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ABSTRACT 
 
Mathematical growth models are useful in describing the growth of livestock. The study 
was done to assess the predictive ability and accuracy of four three-parameter nonlinear 
mathematical models (namely: Gompertz, Gompertz-Laird, Logistic, and von Bertalanffy) 
and one four-parameter (namely: Richards) nonlinear mathematical model. Models were 
used to predict the body weight (BW) of commercial Ross broiler chickens adapted to 
tropical conditions (n = 1,286). Age-weight data were collected once every week for 6 
weeks. The Gauss-Newton iterative process of the nonlinear procedure in SAS was 
employed to obtain the parameters for each model. In addition, each model's goodness-
of-fit, residuals, and computational difficulty were estimated. Model parameters were 
evaluated using Akaike’s information criterion (AIC), Bayesian information criterion (BIC), 
adjusted coefficient of determination (AdjR2) and root mean square error (RMSE). The 
AdjR2 value for all five models was high; however, the highest value was observed in the 
Gompertz and Gompertz-Laird models.  Furthermore, the lowest AIC, BIC and RMSE values 
were observed in the Gompertz models. Using a complimentary method (involving a 
subjective pairwise comparison of the observed and predicted BWs), the Logistic, 
Gompertz-Laird, von Bertalanffy, and Richards models fitted well for the data used. 
However, the best fitting was obtained in the Gompertz model. Some similarities were 
observed between the Logistic and Richards models. In conclusion, all five nonlinear 
mathematical models fitted the age weight data used in this study well, with the Gompertz 
model being the best.  
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INTRODUCTION 
 
Today’s broiler chickens are the result of selective 
breeding programmes, aimed at achieving early 
maturity, fast growth, and better body 
conformation (Zuidhof et al., 2014). The 
prediction of broiler performance using 
mathematical growth models and its resulting 

curves played a crucial role in the breeding of 
early-maturing broiler chickens with rapid 
growth. These models, when properly fitted and 
interpreted correctly, can provide very accurate 
estimates of body weight (BW) which is useful in 
the selection of young and highly producing birds 
(Freitas, 2005).  
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Mathematical models are very important 
in describing the growth patterns in poultry 
(Aggrey, 2002; Akinsola et al., 2021; Pinzón et 
al., 2022). Data such as BW, growth rate, and 
carcass weight are time series data, models are 
particularly useful because they facilitate the 
creation of a delineation scale for comparison 
(Nahashon et al., 2006). A graphical 
representation of the model parameters 
efficiently visualizes asymmetrical vacillations in 
BW attributed to random temporary or 
permanent environmental effects. Thus, 
geneticists can reduce these random 
environmental effects to the barest minimum by 
using breeding strategies.  

One of the benefits of using 
mathematical growth models to fit chicken 
growth data is its use for the prognostication of 
bird BW at different stages of development, as 
well as exactly when BW experiences a descent 
(Yakupoglu and Atil, 2001). Furthermore, 
analysis of growth using mathematical models is 
particularly useful to animal breeders and 
farmers in developing countries; again, its 
prognostic utility is important in achieving genetic 
gain (Abbas et al., 2014).  

In animal production, growth modelling 
is a highly sophisticated process involving the 
elucidation of longitudinal measurements using 
mostly 3 to 4 parameters that have biological 
meaning. Most species possess a growth 
trajectory that results in a sigmoidal curve, which 
can be explained using nonlinear models (NLM) 
(Aggrey, 2002; 2009). The biological meanings of 
model parameters must be clearly defined, as the 
(direct or inverse) relationship among the said 
parameters provides the bedrock for selection 
and breeding strategies designed to modify the 
growth pattern. Similarly, Manjula et al. (2018) 
opined that the asymptotic weight, age, and 
maximum weight gained at the apogee of 
inflection of the growth curve serve as useful 
tools for breeders to achieve genetic progress. 

Logistic, Brody, Gompertz, and von 
Bertalanffy are models that have been widely 
used to describe chicken growth patterns 
(Thornley and France, 2007) – and these models 
are variants of the Richards model (Nahashon et 
al., 2006; Mohammed, 2015). The reliability of 
the estimates produced by the different 

mathematical growth models is contingent on the 
fulfilment of statistical assumptions (Mazucheli et 
al., 2011).  

In recent years, the sigmoid and 
polynomial models (among other models) have 
been fitted to the growth data of chickens 
(Narushin and Takma, 2003; Michalczuk et al., 
2016; Narinç et al., 2017). Litanies of studies 
have undoubtedly proven that Gompertz models 
– either the modified form (Laird et al., 1965) or 
the original form (Gompertz, 1825) - are the most 
suitable model for chicken growth data (Freitas, 
2005; Tompić et al., 2011; Mazucheli et al., 2011; 
Drumond et al., 2013; Mohammed, 2015; Mota 
et al., 2015).  

It is paramount to be careful when 
selecting which model to use. Every model 
produces varying parameter estimates, 
consequently, affecting the point of inflection of 
the growth curve (Gbangboche et al., 2008), and 
the inflection point is reflective of the economic 
merit or value of animals. For instance, the 
Logistic and Gompertz models have inflection 
points close to the asymptote around 50 and 
37%, respectively (Teleken et al., 2017), while 
that of the von Bertalanffy model is 26.9% 
(Demuner et al., 2017). However, for the 
Richards model (Richards, 1959), the inflection 
point vacillates based on the shape parameter 
(m). 

The Gompertz model (Gompertz, 1825) 
modified by Laird et al. (1965) has been used by 
many researchers to analyse chicken growth data 
(Aggrey, 2002; Koncagul and Cadirci, 2009; 
Tjørve and Tjørve, 2017a; Quintana-Ospina et 
al., 2023) because, one, the model successfully 
passes several goodness of fits tests, making the 
model possess an overall fitness; and two, the 
biological interpretability of the model 
components. Meat-type birds, commonly known 
as broiler chickens, are usually slaughtered at 42 
days of age, which means that these birds less 
than often reach mature BW and it’s difficult to 
know which bird will attain close to a mature BW. 
Here lies the advantage of the Gompertz-Laird 
model: using the inflection point and initial BW, 
the exponential decay rate of the bird can be 
calculated (Aggrey, 2002).  

Gompertz and Logistic growth models 
fall under the 3-parameter sigmoid growth 
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models of the Richards family (Tjørve and Tjørve, 
2017a). Some of the prevailing conclusions in 
literature are: Richards and Gompertz models are 
suitable for broiler growth data (Tompić et al., 
2011); the Logistic model works well with slow-
growing chickens (Eleroğlu et al., 2014); and for 
Jinghai mixed-sex yellow chicken (Yang et al., 
2006) and Japanese quails (Adedeji et al., 2017), 
the von Bertalanffy model has the best fit.  

The Richards model, unlike Gompertz 
and Logistic models, does not have a fixed 
inflection point. Rather the point of inflection – 
that is, the transition from the accelerated 
growth phase to the retardation phase – for the 
Richards model is determined by the shape 
parameter (Richards, 1959). Even though the 
Richards model is deemed flexible and attractive 
by biostatisticians, it is not widely used in 
describing the growth patterns of chickens, 
because the Richards model is difficult to fit and 
the shape parameter (m) has no biological 
interpretation (Aggrey, 2002). Tjørve and Tjørve 
(2017b), on the other hand, held a favourable 
view towards Richards model. The shape 
parameter, according to Tjørve and Tjørve 
(2017b), is more inclined to respond to external 
fluctuations (such as environmental changes), 
unlike the asymptotic weight or growth or 
maturing rate. Thus, they concluded that the 
shape parameter could be used to assess the 
effects of environmental stressors on chicken 
growth.  

Several studies have compared the 
growth curves of indigenous and commercial 
chickens in Africa. According to Yapi-Gnaore et 
al. (2011), in Cote d’Ivoire, indigenous chickens 
approached the point of inflection in 51.22 days, 
slower than commercial chickens (46.91 – 50.68 
days for two different strains). Concomitantly, 
the function of the ratio of maximum growth to 
mature size growth (K) from chickens in Kabyle, 
Algeria, reported by Ait Kaki and Moula (2013) 
was 0.0260 and 0.0294 gd-1; the K values were 
higher than those of Yapi-Gnaore et al. (2011). 
However, there is sparse literature on 
mathematical models describing the growth 
pattern of commercial broilers in tropical 
climates, especially in Sub-Saharan Africa; 
hence, the aim of this study. 

The study was designed to compare the 
predictive power of different mathematical three- 
and four-parameter mathematical growth 
models, namely Gompertz, Gompertz-Laird, von 
Bertalanffy, Logistic, and Richards, to describe 
the growth pattern of commercial broilers at 0 to 
6 weeks.  
 
MATERIALS AND METHODS 
 
Data used for this study was collected on 1,286 
unsexed day-old Ross 308 broiler chicks. The 
birds were housed in a floor pen and provided 
with 22 hours of continuous light per day. 
Standard biosecurity procedures and vaccination 
routines were followed (AVIAGEN, 2018). 
Commercial chick mash (Topfeeds, Premier Feed 
Mills Company Limited) comprising of 2,993 kcal 
ME/kg and 22.3% CP was given for 0 to 42 days 
ad libitum, as well as clean drinking water. Birds 
were weighed at fixed intervals of one week for 
six weeks. 
 
Growth Models: The models used for fitting the 
growth data are presented in Table 1.  
 
Statistical Analysis: The data obtained from the 
repeated BW measurements of the birds at 
different ages were fitted to three- and four-
parameter mathematical growth models. The 
growth curves and their resulting parameters were 
calculated using PROC NLIN (Gauss-Newton 
iterative process) of SAS 9.4 (SAS, 2002). 

The BW measurements employed in this 
study were left unadjusted; primarily because 
these values are indicative of the bird’s growth 
under an intensive system of poultry production. 
In this study, Computational Difficulty (CD) 
depended on whether or not the mathematical 
models used converged and the number of 
iterations it took to achieve convergence. Also, the 
amount of time taken to estimate the (unknown) 
parameter for each model was considered.  

Goodness-of-fit criteria adopted for this 
study were adjusted coefficient of determination 
(AdjR2), root means square error (RMSE), 
Bayesian information criterion (BIC), and Akaike’s 
information criterion (AIC) based on Aggrey 
(2002), Demuner et al. (2017) and Akinsola et al. 
(2021).   
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Table 1: Growth models used for the analyses 
Model Equation Age at point of 

inflection 
Weight at point of 

inflection 
Logistic 𝑎

1 +  𝑏 ∙ exp (−𝑘 ∙ 𝑡)
 −𝑙𝑛(

1
𝑏

)

𝑘
 

𝑎 × 0.5 

Gompertz 𝑎 ∙ exp(−𝑏 ∙ exp(−𝑘 ∙ 𝑡)) 
ln (

𝑏

𝑘
) 

𝑎

𝑒
 

Gompertz-
Laird 

𝑎଴ ∙ exp (൬
𝑏∗

𝑘∗
൰ ∙ (1 − exp(−𝑘∗

∙ 𝑡))) 

(
1

𝑘଴
) ∙ log(

𝑏∗

𝑘∗
) 𝑎଴ ∙ exp ((

𝑏∗

𝑘∗
)ିଵ) 

von 
Bertalanffy 

𝑎 ∙ (1 − 𝑏 ∙ exp(−𝑘 ∙ 𝑡))ଷ ୪୬ (ଷ∙௕)

௞
  (

8

27
) ∙ 𝑎 

Richards 𝑎

1 + 𝑏 ∙ 𝑒𝑥𝑝 (−𝑘 ∙ 𝑡)ଵ/௠
 −ln (

𝑚
𝑏

)

𝑘
 

𝑎

(𝑚 + 1)ଵ/௠
 

 Note: Wt is the calculated weight at age t; a is the asymptotic (final or mature) weight; b is the scale parameter or integration 
constant, measuring the rate of gain in BW between hatch and maturity; k is the maturity rate; a0 is the initial BW after hatching; 
b* is the initial growth rate; k* is the rate of decay; m is the shape parameter; and t, is the age (days). Gompertz, von Bertalanffy 
and Logistic models were adapted from FREITAS (2005); Gompertz-Laird model was adapted from LAIRD (1965); and Richards 
model was adapted from TOMPIĆ et al. (2011) 
 

A model with the highest R2, and lowest RMSE and 
AIC for growth data is considered the best (Keskin 
and Dag, 2006; Keskin and Daskiran, 2007; Sahin 
et al., 2014). Similarly, Kaps and Lamberson (2004) 
posited that the model with the largest AdjR2 or R2 
value is objectively the best, while a model with the 
lowermost BIC, MSE or AIC is considered the most 
superior model. Other values, such as age at the 
point of inflection, weight at the point of inflection 
and correlation coefficients between model 
parameters, were assessed.  

The goodness-of-fit criteria were obtained 
using the following equations: 

RMSE = ට
ௌௌா

(௡ି௭)
; 𝑀𝑆𝐸 =  

ௌௌா

௡ ି ௭
− (

(௡ିଵ)(ଵିோమ)

(௡ି௭)
) 

R2 =  1 − ቀ
ௌௌா

ௌௌ்
ቁ  𝑜𝑟 

ௌௌ்ିௌௌா

ௌௌ்
 

AIC = 𝑛 ∙ ln(
ௌௌா

௡
) + 2𝑧 

BIC = 𝑛 ∙ ln ቀ
ௌௌா

௡
ቁ + 2𝑧 ∙ ln (n), where: SSE is the 

sum of the square of error; SST is the sum of the 
square total; n is the number of observations 
(weighting done on the live chickens); and z, is 
the number of parameters in the model. RMSE 
and AdjR2 were adapted from Demuner et al. 
(2017), while AIC and BIC were adapted from 
Akinsola et al. (2021).  
 
RESULTS  
 
Predicted Coefficients for the Growth 
Parameters: The predicted coefficients for the 
growth parameters (a, a0, b, b*, k, k*. and m) of 
each model are presented in Table 2.  

Table 2: Predicted coefficients for the 
Gompertz, Richards, Gompertz-Laird, Logistic 
and von Bertalanffy growth parameters in 
commercial chickens 

Models Growth 
parameters 

Predictions 

Gompertz Asymptotic weight (a) 4405.00 
Integration constant (b) 4.90 

Maturity rate (k) 0.04 
Richards Asymptotic weight (a) 1094.30 

Integration constant (b) 36.49 
Maturity rate (k) 0.11 

Shape parameter (m) 0.50 
Gompertz-
Laird 

Asymptotic weight1 (a) 2948.96 
Hatching weight (a0) 32.76 
Initial growth rate (b*) 0.18 

Rate of decay (k*) 0.04 
Logistic Asymptotic weight (a) 2188.60 

Integration constant (b) 36.49 
Maturity rate (k) 0.11 

von 
Bertalanffy 

Asymptotic weight (a) 13901.20 
Integration constant (b) 0.89 

Maturity rate (k) 0.01 
1Derived parameter; a is the asymptotic (final or mature) 
weight; b is the scale parameter or integration constant, 
measuring the rate of gain in BW between hatch and 
maturity; k is the maturity rate; a0 is the initial BW after 
hatching; b* is the initial growth rate; k* is the rate of decay, 
and m is the shape parameter 
 
von Bertalanffy predicted the highest mature or 
asymptotic weight (a), while Richards model 
gave the lowest prediction for a. The estimate of 
scale parameter or integration constant was 
highest in Richards and Logistic models, followed 
by the Gompertz, von Bertalanffy and Gompertz-
Laird models, respectively. k predicted values 
ranged from 0.01 in von Bertalanffy to 0.11 in 
Richards and Logistic models.  
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Computational Difficulty (CD): The fitting of 
the five models to the growth data presented no 
computational difficulty whatsoever. Four out of 
the five models achieved convergence using a 
small number of iterations – only the Gompertz-
Laird model converged using 41 number of 
iterations. The computation time (CT) varied 
from 0.25 to 0.29 seconds. The longest CT was 
detected in the Logistic model, while the shortest 
CT was observed in the Richards model. All in all, 
the models employed in this study met the 
convergence criterion for describing the body 
weight-age sigmoidal relationship in commercial 
broiler chickens (Table 3).  
 

CT: Computation time 
 

Goodness-of-Fit Criteria: The goodness-of-fit 
estimates for all the models can be found in Table 
4. The difference in the AdjR2 values for all the 
models was very small; however, the AdjR2 

values of the Gompertz and Gompertz-Laird 
models were the highest and similar, while the 
lowest values were seen in the Richards model.  
 
Table 4: Goodness-of-fit estimates for the 
Gompertz, Richards, Gompertz-Laird, Logistic 
and von Bertalanffy growth parameters in 
commercial chickens 

Model RMSE AdjR2 
Richards 72.21 0.994181 
Gompertz 62.88 0.995587 
Gompertz-Laird 62.88 0.995587 
Logistic 65.92 0.995151 
von Bertalanffy 62.98 0.995573 
Model AIC BIC 
Richards 79.74 89.32 
Gompertz 76.89 84.08 
Gompertz-Laird 76.89 84.08 
Logistic 77.74 84.93 
von Bertalanffy 76.92 84.11 

Note: RMSE is the root mean square error; AdjR2 is the 
adjusted coefficient of determination; AIC is the Akaike 
information criterion; and BIC is the Bayesian information 
criterion 

The uppermost RMSE value was observed in the 
Richards model, while the lowest value was 
recorded in the Gompertz and Gompertz-Laird 
models. Similar observations were noted for the 
BIC and AIC values. The RMSE, AIC and BIC 
estimates for the von Bertalanffy model were 
closer to those of the Gompertz and Gompertz-
Laird models, followed by the Logistic model. 
 
Correlation Coefficients for Paired Growth 
Parameters: The PROC NLIN command in SAS 
produced an approximate correlation matrix, 
containing the correlation coefficients for paired 
growth parameters. That is, the correlation 
between a/a0 and b/b*, a/a0 and k/k*, and b/b* 

and k/k*, was estimated. Presented in Table 
5 are the correlation coefficients among the 
growth model parameters. In all the models, 
excluding von Bertalanffy, a negative 
correlation was observed between a/a0 and 
b/b*. Similarly, a positive correlation 
coefficient was produced for the relationship 
between b/b* and k/k* for all the models, 

except von Bertalanffy. A negative correlation 
coefficient was observed between a/a0 and k/k* 
for all the models.  
 
Table 5: Correlation among the parameters 
for each model 

Model a/a0  
and  
b/b 

a/a0  
and  
k/k* 

b/b*  
and  
k/k* 

Gompertz -0.3 -0.99 0.44 
Gompertz-Laird -0.99 -0.95 0.99 
Logistic -0.51 -0.93 0.77 
von Bertalanffy 0.63 -0.99 -0.58 
Richards -0.51 -0.93 0.77 

Note: a is the asymptotic (final or mature) weight; b is the 
scale parameter or integration constant, measuring the rate 
of gain in BW between hatch and maturity; k is the maturity 
rate; a0 is the initial BW after hatching; b* is the initial growth 
rate; and k* is the rate of decay 
 
Body Weight and Age at Inflection Point: 
The age and BW at inflection for all five nonlinear 
models are presented in Table 6. The von 
Bertalanffy model gave the highest predictions 
for BW and age at the inflection point (4118.87 g 
and 98.21 days, respectively). The Gompertz-
Laird model, on the other hand, had the lowest 
value prediction for BW at inflection (40.91 g).  
 

Table 3: The computational difficulty of each 
model 
Model Convergence  

criterion 
Number of  
iterations 

CT  
(sec) 

Gompertz Met 15 0.26 
Gompertz-Laird Met 41 0.28 
Logistic Met 12 0.29 
von Bertalanffy Met 13 0.28 
Richards Met 6 0.25 
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Table 6: Body weight and age at the inflection 
point 

Model Ti (days) Wi (grams) 
Richards 39.00 1459.07 
Gompertz 39.73 1620.51 
Gompertz-Laird 16.33 40.92 
Logistic 32.70 1094.30 
von Bertalanffy 98.21 4118.87 

Note: Ti is the age at the point of inflection, while Wi is the 
BW at the point of inflection 

 
Juxtaposing the Observed Body Weight 
with the Predicted Body Weight: The 
predicted BWs by each model and the observed 
BWs were juxtaposed and presented as sigmoid 
growth curves (Figures 1 – 5).  
 

Figure 1: Growth curve of commercial broiler 
chickens as predicted by the Logistic model 
 

Figure 2: Growth curve of commercial broiler 
chickens as predicted by the Gompertz model 
 
Furthermore, the residual between the predicted 
BWs and the observed BWs were compared 
(Table 7). The Gompertz and Gompertz-Laird 
models produced BW predictions that were closer 
to the observed values, followed by the von 
Bertalanffy model. Compared to the other 
models, the Logistic and Richards models gave 
the worst predictions.  

 

Figure 3: Growth curve of commercial broiler 
chickens as predicted by Gompertz-Laird curve  
 

 
Figure 4: Growth curve of commercial broiler 
chickens as predicted by Richards model 
 

 
Figure 5: Growth curve of commercial broiler 
chickens as predicted by von Bertalanffy model 
 
DISCUSSION 
 
Mathematical growth models must have parameters 
that can be interpreted within a biological context 
or framework. The interpretability of these 
growth models is crucial when describing time 
series data (such as BW measurements) and 
predicting the expected BW at different ages 
(Selvaggi et al., 2015).  
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Aside from the interpretability of growth models, 
it is important to pay attention to the model 
parameters themselves, as it allows for pairwise 
comparisons among the models – by determining 
which models yielded the closest and most 
realistic matured or asymptotic weight (a). 
Moreover, the matured weight estimate creates 
the basal rock for model comparison, seeing as 
the integration constant (b) and maturity rate 
(k), unlike a, are known to measure somewhat 
different aspects of growth among models 
(Aggrey, 2002). The matured weight of a chicken 
is the apogee of its growth curve; that is, it is the 
highest growth response the bird will produce in 
its lifetime (Narinç et al. 2010). As expected, all 
the five nonlinear mathematical growth models 
used in this study gave different and similar 
matured weight predictions. The Gompertz and 
Gompertz-Laird models gave similar predictions 
for the matured weight because the Gompertz-
Laird model is a modified version of the original 
Gompertz model. Also, similar estimates were 
obtained from the Logistic and Richards models. 
On the other hand, the largest matured weight 
prediction was obtained from the von Bertalanffy 
model. The rule of thumb is, that larger matured 
weight estimates are linked with small maturity 
rate estimates, as evidenced by the high negative 
correlation observed between a and k in this 
study. The high matured weight (a) prediction by 
the von Bertalanffy model may be indicative of 
an overestimation, seeing as the standard error 
for (a) value estimated by this model was the 
highest observed. 

Logistic and Richards models produced 
the highest and similar integration constant (b) 
estimated. Abe et al. (2022) also reported that 

the highest (b) value 
prediction occurred using the 
Logistic model. This high 
value suggests that both 
models forecasted more BW 
gain after the initial hatching 
weight of the birds, unlike 
other models (Durosaro et al., 
2021). However, the matured 
weight predictions by these 
models were not reflective of 
the excessive BW gain 
predictions. Furthermore, a 

high b estimate implies that the model will reach 
its diminishing growth phase quicker than other 
models. The obtained b value for the Gompertz 
model in this study was similar to the one 
obtained by Al-Samarai (2015) and higher than 
the b values obtained for Gompertz, Logistic and 
von Bertalanffy models by Durosaro et al. (2021). 

The growth model parameter k 
measures the rate of maturity. The Logistic and 
Richards models produced similar and the 
highest k estimate, followed by the Gompertz and 
Gompertz-Laird models, while the lowest value 
was observed in the von Bertalanffy model. 
Typically, large k values indicate that the birds 
will attain maturity early, while small k values 
suggest the opposite. Thus, Logistic and Richards 
models, contrasting the other models, predict 
that the chickens used in this study will attain 
early maturity. The estimates obtained for k were 
lower than the values reported by Al-Samarai 
(2015).  

The correlation coefficients among the 
growth parameters obtained in this study bear 
semblance to the reports of Al-Samarai (2015). 
Notably, the correlation between a and k was 
highly negative across all models. This negative 
correlation suggests that fast-growing chickens 
will not attain larger matured weight. 
Furthermore, it indicates that attaining larger 
matured weights will require longer growth 
periods. Similar results were obtained by 
Durosaro et al. (2021) and Abe et al (2022). 
When a is negatively correlated with k, it poses a 
risk to genetic improvement programs that aim 
to increase the growth rate, as such an increment 
will cause a concomitant decrease in matured 
weights.  

Table 7: Residuals for each growth model at different ages 

Age  
(days) 

Gompertz Gompertz- 
Laird 

Logistic von  
Bertalanffy 

Richards 

1 -0.82 -0.82 -26.47 11.457 -26.47 

7 5.43 5.43 -13.77 10.747 -13.77 

14 -49.37 -49.37 -49.00 -54.575 -49.00 

21 115.86 115.86 130.63 109.624 130.63 

24 -37.32 -37.32 -24.48 -40.358 -24.48 

28 -67.50 -67.50 -65.80 -64.596 -65.80 

35 42.59 42.59 24.35 50.976 24.35 

39 -6.34 -6.34 -12.20 -4.662 -12.20 

41 -5.67 -5.67 6.51 -11.722 6.51 
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The growth data was not large, so, no 
computational difficulty was experienced during 
the analyses. All models met the convergence 
criterion. However, the Richards model, 
compared to the other models used in this study, 
converged using the lowest number of iterations. 
The moderate to low iteration numbers observed 
in the converged Gompertz, Logistic, von 
Bertalanffy and Richards models used in this 
study infer their usefulness and relevance when 
describing the growth pattern of commercial 
broilers.   

As much as modelling the growth of 
commercial broilers helps to reduce the variables 
involved in describing chickens’ growth, its 
usefulness is tied to the accuracy of its predictions 
(Durosaro et al., 2021). Consequently, goodness-
of-fit criteria are used to judge the predictive 
accuracy of growth models. In this study, a high 
adjusted coefficient of determination (AdjR2) was 
observed in all the models – with the highest 
value detected in the Gompertz and Gompertz-
Laird models. The observed highest AdjR2 
indicated that the model(s) fitted the bodyweight 
data more accurately. Hypothetically, the four-
parameter Richards model is supposed to yield 
an AdjR2 value that is more than the three-
parameter Logistic, von Bertalanffy and 
Gompertz models (Aggrey, 2002). Both the AdjR2 
and R2 values were relatively close, in this study. 
Similar AdjR2 values were obtained by Moharrery 
and Mirzaei (2014); they reported that the range 
for AdjR2 values of the Gompertz, Logistic and 
Richards models was between 0.979 and 0.995.  

Using the AdjR2 value alone, all the 
models seem like a good fit for the age-weight 
data used in this study. The difference in the 
AdjR2 values obtained for each is quite small, 
making them so numerically close that the 
difference is almost insignificant. Therefore, 
other goodness-of-fit criteria were employed to 
find which model best explained the observed 
changes in BW. The Akaike’s information criterion 
(AIC), Root Mean Square Error (RMSE), and 
Bayesian Information Criterion (BIC) were 
estimated to determine the best-fitting model for 
the growth data used. BIC and AIC measure how 
well each growth model fits the live weight data 
because maximum likelihood ratio tests favour 
models that offer predictive accuracy using few 

parameters. Gompertz and Gompertz-Laird 
models had the lowest RMSE, AIC and BIC 
values, while the highest values were observed 
in the Richards model. The RMSE, BIC and AIC 
values in this study were lower than the values 
stated by Demuner et al. (2017), Akinsola et al. 
(2021) and Abe et al. (2022). A plausible 
explanation for these variations is the 
experimental location and sample size.  Using the 
AdjR2, RMSE, AIC, and BIC values, the Gompertz 
and Gompertz-Laird models seem to be the best 
model for the age-weight data used in this study.  

There were observed differences in age 
and weight at the inflection point among the 
models. The von Bertalanffy model predicted that 
it would take a longer time for the bird to reach 
the inflection point. Similar results were obtained 
by Abe et al. (2022). Since von Bertalanffy gave 
the highest prediction for the asymptotic weight 
and weight at inflection, it is only corollary that 
the time at inflection will be longer than the 
predictions of other models. However, the 
predictions obtained from the von Bertalanffy 
model in this study are regarded as an 
overestimation because of its high standard 
error.  

The initial hatching or BW (a0) predicted 
by the Gompertz-Laird model can be used in 
forecasting the initial growth rate from hatching 
till the inflection point. On the other hand, the 
Gompertz-Laird model seems to underestimate 
the weight at the point of inflection for the 
growth used here. This underestimation casts 
doubt on the predictive accuracy of the 
Gompertz-Laird model for the data used in this 
study. Solutions to improve the fitting of the 
growth data, such as limiting the a0, using the 
variance inverse to weight a0, and restricting a0 
within two standard deviations of the mean, have 
been proffered by Naimi et al. (2014) and Goto 
and Xu (2015) respectively. 

For the growth data used in this study, 
the values obtained for the b and k parameters 
were similar for the Richards and Logistic models. 
Other similarities are: that the predicted BWs for 
both models were the same; the weight at 
inflection for the Logistic model was the same as 
the asymptotic weight for the Richards model; 
and, both models showed similar growth 
trajectories. This observed similarity between the 
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Logistic and Richards models is in contrast with 
Nahashon et al. (2006), who reported that when 
the shape parameter is 2.0, the Richards model 
is equivalent to the Logistic model. However, the 
similarity was not observed in the age and weight 
at the inflection of both models. Consequently, 
the model parameters from different growth 
models are not exactly analogous.  

Aside from using the goodness-of-fit 
criterion to judge each model, a complimentary 
method, involving a subjective pairwise comparison of 
the observed and predicted bodyweights, to 
judge the accuracy of the model was done. This 
comparison is useful in detecting whether or not 
a model overestimated or underestimated BW at 
any age. The five models showed a good fit for 
the data; however, the Gompertz model appears 
to be the best fit. Safari et al. (2021) posited that 
any model that produced a difference between 
the observed and predicted BW, as well as 
changes in numerical signs at short breaks is 
better than a model that changes in signs at 
longer breaks. Also, the growth curve for each 
model provides a template for deducing the 
fitness of a model; that is, the growth curve that 
is closest to the observed BW is the most suitable 
model. Another keen observation noted in this 
study was: that there seems to be a relationship 
between the four-parameter Richards model and 
the three-parameter Logistic and (traditional) 
Gompertz model based on the value of the shape 
parameter. 

Lastly, the results of this study will be 
particularly useful to commercial broiler farmers, 
as suitable growth models can be used to detect 
the matured BW of birds after the first seven 
days. The calculation is quite simple. The 
obtainable BW of a chicken can be estimated by 
inputting the age (in days) of the bird in place of 
the parameter t in the most suitable model.   
 
Conclusion: Using the complimentary method, 
involving a subjective pairwise comparison of the 
observed and predicted BW, the Logistic, 
Gompertz-Laird, Richards and von Bertalanffy 
models fitted the growth data very well. 
However, the Gompertz model produced the best 
fitting. Using the goodness-of-fit criteria, the 
Gompertz and Gompertz-Laird models are the 
best for describing commercial broiler chickens' 

growth. All in all, the Gompertz models are the 
most appropriate models for describing the 
growth pattern of commercial broiler chickens. 
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