Main Article Content

Genotype × environment analysis of cowpea grain production in the forest and derived savannah cultivation ecologies


A.L. Nassir
M.O. Olayiwola
S.O. Olagunju
K.M. Adewusi
S.S. Jinadu

Abstract

Differential performance of genotypes in different cultivation environments has remained a challenge to farmers and plant breeders, the emphasis being the selection of high yielding and stable genotypes, across similar ecologies. A set of nine cowpea genotypes were  cultivated in Ago-Iwoye and Ayetoro, two locations representing high and moderate moisture zones. Plantings were done with the early and late season rains in Ago-Iwoye and mid-late season rains of Ayetoro. Statistical analysis was done to understand genotype reaction to the different environments and the plant and environment factors mediating the performance. The Additive Main Effect and Multiplicative Interaction (AMMI) model captured 61.30% of the total sum of squares (TSS). The main effects: genotype (G) environment (E) and their interaction (GxE) were significant with the largest contribution of 28.70% by the environment while the interaction and genotype fractions
captured 20.20% and 12.40%, respectively. The percentage contribution of the main effects and GxE to total sum of squares (TSS) for traits was not consistent. The Genotype plus Genotype-by-Environment (GGE) analysis summarized 91.30% of the variation in genotype performance across environment. The cultivation environments were separated into two, with IT 95M 118 as the vertex genotype in the Ayetoro while TVU 8905 was the topmost genotype in Ago-Iwoye. The two genotypes recorded the highest grain weight per plant (GWPP) but were also the most unstable The stable genotypes IT 95M 120 and IT 86 D 716 flowered relatively late compared to others, are taller, had higher vegetative score and are low grain producers.


Key words: AMMI, drought, GGE, stability, Vigna unguiculata


Journal Identifiers


eISSN: 1119-7455