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ABSTRACT:- TThe paper introduces the concepts of covariance differences of a sequence and
establishes its relationship with the covariance function. One of the main results of this paper isthe
criteriaof linear representability of sequencesin Hilbert spaces.

INTRODUCTION

In the analysis of stationary random processes and
sequences it was observed that there exists a close
relationship with the spectral theory of self-adjoint or
unitary operators in Hilbert spaces. In the works of
Kolmogorov, the theory of stationary random sequences
was constructed with the aid of unit parametric group of
unitary operators.

In the last years, in the works of Nagia and Foyash [6],
Brodskii [7],Livshit [3] and others they developed the
theory of nonunitary operatorsin Hilbert spaceswhereby
the analogy of spectral theory of nonunitary operators
was the triangular and universal models of nonunitary
operators. For this reason there arose the problem of
studying nonstationary random sequences embedded in
Hilbert spaceswith the aid of universal models, such that
triangular models allows the construction of some
elementary nonstationary sequences and with the aid of
universal models pick from them more general classes of
nonstationary sequences. The paper is devoted to
analysing sequences in Hilbert spaces that can be

represented in the form X(n) = TnXO,whereT isa

linear bounded operator. In the terminologies of
covariance function we give proof of the necessary and
sufficient condition for a possibility of such a
representation. The main methods of research are the
Kelley's transformations of nonunitary operators that
allow the construction of universal modelsof contraction
operators on the basis of universal models of dissipative
operators[3,7,8].

EMBEDDING NONSTATIONARY SEQUENCESIN
HILBERT SPACE

Let QQ be a set of elementary events. If the random

function  x(n) = x(n,w) depends not only on

(w@ ),butalsoonn=0,1,2... thenitiscalled arandom
sequence.

Let x(n), n=0,1,2... Be a random sequence of zero
mathematical expectation and afinite second moment:

Mx(n)=0, M ‘x(n)‘2 < o0
We denote [ to be the linear span of all x(n) when n

takesfinite natural numbersin

We introduce the scalar product of the elements:

h= Z akx(k) and 97 Z bpx(p)in the following
=1 p=1
way

(ho)s =M 5 ()3 Bx(p)3

On closing we obtain the Hilbert space H =H ,
embedded with the sequence X(N) . Hence any sequence
X(n) satisfying the above property can be considered as
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asequencein Hilbert space H  , for whichthe covariance

function isgiven by the scalar productin Hy [1,2,34].
k(n,m)= (x(n), x(m))HX

Definition 1.1

(1.1)

The random sequence X(n) is called stationary if its

covariance function depends only on the difference of its
arguments.

k(n,m)=k(n-m)

Contrary to which the sequence X(n)is called
nonstationary.

(1.2)

In view of the equality k(n, m) = k(m, n), in future

weassumethat n>m.

Definition 1.2

The covariance difference of the sequence x(n)is a
function of two natural arguments:

w(n,m)=k(n,m)-k(n+1,m+1) (1.3)
Itisclearly seen that the case when the sequence X(N) is

stationary then W(n, m) =0 and therefore covariance

difference can serve as a measure of deviation of the
sequence from its stationariness.

LEMMA11

Let X(n) and y(n) betwo random sequences such that:
(x(n), x(m)) =(y(n), y(m)), then there exists a

unitary operator mapping Hy into H , and satisfying
the condition:

y(n)=Ux(n),n=0,1,2...

PROOF

We first define the operator U on the vectors of the type

n

Ckx(k) inthefollowing way:
=1

U Eélckx(k)éz chy(k).

From therelationship:
(x(n),x(m)) =(y(n),y(m)), it follows that the

operator U isisometric, and hence it can be continuously

transformed into all H  up to unitary operator with the

range H , , for which y(n) :Ux(n),n:O,l,Z
EXAMPLES

1 x(n):z(n) fy, where Z(n)is a defined

sequenceand fj, isarandomvauewith Mf, =0,

w(nm) = (2(n) 2(m) - 2(n +1) 2(m+1)
It is obviously seen that if
Z(n)m = Z(n —m) , then the sequence
X(n) is stationary.

2 Let x(n) =A"a, (a)) ,where A # Qisacomplex

number, &, (w) , Is a sequence of random values
such that

Ma,a,, = F (n—m), then
k(n,m):/\”)FF(n—m) and
w(nm)=(1-]Af)A"A"F (n-m).

From here it follows that the sequence X(n)is

stationary if and only if |A| =1.
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LINEARLY REPRESENTABLE SEQUENCES.
THEOREM ON LINEAR REPRESENTABILITY OFA
SFQUENCE

Definition 1.3
The random sequence X(n) is said to be linearly

representable, if in H . Ithastheform:

x(n)=T"%, (n=12...)

Where T isalinear bounded operator actingin H.,, X, is

(1.4)

afixed elementin H, . The spectrum of the operator T we
shall call the spectrum of the sequence X(n) . Let x(n) be

a stationary sequence and consider the space H, such
that the operator V is acting according to the formulas:

=x(n+1)

EKZCKX i k+1

From the stationariness of the sequence X(n) , it follows

that the operator V isisometric, Further it is easy to see
that

x(n)=V "%y, X, =X(0) . Hence therefore any
stationary sequence can be represented in the form
x(n) =V "%, X, =X(0), where V is an isometric

operator actingin H, .
LEMMA12

If the sequences X(Nn) and y(n) have the covariance

functions coinciding and one of them is linearly
representable, then the other isalso linearly representable
in Hilbert space.

PROOF
Let x(n) and y(n) betwo random sequences such that:

k, (n,m) = K, (n,m) and suppose that x(n) =T"x,,

where T D[HX,HX] , % UH, . From lemma (1.1) it

follows that there exists a unitary operator U mapping

H., onto

« H,and satisfying the condition:

y(n) =Ux(n) n=0,1,2... then letting T =yTU 2

and Y, =UX,, we arrive at the relationship

y(n) = ﬁyo, n=0,1,2...and thelemmais proved.

THEOREM 1.1 (Oncriteriaof linear representability)

For any given complex-valued function of two arguments

R(n, m) to be a covariance function of some linearly
representable sequence, it is necessary and sufficient that:

1 R(n, m) be aHermitian nonnegativei.e.

N —
z R(n’m)/\n/\m 20 for any sequence of
n,m=0

complex numbers {/\k} L\Izl

> |&&

<u % R(n,¢)a,a, 2 (m, p)h“b_p
E i

for any sequence of complex numbers {a} ",
{b} . where 0< p <o and V(n,m)=
R(n+1,m)-R(n,m)

3 R(n,m)=R(mn),nm=0,12....

Proof

Assumethat there existsalinearly representabl e sequence
x(n) =T"xy, such that k(n,m)=R(n,m), then

N

R(n,mWA,, = Z k(n,mAA,, =

n.m=0 n,m=0
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@nzAnx(n)-zAmx(n>g=||g|| 20, Where
=0

g= ri)\nx(n)
2 V(nm)=R(n+Lm)-R(n,m) =

k(n+1,m)-k(nm) :((T ~1)x(n), x(m)).

On the other hand

Zanb( —ITxOTxo)

n,m=0

%(T-')éianﬂ& ) M

fromwhereit followsthat

HN

TmXO%

N M 2
Z Z a,bv(nm) <
n=0m=0
”T_IHZ' XanT X0 meT Xo| . Since
N=
N 2 N .
ZanT” = z (nig)anaz,thenfmajly
n=0 n,/=0
N M 2
> Y abyv(nm)
n=0 m=0
N M _
<p.y R(nf)aa. Y R(m p)byb
n,/=0 m, p=0

For U we can take [ = ||T =1 ||2 and hence the
proof of the necessary condition is established.

SUFFIENT CONDITION

Let E be a Euclidean space, such that dim E=r (the case
when r = o0, Eisconsidered to be separable). Let € for

k=0,1,2,..bean abstract elements.Consider thelinear space

H= %Ze@h[;h/Z 0E,me 012.H ag
0

n g
Aﬁ;e[hﬂ—;(/\hf)

In ﬁ we definethe bilinear form in the following way:

B aneyefid=3 S (Rlcenf)=

=0/=0
N M n
R(k 0)S A0 ()
k=0/=0 ( )azzl !
where

m—z_l a, . h—ZA 3, and {a}"_,

orthonormal basesin E. We show that thus defined bilinear
form has all the properties of a scalar product.

0)-(hhy )
=(eh,ah).

3 (ekhpeéhz) =R(k,
=R(ek)(h,h),

0 - (03 (0)
eh. ) eh D— R(k,?) }\( Ay
b) EkZ Z L Z .

k,/=0 a

r

S R(k W 20

a=1k,/=0

Homogeneity and linearity propertiesare easily checked.
After closing and factoring according to the nucleus of
the bilinear form we obtain Hilbert spaceH. Fix in E one

element X, such that ||X0|| = 1and consider the sequence
x(n) =6,Xp. Its obvious that
(x(n),x(m))H =R(n,m).
Let us denote H to be a linear closed span of the

sequence {X(n} and define a bilinear form (Din the
following way: given that
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n

h=% ax(k) and gzibpx(p) then

k=0

n m

o(hg)=3 > abyv(kp).

k=0 p=0
According to condition 2 of the theorem, the bilinear

functional §0is bounded and consequently according to

Riesz's theorem has the form (P(h’ 9) = (Ah, Q)H0

whereA isalinear operator actingin H,, .

m

TLED) oX(P) then

p=0

(x(n+1),g)—(x(n),g)

the set of vectors of the type Z bpx( p) iscompletein
p=0

H, then x(n+1)=(A+1)x(n).1f weset T =(A+1),
we obtain X(n)=T"%,, % =X(0)i.e. g =1 and
R(n, m) =K (n, m) and the theorem is proved,
ONQUASISTATIONARITY

Let x(n) be a random sequence. Consider the quadratic
form

m

w(a B MaAp. (e OC , m¥ 01.2..) (14
a,3=0

The sequence x(n) is called quasistationary, if the rank of
the quadratic form (1.5) isbounded and the maximum rank

P iscaled the rank of nonstationariness. Its obvious

that, if the sequence x(n) is stationary, then © =0 and

therefore the rank of nonstationariness characterizes the
degree of deviation of the sequence fromits stationariness.

Let there be given alinearly representable sequence
X(n)=T"x,. Itisclear that
W(a,B)z((I —TDT)x(a),x(ﬁ)) =

(x(a).g;)(9;.x(B))

=1

where r=dim(1 =TT)H | 1-TT = gy,
J=1

and therefore

fromwherefor any m=0,1,2.... Therank of the quadratic
form (1.5) doesnot exceed .

THEOREM 1.2, (ON RANK)

In order for a linearly representable sequence to be
quasistationary of rank PO , it isnecessary and sufficient

that dim(l —TBT)H =r < jnwhichcase p =T .
PROOF

It is enough in the proof to establish only the necessary
condition.

For any m=0,1,2... welet H(m) to beasubspace consisting
of the elements of the type:

h= ZCkX(k), G OC, then
k=0
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m _
(@ -Thh)= ; w(@.BPals (A0H (m))
a,=0
(16
Definethe subspace G, = P, (| —TDT) H  where p,,
is the orthornormal projectionon H (m) Its clear that

G, O pm(l— TBT)H . From (1.6) it fol lows that the
rank of the quadratic form

SE

w(a,BNeAs (0 -T°h.h),

a,B=0

D .
/\ax(a)g equals dimG,,. Consider the

0go
INGE

sequence H (1) OH (2)] ..... . Since the sequence

x(n) is embedded in the space H =Hy then

lim P, =1 and consequently

m- oo

limG,, = (' _TBT) H from therelationship

m-— oo

dimG,, < p,(m=0,1,2...) itfollowsthat

r=dim(1 =T )H = lim dimG,, <p

m- oo

since p <r thenr = p and the theorem is proved.

DISSIPATIVE RANDOM SEQUENCES
Definition 1.4

A quasistationary sequence x(n) is called dissipative if
nonnegative al the quadratic forms:
N _
> w(n,m)A,A, =0
n.m=0
Fromthedefinitionit followsthat, if arandom sequenceis
dissipative, then the quadratic form

N —
> k(n+p,m+pWA,
n.m=0
sequences in p.

(1.7

is a nonincreasing

In particular, the sequence k(n,n) is nonincreasing in n.
From hereit followsthat there existsthe limit:

limk(n,n) =02

n-oo
Two cases are possible here:
1 02=0
2 ai>0

In the first case, we say that the sequence x(n) is
asymptotically diminishing whilein the second case, we
say that the sequence is asymptotically nondiminishing.
LEMMA13

For dissipative sequences, there always exist the limit:

limk(n+ p,m+p)
p*>00

PROOF
Consider the relationship
:i§|x(n)+ x(m)”2 +||x(n) —x(m)”2 u

O
40 |x (n) +ix(m)|” =i [x(n) -ix(n)||2§

(19)

k(n,m)

Since
2

N —_
= > k(k+p.g+pAA,,
k,q=0

Z )\kx(k + p)
=0

then for a dissipative sequence the quadratic form

N 2

z AX(k+p)

k=0

is nonincreasing in p.

If we change in (1.8) n with n+p and m with m+p, we
obtain that every summand in (1.8) has a limit and
consequently there exist thelimit:

[imk(n+p,m+ =" i

Do ( P, p).Let x(n) =T "X, bealinearly
representable sequence. Sincein thiscase, the covariance
difference hastheform

w(n,m) :((I —TBT)x(n),x(m)) =

AJST, Vol. 7, No. 1: June, 2006
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;(x(n),ga).(ga'x(n))
where, T :dim(l —TDT)H , (I —TDT) =zl<-,ga >Gy |

thenitiseasy to notethat if T isa contraction operator,
then the sequence x(n) is dissipative. The next theorem
proves that, among the linearly representable sequences,
dissipative are only those sequences whereby in their
representations T is a contraction operator.

THEOREM 1.3

In order for a linearly representable sequence
x(n) =T"x,, to be dissipative, it is necessary and
sufficient that T be a contraction operator and
dim(1 =TT )H <o

Proof

It remains to prove only the necessary condition. Let
X (n) =T nXO , be adissipative sequence, then according
tothedefinitionitis quasistationary andinview of theorem

(12), dim(l —TBT)H =1 <00, On the other hand

from the relationship (1.7) it follows that:

((I —TBI')h,h)ZO, h= iAaX(a). Since the
a=0

m
vectors of the type Z AgX (a ) aredensein H,, then
a=0

the operator T is bounded and consequently for any
hoH,. ((1-TT)hh) 20,

Let T beacontraction operator acting in Hilbert spaceH.

Itisclear that the sequence A, =TUT" isamonotonic

nondecreasing sequence of positive bounded operators.
According to the theorem on convergence of the
sequences of operators [5], there exists a strong limit:

—cli o
R=s1IimT"T tiseasy to note that R is a positive

n- oo

contraction operator satisfying the relationships:
1 TURT"=RT™™(n2m)

2 Ipiirgk(n+ p,m+p) :(RT”‘mxo,XO) =k, (n-m)

3 limw(n+p,m+p)=0

p— o

THEOREM 14

Let T be acontraction operator acting in H. Suppose that
{T”(I -TDT)H} =H, then the sequence G,=T",
n=0,1,2...tend to Zeroin aweaker sensewhen N — 0.

PROOF

Since the operator T is a contraction operator, then there
exists an operator

1
(| —TBr)E,Suchthatfor any h[1H

1 2

lim (| —TDr)ET”h

n- o

= Iim((l —TDT)T”h,T"h) =0

n- o

Let gOH and kJ Z", then
|im(T”h,TE'f (1 —TDT)g)

n- o

|im((| —TBT)T””‘h,g) =0

n- o

From here and al so the comparison HT : H <1,n=012,...

follows that the sequence G, =T" tendsto zero in a

weak sensewhen N — o

CLASSFICATIONSOF DISS PATIVE LINEARLY
REPRESENTABLE SEQUENCES

Let in Hilbert space H be given a contraction operator T,

such that there exist acomplex number r |r| = land that

the operator (rI —T) isinvertiblein aweaker sensei.e.

29
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the operator (rl —T)_1 is bounded and everywhere

defined. Consider T :FT , itispossible without loss

of generality to consider that r=1. If therefore T is a
contraction operator in H such that the point 1isaregular
point for it, then consider the operator

A=i(1+T)(1 -T) =21 -T) =1 9

The operator A thus defined is called Kelley's
transformation of the operator T. From an obvious
relationship

A—iAﬂzz(I —TD)_l(I _TDT)(| -T)" (1o

follows that the operator A is a dissipative bounded
operator of Hermitian rank equal to rank of nonunitary
operator T. The operator T isdefined through the operator
A withtheaid of theformulas:

T=(A-il)(A+i1) =1 =21 (A+1)" @1

In future we consider only quasiunitary contraction
operators for which

dim(1 =T )H =dim(1 =TT")H =p <

We state without proof some necessary information for
future purposes regarding Kelley’s transformations.

Theorem 1.5
The operators T and A have similar invariant subspaces,

whereasif Hisinvariantinrelationto A subspace,
then:

Ty, =(Aly =ity (Al +il 1)) @iy

Theorem 1.6

The operator T in nonunitary(simple) if and only if the
operator A isnon-selfadjoint(simple).

Proof

Assume that the operator T is simple. If the operator
. -1

A=i(1+T)(1 -T)

is not simple, then the space H is a direct sum of two

invariant in relation to A subspaces H, and H, such

that the operator Ay = A/, isself-adjoint operator [7].

From theorem (1.5) it follows that Hy, and H, ,are

invariantsinrelationtoTand Tg =T/ :(At) =il Ho)

L
(Ao +il Ho) then from obvious relationships

\LOA-ATD
(1-777) =2(A -ir) Ei—B(AHI)l (112)
L 0A-AO

(A )T (g

(1-77%) =2(A+ir) 1

it followsthat To =T /yy_ isa unitary operator which

contradictsinitial assumption. The sufficient conditionis
established analogously.

Theorem 1.7
Let A and A, be two dissipative bounded operators

actingin H; and H,correspondingly. Let T, and T, be
their corresponding Kelley’stransformations. Thenif ina

certain invariant subspace H 0 [l Hl, the operator
A isunitary equivalent to operator A, , theninthe same
subspace, the operator T; is unitary equivalent to the

operator T, .

The proof of thistheorem followsfrom (1.11)

The importance of the last theorem is that it helps to
construct the universal models of quasiunitary contraction
operators with the aid of universal models of dissipative
operators[3,7,8].

Definition 1.5

Thedissipative operator A iscalled complete, if thelinear
closed span of all itsinvariants subspaces, corresponding
to nonreal eigen values of the spectrum (points of the
spectrum lying inside aunit circle) coincideswith H.

Let T be a contraction operator in H, such that (1-T) is
invertiblein asimple sense and let

A=i(1 +T)(1 =T)™. Fromtherelationships:
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(1=M) =2 (A )Etx-i%g,A ‘1
(A=a) == (1T T 255 (22)

follows that the point A 21 A Z ] belongs to the
spectrum of the operator T if and only if, when the point
. (1+2)
1-A
and isan easy matter to provethat thereal vector h of the
operator T correspondsto thereal number A if and only

bel ongs to the spectrum of the operator A

if when g = (A+i| )_l hisareal vector of operator A
and corresponds to the real number

_i(1+2)

S 1-A

Theorem 1.8

The operator T is complete if and only if when

A=i (I +T)(I —T)_1 iscomplete.

Theorem 1.9

Let T be a contraction quasiunitary operator of rank
P < o suchthat theoperator (I-T) isinvertibleinasmple
sense. Then any point of the spectrum of the operator T,
lying inside a unit circleis areal eigen value of afinite
multiplicity.

Pr oof

Consider theoperator A=i (I +T)(l —T)_l.Fromthe

finiteness of the subspace (| —TBT) H ,itfollowsthat

the operator

A-A"
[

continuous.

2(1 =T (1 =TT)(1 =T) " iscompletely

Let now A (|)\ | < 1) be the point of the operator T, then

i(1+2)
-A
operator A and consequently in view of the theorem 5.2

[9], zisanonreal eigen value of the operator A of finite
multiplicity.

the point Z= belongs to the spectrum of the

The theorem 1.9 was derived in the works [9] for amore
wider class of operators, that allows a representation of
theform: T=U+B

Where U is a unitary operator and B is a completely
continuous operator with a view that the operator T has
oneregular point inside the unit circle. Let now be given

arandom linearly representable sequence x(n) = Tnx0 ,
where T is a contraction quasiunitary operator and the
operator (I-T) is invertible in a simple sense. As was
mentioned earlier the operator A= (I +T)(I —T)_1

is bounded and dissipative operator of a finite
nonHermitian rank. Its known [7,10] that such operators
allowsthe representation of the form:

i dt
eox\—a(t)

© 7 =
detw, (A)= !
W75

,(¢>0)

where (X) is a nonincreasing function on [O, f] and

{ ZK} isaseguence of nonreal eigen values of the operator
A

. -1
WA(/\)=I—|H(A—AI) ga,gBH
A-AT_
i :Z<-’ga >ga andr=dim(2ImAH).
a=1

_ 1A
Using the fact that % ='77,", j=1,23.... Where

J

{)‘ j} =1 isasequence of eigen values of the operator T,

lying inside the unit circle, we obtain
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det w, (A x——le

(115
We are going to say that a dissipative linearly represent-
able sequence

x(n) =T ", belongstotheclass H (") Ao (X)B,
r<oo if the rank of the quasiunitary operator does not

exceedr (psr).

The operator (I-T) isinvertiblein asimple sense and the

operator A= (I +T)(I —T)_listruefortherelation-
ship (1.15). If the discrete operator is missing, then the

corresponding class we denote by H (r) [)\k] . In case

of acomplete operator T, the corresponding class we de-

note by k(") [)\k] .

CONCLUSON

Fromthefirst chapter it followsthat for linearly represent-

able sequences x(n) =T"X0, the properties of the

quasistationarity and dissipativeness are only expressed
through the properties of the operator T. Further, for some
bounded on the operator T, theorem 1.9 allowsto obtain
the classifications of such sequences only according to
the spectrum of the operator T.

10.

REFERENCES

A.N. Kolmogorov. Stationary sequences in Hilbert
spaces. (1941), pp. 1-40.

A.M. Yagrom. Introduction to the theory of
stationary random functions.  (1952), pp.3-168.

M.C. Livshit, A.A. Yantsevich. Operator colligations
in Hilbert spaces. (1971), pp. 5-160.

A.A. Yantsevich. Nonstationary sequencesin Hilbert
spaces. (1986), pp. 139-141.

N.I. Akhiezer, 1.M. Glazman. Theory of linear
operatorsin Hilbert space. (1966), pp.20-54.

B. Nagia, K. Foyash. Harmonic analysis of operators
inHilbert space. (1970),pp. 20-27.

M.S.Brodskii. Triangular and Jordans
representations of linear operators. (1969), pp. 287-
300.

K.P. Kirchev. About one class o nonstationary
random processes. (1971), pp.150-169.

M.F.Krein. Introduction to the theory of linear
nonself adjoint operators. (1965), pp.15-20.

M.S. Brodskii, M.S. Livshit. Spectral theory of nonself
adjoint operators and middle systems. (1958),pp. 3-
85.

AJST, \Vol. 7, No. 1: June, 2006

32



Covariance Differences of Lineary Representable Sequencesin Hilbert Spaces

33

AJST, Vol. 7, No. 1: June, 2006





