Main Article Content

Maternal and Fetal Acid-Base Chemistry: A Major Determinant of Perinatal Outcome


L Omo-Aghoja

Abstract

Very small changes in pH may significantly affect the function of various fetal organ
systems, such as the central nervous system, and the cardiovascular system with associated fetal distress and poor Apgar score. Review of existing data on maternal-fetal acid-base balance in pregnancy highlight the factors that are associated with derangements of the acid-base status and the impact of the derangements on fetal outcome. Extensive search of electronic databases and manual search of journals for relevant literature on maternal and fetal acid chemistry, clinical studies and case studies were undertaken. There is a substantial reduction in the partial pressure of carbon dioxide (pCO2) in pregnancy. Adequate buffering prevents significant changes in maternal arterial pH. Normal fetal metabolism results in the production of acids which are buffered to maintain extracellular pH within a critical range. Fetal hypoxia can occur when maternal oxygenation is compromised, maternal perfusion of the placenta is reduced, or delivery of oxygenated blood from the placenta to the fetus is impeded. When adequate fetal oxygenation does not occur, metabolisms proceed along with an anaerobic pathway with production of organic acids, such as lactic acid. Accumulation of lactic acid can deplete the buffer system and result in metabolic acidosis with associated low fetal pH, fetal distress and poor Apgar score. There is a significant reduction in pCO2 in pregnancy. This change, however, does not result in a corresponding significant reduction in maternal arterial pH, because of adequate buffering. Very small changes in pH may cause significant derangement in fetal function and outcome.

Keywords: Acid-base balance, Determinants, Maternal and fetal, Perinatal outcome, Pregnancy


Journal Identifiers


eISSN:
print ISSN: 2141-9248
 
empty cookie