93 18.25 
MF1 60-90 1.85 1.85 47.87 1.85 0.72 0.50 6.58 8.22 5.60 14.31 2.25 7.85 25.35 

t-ratio (p = 0.05) 0.001** 0.002* NS 0.005* NS 0.005* NS NS NS NS 0.041* NS NS 

World soil 
average1 

6.83 42 460 1.34 0.41 11.3 59.5 38.9 29 27 0.67 129 70 

Threshold  

value2 
5 NA NA NA 1.0 20 100 100 50 60 2 100 200 

Lower  

guide value2 
50e NA NA NA 10e 100e 200e 150e 100e 200e 10t 150e 250e 

Higher  
guide value2 

100e NA NA NA 20e 250e 300e 200e 150e 750e 50e 250e 400e 

Source: Ministry of the Environment, Finland (2007) 2, Kabata-Pendias (2011) 1. e: ecological risks, t: health risks  

*significant at p < 0.05; **significant at p < 0.01, NS - not significant 
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tration in the studied soils. Though Pb occurred in 

low concentration in the soils except in AI1 (180-

200 cm). It is important to note that even at low 

exposure levels, Pb can affect the central nervous 

system especially in children, and cause high blood 

pressure, kidney disease and cancer (International 

Agency for Research on Cancer, 2006; Agency for 

Toxic Substances and Diseases Registry, 2007). 

Vanadium (1.43-21.02 mg kg–1) and zinc (7.93-

25.39 mg kg–1) had concentrations below world soil 

averages of 129 and 70 mg kg–1, respectively. The 

relatively low values of V and Zn indicates that the 

metals have low potentials for adverse soil health 

effects. Furthermore, positive correlation of vanadium 

with clay and CEC (Table 2) indicates the likelihood 

for increasing vanadium when the soil inorganic 

surface area is improved. PTMs in soils that are 

minimally influenced by man are usually below 

toxic concentration levels and do not pose threats to 

man, and other components of the ecosystem 

(Paye et al., 2010; Lu et al., 2012). However, the 

impact of agriculture on the PTMs content is not 

completely ruled out especially as adjoining areas 

have been put to agriculture. As essential as Zn is to 

plants and humans, it may be toxic to organisms in 

excess amounts (Swartjes, 2011). Zinc deficiency in 

soils is due to high soil pH (Alloway, 2008), whereas 

excess of it may be due to geologic and 

anthropogenic sources (Tóth et al., 2016). 

Beryllium and cadmium had concentrations 

ranges of 1.85-1.98 and 0.2-1.88 mg kg–1 exceeding 

the world soil averages of 1.34 and 0.41 mg kg–1, 

respectively. In a similar way, antimony (Sb) ranged 

from 1.87-4.48 mg kg–1 exceeding 0.67 mg kg–1 

recommended as the global soil average. Antimony 

had raised concentrations with values that exceed 

threshold level of 2.0 mg kg–1 in the soils of Agoi 

Ibami and Mfamosing. The level of Cd in the soils 

of Agoi Ibami exceeds the threshold concentration 

of 1.0 mg kg–1 set by Kabata-Pendias (2011), but 

was below the lower guideline concentration of 10 

mg kg-1 set by Ministry of the Environment, Finland 

(2007). The PTMs like Cd, Cr, and Pb pose a threat 

to human health by bio-accumulation in edible plant 

parts which are later consumed by man and animals 

(Proshad et al., 2021). Heavy metals contamination 

in soils is transferred to plants and they become bio-

accumulated in the human body via consumption of 

contaminated food and water (Yi et al., 2017). Also, 

the PTMs in soils are most often leached into 

estuarine and coastal environments by streams and 

sediments transportation. This results in raised 

levels in the surrounding marine ecosystem 

(Förstner et al., 2004). There is therefore the 

likelihood for a buildup of these metals in marine 

organisms. Arsenic and cadmium have been 

reported to be moderately to strongly polluted in 

some wetland soils (Bai et al., 2012). Also, 

Cadmium is naturally present in most soils in the 

tropics therefore, it is not out of place to have Cd 

values exceed tolerable levels in the tropical 

rainforest soils (Ofem et al., 2023). Besides the 

study by Ofem et al. (2023), Duru et al. (2021) 

reported higher concentrations of As, Zn, Cr, Ni, Cu 

and Cd in some reclaimed soils of Southeastern 

Nigeria. Similar concentration levels have been 

reported in the tidal soils of the Yellow River 

Estuary. In the soils, Cr, Cu, and Ni originated 

mainly from the adjoining parent rocks and Pb 

possibly from tidal seawater and oil field pollution 

(Bai et al., 2011). Beryllium correlated with Mg2+ 

(r > 0.80) whereas chromium correlated with CEC 

(r = 0.82), indicating increasing Be and Cr when 

Mg2+ and CEC increase, respectively.  

Relationship between the mobile fraction of Sb 

in soils and its concentration in the leaves of spinach 

has been established by Hammel et al. (2000). This 

indicates that high concentration of Sb in soil can 

result in its accumulation in plants. Persistent bio-

accumulation of Sb could be dangerous to end-

consumers of such plant materials. Boron, beryllium 

and cobalt significantly varied across the surface 

soils of the crest, middle slope and valley bottom with 

the highest values occurring in the crest, whereas the 

highest value of Sb occurred in the valley bottom. 

 

CONCLUSION AND 

RECOMMENDATION 
Some properties and potentially toxic metals in the 

soils of a tropical rainforest area in Cross River State 

were studied. The soils were found to be dominated 

by sand with amounts exceeding 600 g kg–1 and 

ranging from 640-840 g kg–1, while bulk density was 

below 1.6 Mg m–3 and soil pH ranged from acidic to 

neutral (5.3-7.2). The potentially toxic metals 

studied were As, B, Ba, Be, Cd, Co, Cr, Cu, Ni, Pb, 

Sb, V and Zn. Of the studied metals, only Be (1.85-

4.16 mg kg–1), Cd (0.21-1.88 mg kg–1) and Sb (1.87-

4.48 mg kg–1) exceeded their world soil averages. Pb 

exceeded the world soil average only in Agoi Ibami. 

Hence, Be, Cd, Sb and to some extent Pb are most 

likely to be a threat to the activities of micro and 

macro fauna and flora in the area. There is, therefore, 

the need to embark on a full-scale evaluation of the 

soils with larger sample size for the status of PTMs 

in the Cross River State tropical rainforest area. 
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