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ABSTRACT 
This study evaluated regional vegetation dynamics and changes between 2015 and 2020 using Google earth 

engine (GEE) platform and normalized difference vegetation index (NDVI) derived from the multi-petabyte 

catalogue of sentinel-2 imageries. Using the computational capability of GEE, yearly mean NDVI from 2015 

to 2020 were computed using level C-1 product. Subsequently, each of the NDVI images was classified into 

four land cover classes; water bodies, non-vegetated, grassland/cropland/shrubs, and forest using NDVI 

threshold values of < 0.01, 0.01-0.20, 0.20-0.30 and > 0.30, respectively. The classified maps allowed for the 

assessment of yearly variation in vegetation and changes between 2015 and 2020. Result showed that non-

vegetated area increased from 18.53% in 2015 to 42.56% in 2020 (~ 25.00% gain), the forest area reduced to 

6.78% in 2020 compared to 23.76% measured in 2015 (~ 17.00% loss in forest); whereas water bodies and 

grassland/cropland/shrubs remained relatively constant (0.21 and ~ 50.00%, respectively) across the years 

studied. Presently, the forest land was estimated to be about 2, 371.131 km2 (~ 6.70%) of the total land mass, 

grassland/cropland/shrubs occupied 17, 770.79 km2 (~ 50.07%), non-vegetated area was slightly less than 

half with 15, 274.85 km2 (~ 43.04%) and water bodies occupied 75.68 km2 (~ 0.21%). 
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INTRODUCTION 
Remote sensing has contributed immensely to 
monitoring climate change on a global scale in near 
real time through analysis of huge volume of data 
acquired with different earth observation systems 
(EOS). Continuous acquisition of data over time 
have resulted in huge amount of data beyond the 
computational capability of the traditional desktop 
image processing packages to meet timely analysis 
of earth processes (Rani et al., 2018). This has led 
to the development of Google earth engine (GEE) 
and other online computation mapping platform. 
GEE is a cloud computing platform for repository, 
processing, and analyses of satellite imagery and 
other geospatial dataset. It provides a single 
platform to access various database of a multi-
petabyte catalogue of satellite imageries and the 
computational power required to computes the 
images (Gardner, 2010; Gorelick et al., 2017). GEE 
platform hosts diverse dataset from different EOSs 
such as; landsat, moderate resolution imaging 
spectroradiometer (MODIS), copernicus sentinel, 
and shuttle radar topography mission (SRTM). 

GEE cloud resource runs on application 
programming interface (API) of Javascript and 
python; also, it has gained popularity among the 
geospatial community as a powerful cloud resource 
for geospatial analysis (Google, 2021). For example, 
Jesus et al. (2020) reportedly used GEE for image 
acquisition and derivation of several indices such 
as normalized difference vegetation index (NDVI), 

green normalized difference vegetation index 
(GNDVI) and visible atmospherically resistant 
index (VARI). In another study by Khan and Gilani 
(2021), GEE has assisted in monitoring drought 
indices such as vegetation condition index (VCI) 
for detecting changes in vegetation condition, 
temperature condition index (TCI) for examining 
temperature changes, soil moisture condition index 
(SMCI) for accessing degree of dryness and wetness 
of soil, alongside the precipitation condition index 
(PCI) computed from satellite derived data. 

Vegetation is a major component of the ecosystem; 
it regulates various biogeochemical processes such 
as water, carbon cycling, and nitrogen (Obalum et al., 
2012; Xu and Trugman, 2021). Vegetation converts 
solar energy into biomass and forms the base of all 
food chains and habitat for many organisms 
(CNVC, 2013). There have been several studies 
on the use of NDVI for monitoring vegetation 
(Weier and Herring, 2000; Bhandari et al., 2012; 
Al-doski, 2013; Gandhi et al., 2015; Jing et al., 
2016; Nouri et al., 2017; Schmid et al., 2017; Rani 
et al., 2018; Gessesse and Melesse, 2019). NDVI 
provides indicator for many physiological and 
ecological parameters including surface, vegetation, 
albedo and photosynthetic activities, land cover cha- 
and drought assessment (Govaerts and Verhulst, 
2010). At continental level, multi-temporal data 
sets of NDVI have been used to classify vegetation 
cover types for Africa (Goward et al., 1985) and 
South America (Townshend et al., 1987) using 
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NOAA's global vegetation index (GVI) product at 
approximately 15.00-20.00 km spatial resolution. 
Also, Loveland et al. (1991) employed Advanced 
Very High Resolution Radiometer (AVHRR) 
vegetation index and unsupervised classification 
method to define homogeneous land cover regions 
for the conterminous United States. 

The references provided above emphasize the 
importance of NDVI in vegetation monitoring, 
though at coarse resolution incapable of detail 
evaluation of subtle changes in vegetation amount. 
The present study employed GEE cloud platform to 
assess yearly vegetation dynamics from 2015 to 2020 
using high-resolution sentinel-2 satellite imagery. 
Sentinel-2 is one of the fleets of dedicated European 
Union owned satellites designed to provide the 
wealth of data and imagery that are central to 
Europe’s copernicus environmental programme. 
Sentiniel-2 has spatial resolution between 10.00 
and 60.00 m and revisiting period of 10-day cycle 
under the same viewing angles with a swath view 
field of 290.00 km contrast to landsat-8, which has 
spatial resolution of 15.00 and 100.00 m and a 
swath width view field 185.00 km swath with a 
repeat cycle of 16 days (Missions, 2014; SUHET, 
2015a; Teluguntla et al., 2018). GEE platform was 
utilized in this study because of its enhanced access 
to large satellite dataset forthwith and also allows 
processing of the dataset in its high performance 
open cloud platform in quick sequence (Thuận, 
2019). This research focused on the dynamic changes 
of vegetation to non-vegetation area in Kwara State 
and investigated the pattern in which both climate 
and anthropology affected these changes. 
 
MATERIALS AND METHODS 
Study Area 

This study is a state-wide assessment of vegetation 
distribution across Kwara State in the North-Central 
geopolitical zone of Nigeria (Figure 1). Geogra-
phically, Kwara lies within latitude 7.96° N and 
10.15° E and longitude 2.72° E and 6.21° E. The 
State comprised 16 local administrative areas on a 
landmass of about 32,500.00 km2. Based on 2006 
population census, the State has a population of ca. 
2.50 million people (Kwara State Government, 
2017). The southern parts of the State are 
characterized by rainforest while the other parts are 
categorized as wooded savannah. Kwara State is 
bounded by Niger State in the North, and by Kogi 
State in the East. It is bounded by Ekiti, Osun and 
Oyo States in the South, and shares international 
boundary with Republic of Benin in the West. 

In terms of climate, the annual precipitation of 
the State ranges between 0.20 and 172.70 mm, 
occurring between Apr. and Nov., while annual 
average temperature ranges between 21 and 38°C 
(Idrees et al., 2021; Ozor et al., 2021). The State 
experiences harmattan period between Dec. and 
Jan., usually associated with cold and dry wind. 
The State has abundant fertile soil that favours 

agriculture and several tributaries that drained into 
Niger River to support irrigated farming. However, 
there has been report of increased rate of illegal 
logging for both lumbering and wood coal 
(charcoal) across the State (Akinyemi, 2018), in 
addition to urbanization and the impact of climate 
change which motivated this study. 
 

Data Description 

The datasets used in this study were sentinel-2, 
level C-1 imagery for the NDVI, while the precipi-
tation and temperature data were obtained from the 
European centre for medium-range weather forecasts 
(5th generation of European re-analysis). In addition, 
the vector data representing the administrative 
boundary of the State was also obtained (Table 1). 
The vector data representing the boundary of 
Kwara State was obtained from the global adminis- 
trative unit layers (GAUL) spatial database of the 
FAO. The main purpose of GAUL was to develop, 
compile and distribute well-founded geographic 
information (GI) database on administrative units’ 
levels for all the 247 countries (both UN and non 
UN members). The GI has contributed to the 
structuring and consistency of spatial dataset of 
countries administrative units right from the 
national level to the local level (Team, 2007). 

GAUL makes use of three stages; data collection, 
evaluation and integration for distribution to 
authorized users (Fabio, 2016). The sentinel-2 level 
C-1 is one of the products of the sentinel-2 satellite. 
Sentinel-2 was launched by Europe’s copernicus 
environmental programme for EOS, sponsored by 
European Union under the administration of 
European space agency (Navarro et al., 2017; Roteta 
et al., 2019; Idrees et al., 2021). The grid extent of 
the sentinel-2 level C-1 product is a cluster of 
100.00 × 100.00 km2 tiles in Universal Transverse 
Mercator/World Geodetic System 1984 (UTM/ 
WGS84) projection (SUHET, 2015b). Its product is 
top of atmosphere reflectance re-sampled into ground 
sampling distance of 10.00 m (band 2, 3, 4 and 8), 
20.00 m (band 5, 6, 7, 8A, 11 and 12) and 60.00 m 
(band 1, 9 and 10) (SUHET, 2015b). ERA5-land 
monthly average is a monthly re-analysis of ECMWF 
climate that spanned over 35-year period and also 
the fifth generation of ECMWF atmospheric re-
analysis of the global climate covering the said-
period (Copernicus Climate Change Service, 2017). 
The ERA5-land monthly observes the earth atmos-
pheric, land and oceanic climate variables such as 
land surface temperature, precipitation, runoff, 
evaporation, etc. The data has a spatial resolution 
of 30.00 km grid and temporal resolution of one 
month (Muñoz-Sabater, 2019). For this study, land 
surface temperature (LST) and precipitation were 
the only data extracted from ERA5-land monthly. 
Precipitation influences land surface components and 
hydrological processes, whereas LST emphasizes the 
relationship between land surface features and reduc- 
tion in annual total precipitation (Jing et al., 2016). 
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Figure 1: Location map of the study area showing the 
local administrative centers and major towns 
 
Data Preparation 

Processing image in GEE involves a number of steps, 
including data search, filtering, sorting, subset to 
study area, image processing and analysis. All these 
involve some level of coding in the GEE API. Figure 
2 presents the data processing and analysis steps. 
 
Data search 
GEE is a multi-petabyte analysis-ready data catalogue 
(https://developers.google.com/earth-engine/datasets) 
which is built for effective performance computation 
service of geospatial datasets (Chastain et al., 2019; 
Hay-Chung et al., 2021). To analyze geospatial data 
in GEE, the first task is to access data repository 
website (https://code.earthengine.google.com/) in the 
browser by calling out the dataset using Javascript 
language function (ee.FeatureCollection and 
ee.ImageCollection). This process is achieved 
through internet accessible API coded in Javascript 
and python on a web-based interactive development 
environment that facilitate quick feature model and 
result visualization (Gorelick et al., 2017). Using 
these resources, the administrative unit of Kwara 
State, sentinel-2 and climate data (precipitation and 
land surface temperature) were retrieved.  
 
Data filtering and sorting 
Filtering is the process of retrieving all the required 
dataset for the study. From the GUAL 2015 first-
level administrative units of the GEE repository,  

the shape file of boundary was filtered using the 
table schema (ADM1_NAME). Next, sentinel-2 
level C-1 products from 2015 to 2020 were filtered 
from the GEE repository using both the acquisition 
date and the boundary file of the study area. For 
quality assurance and control, the resulting filtered 
data were further sorted using the image properties 
(Gorelick et al., 2017). For example, sentinel-2 data 
with cloud cover (cloudy pixel percentage) greater 
than 1.00% were excluded from the filtered images 
using in-built functions of the GEE. Thereafter, the 
mean of each image band for each year was generated 
and clipped to area of interest (Schmid et al., 2017). 
 

Image processing 

Generation of NDVI image 

Using the mean annual image bands, the mean NDVI 
image of the respective year were generated using 
near-infrared (NIR) and red bands using the expre-
ssion in Equation 1 (Gessesse and Melesse, 2019). 
In this study, the red and NIR bands of sentinels -
2A and -2B with wavelengths of 664.60 nm and 
664.90 nm, and 832.80 nm and 832.90 nm for the 
Red and NIR bands, respectively were used 
(Bhandari et al., 2012). 

  (1);  

where NIR and RED are the near infrared (band 8) 
and red (band 4) of the sentinel-2 imagery. The 
resulting NDVI images were re-projected to the uni- 
versal transverse mercator (UTM) coordinate system, 
zone 31 north, world geodetic system 1984 (WGS84) 
datum (Brown et al., 2018; Idrees et al., 2021). 
 

 
Figure 2: Methodological flowchart 

 
Table 1: Dataset used and their sources 
Data Sources 
Global Administrative Unit Layers 
(GAUL) 2015 first-level administrative 
units (Kwara State boundary) 

Main: Food and Agriculture Organization 
http://www.fao.org/geonetwork/srv/en/metadata.show?id=12691 
Repository: https://code.earthengine.google.com 
Earth engine snippet: ee.FeatureCollection("FAO/GAUL_SIMPLIFIED_500m/2015/level2") 

Sentinel-2: Multispectral instrument 
(MSI), level-C1 (2015-2020) 

Main: The European Space Agency 
https://sentinel.esa.int/web/sentinel/sentinel-data-access 
Repository: https://code.earthengine.google.com 
Earth engine snippet: ee.ImageCollection("COPERNICUS/S2") 

ERA5-land monthly averaged-
European Centre for Medium-Range 
Weather Forecasts (ECMWF) climate 
reanalysis (2015-2020) 

Main: Climate Data Store (Copernicus) 
https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.68d2bb30?tab=form  
Repository: https://code.earthengine.google.com 
Earth engine snippet: ee.ImageCollection("ECMWF/ERA5/MONTHLY") 

https://developers.google.com/earth-engine/datasets
https://code.earthengine.google.com/
http://www.fao.org/geonetwork/srv/en/metadata.show?id=12691
https://code.earthengine.google.com/
https://sentinel.esa.int/web/sentinel/sentinel-data-access
https://code.earthengine.google.com/
https://code.earthengine.google.com/
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By standard, NDVI values range from –1.00 to 
+1.00 (Al-doski, 2013; Nouri et al., 2017; Schmid 
et al., 2017; Rani et al., 2018; Idrees et al., 2021) 
where surface features with high moisture content 
such as water, snow and cloud reflect more in the 
visible band than in the near-infrared band, resulting 
in negative NDVI value (–1.00 to 0.01). Characteris- 
tically, hard surfaces including natural and man-
made like bare soil, rock, road, and building are 
usually identified with NDVI value of around zero 
(< 0.10), while vegetation exhibits stronger near-
infrared reflectance resulting in varying NDVI 
values from around 0.30 to + 1.00, depending on 
the health or degree of vegetation greenness (Al-
doski, 2013; Gandhi et al., 2015). The NDVI 
values obtained across the six images ranged from 
–0.32 to –0.72. The values steadily dropped 
between 2015 and 2020 (Table 2), which signals 
decrease in either vegetation amount or greenness. 
 

Land Cover Classification and Change Detection 

To evaluate vegetation distribution for each year, 
the NDVI images were classified into four land cover 
classes (water bodies, non-vegetated area, grassland/ 
cropland/shrubs and forest) using NDVI thresholds 
(Table 3) determined based on literature sources 
(Bhandari et al., 2012; Al-doski, 2013; Gandhi et al., 
2015). Changes in biomass (vegetation) between 
two consecutive years were assessed using NDVI 
differencing (DNDVI) (Al-doski, 2013). 

NDVI difference (Equation 2) is a pixel-based 
operation computed by subtracting NDVI image of 
earlier year from the NDVI image of previous year. 
The change detection analysis is a direct approach 
to measuring changes between a pair of images that 
represent an initial state and final state of the 
environment in the imagery. The input images may 
be single-band images of any data type. The 
difference is calculated by subtracting the initial 
state image from the final state image (Equation 2), 
and the classes are defined by change thresholds. A 
positive change identifies pixels that became 
brighter (i.e., the final state brightness was greater 
than the initial state brightness), while a negative 
change identifies pixels that became dimmer (i.e., 
the final state brightness was less than the initial 
state brightness) (Al-doski, 2013). 

 
Table 2: Statistics of the NDVI data 

Year Minimum Maximum 
2015 – 0.35 0.72 
2016 – 0.38 0.66 
2017 – 0.37 0.60 
2018 – 0.33 0.56 
2019 – 0.41 0.69 
2020 – 0.32 0.59 

 
Table 3: Land cover class and their NDVI threshold values 
Classes Threshold values 
Water bodies < 0.01 
Non-vegetated  0.01-0.20 
Grassland/cropland/shrubs 0.20-0.30 
Forest > 0.30 

 (2); 

where NDVIf is the image of the latter (final) year 
and NDVIi is the image of previous (initial) year. In 
addition to assessing biomass change between 
consecutive years, the amount of vegetation loss 
between 2015 and 2020 was estimated using post-
classification change detection technique (Al-doski, 
2013). Pixel-based change detection does not allow 
quantifying class-to-class change; so, a spatial 
context change detection technique using classified 
NDVI images was implemented. For each initial 
state class, the analysis identifies the classes into 
which those pixels changed to in the final state 
image, making it easy to identify not only where 
changes occurred but also the class into which the 
pixels changed to (Gandhi et al., 2015). Finally, the 
precipitation and temperature data extracted from 
ERA5-land was analyzed in order to understand the 
extent climatic factors impacted vegetation amount 
and distribution across the years. 
 
RESULTS 
Land Cover Classification 
The land cover classification maps produced from 
the mean annual NDVI using threshold values 
allowed assessing vegetation amount, variation and 
distribution for each year from 2015 to 2020. Figure 
3 presents the vegetation amount and distribution 
across the years under study. In the figure, it can be 
observed that the south eastern part of the state and 
some parts of the western side were generally more 
forested than any other part. This is further explained 
from the NDVI value (> 0.40), which indicates a 
measure of greenness that remained fairly consistent 
across the years considered, except 2018 and 2020; 
where significant reduction in vegetation amount 
and vigour was recorded. Also, considerable change 
from grassland to non-vegetated (NDVI < 0.20) is 
noticed across the northern fringe but intensified in 
the northeast. The northwest and the central area 
exhibited vegetation characteristics of grassland, 
cropland and shrubs, occasionally intruded with 
light forest. The result has shown a pattern that 
indicates alternating year of increase followed by 
decrease in vegetation amount (compare Figures 3a 
and 3b, 3c and 3d, and 3e and 3f). 

Table 4 provides the quantitative evaluation of 
the maps in Figure 3. For example, the class percent- 
age for water bodies varied between 0.21 and 0.23%, 
which shows that there is no significant change in 
the percentage coverage of water bodies. Similarly, 
across the years, the grassland/cropland/shrubs 
maintained averagely 55.50% area coverage 
(minimum of 50.45% in 2020 and maximum of 
61.38% in 2017). In contrast, there was significant 
increase and decrease in the non-vegetated and forest 
land, respectively (Figure 4). The non-vegetated 
area increased from 18.53% in 2015 to 42.56% in 
2020; conversely, forest area reduced to 6.78% in 
2020 from 23.76% measured in 2015. Figure 4 
shows the comparative class percentage plot. 
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Figure 3: Vegetation distribution for (a) 2015 (b) 2016 (c) 2017 (d) 2018 (e) 2019 (f) 2020 
 
Table 4: Percentage area of NDVI classification map 

(%) 2015 2016 2017 2018 2019 2020 
Water bodies 0.22 0.23 0.22 0.22 0.23 0.21 
Non-vegetated 18.53 32.92 12.25 31.78 12.08 42.56 
Grassland/cropland/shrubs 57.50 52.57 61.38 59.24 51.64 50.45 
Forest 23.75 14.28 26.15 8.76 36.05 6.78 
Total  100.00 100.00 100.00 100.00 100.00 100.00 
 

 
Figure 4: Comparative plot of class area percentage coverage for each year  
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Time Series Change Detection 

Figure 5 is the change detection map where positive 
change represents pixels that became brighter as 
result of greater brightness in the final image than 
the initial image, while negative change identifies 
pixels that became dimmer as a result of less bright- 
ness in the final image than the initial state of the 
image. Since the brighter (higher) the NDVI value 
the greener the vegetation, positive change indicates 
gain in vegetation while negative change signifies 
vegetation loss. In Figure 5, white colour shows area 
where change did not occur between two epochs 
considered, purple indicates negative change, and the 
green colour depicts areas with positive change. 

Table 5 and Figure 6 quantitatively presented 
the estimated percentage area for positive, negative 
and no-change. The area covered by the no-change 
pixels varies between 42.39 and 59.97% (average 
52.64%). Similarly, the area occupied by the 
negative change vary between 2.36 and 56.73% 
(range 54.37%) while the positive change has a 
range value of 44.83% (minimum of 2.79% and 
maximum of 47.62%). Unlike the no-change pixel, 
the negative and positive changes are inversely 

proportional, alternating in reverse order in succe-
ssive change map. Irregularity in the change status 
reflects the observed fluctuation in vegetation amount 
and distribution (Figure 3). It can be inferred from 
these analyses that the study area experienced 
vegetation loss by approximately 26.05%.  

The post-classification change detection map 
between 2015 and 2020 provides map summary of 
changes that have occurred (Figure 7). In the image, 
the land cover class represented in white colour 
indicate the totality of non-vegetated area, other land 
cover types converted to non-vegetated inclusive. 
Also, forest and grassland/shrubs are depicted in 
dark and light green, respectively; while the blue 
colour indicates open water. In Table 6, statistics of 
the total area converted to each land cover type is 
presented. The total land area occupied by forest is 
estimated to be about 2, 371.13 km2, approximately 
6.70% of the total landmass. About half (50.07%, 
ca. 17,770.79 km2) of the State’s landmass 
predominantly comprised grassland/shrubs, while 
the non-vegetated area is slightly less than half 
(43.04%, ca. 15,274.85 km2). The water bodies 
occupied 0.21% of the land mass (ca. 75.68 km2). 

 

 
 
Table 6: Change in vegetation between consecutive years 
(%) 2015-2016 2016-2017 2017-2018 2018-2019 2019-2020 
Negative change 30.68 8.91 40.43 2.35 56.73 
No change 59.97 54.04 56.78 50.03 42.39 
Positive change 9.35 37.05 2.79 47.62 0.88 
Total  100.00 100.00 100.00 100.00 100.00 
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Figure 6: Graph of vegetation dynamics during the study 
 

DISCUSSION  
Determining the vegetation amount, distribution and 
loss is challenging due to complex interaction of 
anthropogenic activities, natural (climatic) factors and 
their spatial heterogeneity (Adubasim et al., 2018). 
The time series NDVI change detection analysis 
allows identifying and quantifying change between 
images of the study area at different times. Both the 
qualitative and quantitative analysis has shown that 
there was no significant change in the percentage 
area coverage for the water bodies and grassland 
(Figure 3; Table 4). For instance, the percentage area  

occupied by water bodies varied between 0.21% and 
0.23% while the land/cropland/shrubs, land cover 
type have a mean of 55.50% (min. of 50.45% and 
max. of 61.38%) of the total area with a shortfall of 
about 7.00% between 2015 and 2020. In contrast, 
there was significant increase and decrease in the 
non-vegetated and forest, respectively (Figure 4). 
The non-vegetated area increased from 18.53% in 
2015 to 42.56% in 2020 (ca. 25.00% gain), whereas 
the forest area reduced to 6.78% in 2020 compared 
to 23.76% in 2015 (ca. 17.00% loss in forest). 

Investigation into the degree of change using 
pixel-based and post classification techniques 
yielded quantifying time series and initial-final 
state changes (Figures 5 and 8). In the former, 
between 2015 and 2016, negative change is 
predominant in the east and part of southwest, 
whereas most of the western areas have positive 
change while the central region recorded no 
change.  Change between 2016 and 2017 records a 
direct opposite of the 2015/2016 change map, 
except that most areas in the central region where 
no change occurred in the previous change map 
reveals positive change (compare Figures 5a and 
5b). Transition between positive and negative 
pixels for the 2017/2018 and 2018/2019 change 
maps followed the same pattern obtained from the 
2015/2016 and 2016/2017, but with reduction in 
the no-change pixels. The 2019/2020 change map 
was similar to 2017/2018, but with shift westward 
ship in the no-change areas in the east. The latter 
analysis also revealed that transition from forest to 
non-vegetated land predominate observed changes, 

 

Figure 7:  
Change in 
vegetation  
status between 
2015 and 2020 
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Table 6: Total areas of the land cover changed between 
the classes 
Classes (km2) (%) 

Water bodies 75.68 0.21 
Non-vegetated 15, 274.85 43.04 
Grassland/cropland/shrubs 17, 770.79 50.07 
Forest 2, 371.13 6.68 
Total 35, 492.45 100.00 
 
while the water bodies and grassland/shrubs 
remained relatively constant. Comparison of the 
class statistics of the land cover map of 2020 
(Table 4) and the change map (Table 6) validates 
the accuracy of this work. For example, the water 
bodies produced 0.21% for both maps while the 
non-vegetated land cover (42.56 and 43.04%), 
grassland/shrubs (50.45 and 50.07%) and forest 
(6.78 and 6.68%), respectively. 

In terms of vegetation dynamics, an interesting 
pattern emerges that indicates alternating year of 
increase followed by decrease in vegetation amount 
(compare Figures 3a and 3b, 3c and 3d, 3e and 3f). 
This provoked further investigation into possible 
influence of climatic factors, specifically precipita-
tion and LST. Figure 8 presents the plot of LST and 
rainfall, both of which are inversely proportional. 

High LST was experienced during dry or low 
rainfall time and reduced with increase in rainfall. 
Averagely, the State recorded min. and max. mean 
annual temperature of 20 and 29°C, with precipitation 
of 243.00 and 1273.00 mm, respectively, typical of 
tropical savannah climate (Gleixner et al., 2020). 
Overall, average of seven months of rainfall was 
recorded, with peak intensity in Aug. and Sep. The 
amount of rainfall varied in space, time and inten-
sity, while some years had early onset of rainfall 
that lasted till Nov. (Figures 8b, 8d, and 8e). 
Figures 8a, 8c and 8f, respectively representing 
2015, 2017, and 2020, had late start and early 
cessation of rainfall with fluctuations in intensity. 
Obviously, the regional climatic factors 
(precipitation and SLT) produced similar pattern of 
variation seen in the vegetation analysis. It is, 
therefore, valid to infer that regional climate 
influenced distribution and amount of vegetation 
(Figure 3), as also observed by others (Schultz and 
Halpert, 1993; Trenberth and Shea, 2005). Even 
with the obvious variations in vegetation amount, 
which often impacts groundwater recharge 
(Ouyang et al., 2019), reduction in the surface area 
of water bodies during the investigation was minimal. 

 
Figure 8: Land surface temperature (LST) and precipitation for (a) 2015 (b) 2016 (c) 2017 (d) 2018 (e) 2019 (f) 2020 
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CONCLUSION 
This study investigates the use of Google earth 
engine (GEE) using sentinel-2 level C-1 to examine 
vegetation dynamics and loss between 2015 and 
2020. GEE optimized the process of data collection, 
processing and analysis without the usual tasking 
computational process involved in the traditional 
desktop remote sensing image processing. The study 
has indicated that both anthropogenic and natural 
factors contributed to variation in vegetation 
distribution and amount with resultant 25.00% 
increase in non-vegetated area and 17.00% loss in 
forest area. Activities such as urbanization, increase 
in lumbering activities, agricultural practice, bush 
burning arising from increased temperature and 
longer months of dry season exposed forested area 
to non-vegetated land. The NDVI allows evaluating 
multi temporal measures of time series gain and 
loss in vegetation. Stability of the aerial coverage 
of grassland/shrubs to approximately 50.00% of the 
landmass across the years revealed high exchange 
between urban and forest area rather than other 
environmental factors. Further study is necessary to 
investigate in details, the interaction between 
vegetation loss and climate change so as to predict 
the trend of future vegetation dynamics. 
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