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ABSTRACT:- TThe paper introduces the concepts of covariance differences of a sequence and
establishes its relationship with the covariance function. One of the main results of this paper is the
criteria of linear representability of sequences in Hilbert spaces.

INTRODUCTION

In the analysis of stationary random processes and
sequences it was observed that there exists a close
relationship with the spectral theory of self-adjoint or
unitary operators in Hilbert spaces. In the works of
Kolmogorov, the theory of stationary random sequences
was constructed with the aid of unit parametric group of
unitary operators.

In the last years, in the works of Nagia and Foyash [6],
Brodskii [7],Livshit [3] and others they developed the
theory of nonunitary operators in Hilbert spaces whereby
the analogy of spectral theory of nonunitary operators
was the triangular and universal models of nonunitary
operators. For this reason there arose the problem of
studying nonstationary random sequences embedded in
Hilbert spaces with the aid of universal models, such that
triangular models allows the construction of some
elementary nonstationary sequences and with the aid of
universal models pick from them more general classes of
nonstationary sequences. The paper is devoted to
analysing sequences in Hilbert spaces that can be

represented in the form ( ) 0
nx n T x= , where T is a

linear bounded operator. In the terminologies of
covariance function we give proof of the necessary and
sufficient condition for a possibility of such a
representation. The main methods of research are the
Kelley’s transformations of nonunitary operators that
allow the construction of universal models of contraction
operators on the basis of universal models of dissipative
operators [3,7,8].

EMBEDDING NONSTATIONARY SEQUENCES IN
HILBERT SPACE

Let Ω  be a set of elementary events. If the random

function ( ) ( , )x n x n ω= depends not only on

( )ω∈Ω , but also on n=0,1,2… then it is called a random
sequence.

Let ( )x n , n=0,1,2… Be a random sequence of zero
mathematical expectation and a finite second moment:

( ) 0Mx n = , ( ) 2
M x n < ∞

We denote !H to be the linear span of all ( )x n when n

takes finite natural numbers in !H

We introduce the scalar product of the elements:

( )
1

n

k
k

h a x k
=

= ∑  and ( )
1

m

p
p

g b x p
=

= ∑ in the following

way

( )! ( ) ( )
1 1

, .
n m

k pH
k p

h g M a x k b x p
= =

 
=  

  
∑ ∑

On closing we obtain the Hilbert space XH H=  ,

embedded with the sequence ( )x n . Hence any sequence

( )x n satisfying the above property can be considered as
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a sequence in Hilbert space XH , for which the covariance

function is given by the scalar product in XH  [1,2,3,4].

( ) ( ) ( )( ), ,
xH

k n m x n x m=             (1.1)

Definition 1.1

The random sequence ( )x n is called stationary if its
covariance function depends only on the difference of its
arguments.

( ) ( ),k n m k n m= −             (1.2)

Contrary to which the sequence ( )x n is called
nonstationary.

In view of the equality ( ) ( ), ,k n m k m n= , in future

we assume that n m≥ .

Definition 1.2

The covariance difference of the sequence ( )x n is a
function of two natural arguments:

( ) ( ) ( ), , 1, 1w n m k n m k n m= − + +             (1.3)

It is clearly seen that the case when the sequence ( )x n is

stationary then ( ), 0w n m = and therefore covariance

difference can serve as a measure of deviation of the
sequence from its stationariness.

LEMMA 1.1

Let ( )x n and ( )y n  be two random sequences such that:

( ) ( )( ) ( ) ( )( ), ,x n x m y n y m= , then there exists a

unitary operator mapping XH into yH and satisfying
the condition:

( ) ( ), n=0,1,2...y n Ux n=
PROOF

We first define the operator U on the vectors of the type

( )
1

n

k
k

c x k
=

∑ in the following way:

( ) ( )
1 1

.
n n

k k
k k

U c x k c y k
= =

 
= 

 
∑ ∑

From the relationship:

( ) ( )( ),x n x m  ( ) ( )( ),y n y m= , it follows that the

operator U is isometric, and hence it can be continuously

transformed into all XH up to unitary operator with the

range yH , for which ( ) ( ), n=0,1,2 ...y n Ux n=

EXAMPLES

1. ( ) ( ) 0x n z n f= , where ( )z n is a defined

sequence and 0f  is a random value with 0 0Mf = ,

and 2 2
0 0M f σ=  , then

( ) ( ) ( ) 2
0,k n m z n z m σ=

( ) ( ) ( ) ( ) ( )( ) 2
0, 1 1w n m z n z m z n z m σ= − + +

It is obviously seen that if

( ) ( ) ( )z n z m z n m= − , then the sequence

( )x n is stationary.

2. Let ( ) ( )n
nx n aλ ω=  , where 0λ ≠ is a complex

number, ( )na ω , is a sequence of random values

such that

( )n mMa a F n m= − , then

( ) ( ), n mk n m F n mλ λ= −  and

( ) ( ) ( )2, 1 n mw n m F n mλ λ λ= − −  .

From here it follows that the sequence ( )x n is

stationary if and only if 1.λ =
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LINEARLY REPRESENTABLE SEQUENCES.
THEOREM ON LINEAR REPRESENTABILITY OF A
SEQUENCE

Definition 1.3
The random sequence ( )x n is said to be linearly

representable, if in xH  it has the form:

( ) 0
nx n T x=  ( 1, 2...)n =                             (1.4)

Where T is a linear bounded operator acting in 0,xH x  is

a fixed element in xH  . The spectrum of the operator T we

shall call the spectrum of the sequence ( )x n . Let ( )x n be

a stationary sequence and consider the space xH such
that the operator V is acting according to the formulas:

( ) ( )

( ) ( )
0 0

1

1
n n

k k
k k

Vx n x n

V c x k c x k
= =

= +

 
= + 

 
∑ ∑

 From the stationariness of the sequence ( )x n , it follows
that the operator V is isometric, Further it is easy to see
that

( ) ( )0 0, nx n V x x x o= = . Hence therefore any

stationary sequence can be represented in the form

( ) ( )0 0, nx n V x x x o= = , where V is an isometric

operator acting in xH .

LEMMA 1.2

If the sequences ( )x n and ( )y n have the covariance
functions coinciding and one of them is linearly
representable, then the other is also linearly representable
in Hilbert space.

PROOF
Let ( )x n and ( )y n be two random sequences such that:

( ) ( ), ,x yk n m k n m= and suppose that ( ) 0
nx n T x= ,

where [ ],x xT H H∈ , 0 xx H∈  . From lemma (1.1) it

follows that there exists a unitary operator U mapping

xH  onto YH and satisfying the condition:

( ) ( )n=0,1,2... y n Ux n= then letting ! 1T UTU −=

and 0 0y Ux= , we arrive at the relationship

( ) "
0 , n=0,1,2...ny n T y= and the lemma is proved.

THEOREM 1.1 (On criteria of linear representability)

For any given complex-valued function of two arguments

( ),R n m to be a covariance function of some linearly

representable sequence, it is necessary and sufficient that:

1. ( ),R n m be a Hermitian nonnegative i.e.

( )
, 0

, 0
N

n m
n m

R n m λ λ
=

≥∑  for any sequence of

complex numbers { } 1
N

k kλ =

2. ( )
2

0 0
,

N M

n m
n m

a b V n m
= =
∑ ∑

( ) ( )
, 0 , 0

, . ,
N M

n m p
n m p

R n a a R m p b bµ
= =

≤ ∑ ∑#
#

#

for any sequence of complex numbers { } 1
N

n na = ,

{ } 1
M

m mb = , where 0 µ< < ∞  and  ( ),V n m =

( ) ( )1, ,R n m R n m+ −

3. ( ) ( ), , , n,m=0,1,2,...R n m R m n=

Proof

Assume that there exists a linearly representable sequence

( ) 0
nx n T x= , such that ( ) ( ), ,k n m R n m= , then

1. ( ) ( )
. 0 , 0

, ,
N N

n m n m
n m n m

R n m k n mλ λ λ λ
= =

= =∑ ∑
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( ) ( ) 2

0 0
. 0.

N N

n m
n m

x n x n gλ λ
= =

 
= ≥ 

 
∑ ∑  Where

( )
0

.
N

n
n

g x nλ
=

= ∑

2. ( ) ( ) ( ), 1, ,V n m R n m R n m= + − =

( ) ( ) ( ) ( ) ( )( )1, . ,k n m k n m T I x n x m+ − = − .

On the other hand

( )( )
,

0 0
, 0

,
N M

n n
n m

n m
a b T I T x T x

=
− =∑

( ) )0 0
0 0

,
N M

n m
n m

n m
T I a T x b T x

= =

  
−     

∑ ∑
from where it follows that

( )
2

0 0
,

N M

n m
n m

a b v n m
= =

≤∑ ∑

2 2
2

0 0
0 0

. .
N M

n n
n m

N m
T I a T x b T x

= =
− ∑ ∑ . Since

( )
2

0
0 , 0

,
N N

n
n n

n n
a T x R n a a

= =
=∑ ∑ #
#

# , then finally

( )
2

0 0
,

N M

n m
n m

a b v n m
= =

∑ ∑

( ) ( )
, 0 , 0

. , . ,
N M

n l m p
n m p

R n a a R m p b bµ
= =

≤ ∑ ∑
#

#

For µ we can take 2T Iµ = − and hence the

proof of the necessary condition is established.

SUFFIENT CONDITION

Let E be a Euclidean space, such that dim E=r (the case

when r = ∞ , E is considered to be separable). Let ke  for

k=0,1,2,..be an abstract elements.Consider the linear space

0
; , 0,1,2...

m

H e h h E m
=

 = ∈ = 
 
∑ # # #
#

$
 and

( )
0 0

m m

e h hλ λ
= =

  = 
 
∑ ∑# # #
# #

In !H  we define the bilinear form in the following way:

! ( ) !( )
0 0 0 0

, , ,
N M N M

k k k
k k

e h e h R k e h h
= = = =

 
= = 

 
∑ ∑ ∑∑# # #

# #

( ) ( ) ( )

0 0 1
,

N M n
k

k
R k α

α
λ λ

= = =
∑∑ ∑ #

#
#

where

( ) ! ( )

1 1
 ,  

r r
k

kh a h aα α α α
α α

λ λ
= =

= =∑ ∑ #
#  and { } 1

raα α =  is

orthonormal bases in E. We show that thus defined bilinear
form has all the properties of a scalar product.

a)  ( )! ( ) ( )1 2 1 2, , . ,k H Ee h e h R k h h=# #

( )( ) ( )2 1 2 1, . , , .kER e k h h e h e h= = #

b) ( ) ( ) ( )

0 0 , 0 1
, ,

N N N r
k

k k
k k

e h e h R k α α
α

λ λ
= = = =

 
= 

 
∑ ∑ ∑ ∑ #

# #
# #

#

( ) ( ) ( )

1 , 0
, 0

r N
k

k
R k α α

α
λ λ

= =
= ≥∑ ∑ #

#
#

Homogeneity and linearity properties are easily checked.
After closing and factoring according to the nucleus of
the bilinear form we obtain Hilbert space H. Fix in E one

element 0x such that 0 1x = and consider the sequence

( ) 0nx n e x= . Its obvious that

( ) ( )( ) ( ), , .
H

x n x m R n m=

Let us denote 0H  to be a linear closed span of the

sequence ( ){ }x n and define a bilinear form φ in the

following way: given that
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( ) ( )
m

p
0 p=0

 and g= b
n

k
k

h a x k x p
=

= ∑ ∑  then

( ) ( )
0 0

, ,
n m

k p
k p

h g a b v k pφ
= =

= ∑ ∑ .

According to condition 2 of the theorem, the bilinear

functional φ is bounded and consequently according to

Riesz’s theorem has the form ( ) ( )
0

, , Hh g Ah gφ =

where A is a linear operator acting in 0H .

Let ( )
0

m

p
p

g b x p
=

= ∑ , then

( )( ) ( )( )1 , ,x n g x n g+ − =

( ) ( ) ( )( )
0

1 ,
m

p
p

b x n x n x p
=

 + − = ∑

( ) ( )( ) ( )( )
0

, , , .
m

p
p

b v n p x n g Ax n gφ
=

= =∑ S i n c e

the set of vectors of the type ( )
0

m

p
p

b x p
=

∑ is complete in

H, then  ( ) ( ) ( )1 .x n A I x n+ = + If we set ( )T A I= + ,

we obtain ( ) 0
nx n T x= , ( )0 0x x= i.e. 0 1e =  and

( ) ( ), ,R n m K n m= and the theorem is proved,

ON QUASISTATIONARITY

Let x(n) be a random sequence. Consider the quadratic
form

( ) ( )
, 0

, ,  , 0,1, 2...
m

w mα β α
α β

α β λ λ λ
=

∈ =∑ %    (1.4)

The sequence x(n) is called quasistationary, if the rank of
the quadratic form (1.5) is bounded and the maximum rank

ρ   is called the rank of nonstationariness. Its obvious

that, if the sequence x(n) is stationary, then 0ρ = and
therefore the rank of nonstationariness characterizes the
degree of deviation of the sequence from its stationariness.

Let there be given a linearly representable sequence

( ) n
ox n T x= .  It is clear that

( ) ( ) ( ) ( )( ), ,w I T T x xα β α β∗= − =

( )( ) ( )( )
1

, . ,
r

j j
j

x g g xα β
=

∑

where ( )dimr I T T H∗= −  , 
1

.,
r

j j
J

I T T g g∗

=
− = 〈 〉∑

and therefore

( )

( )( ) ( )( )

( )

, 0

, 0 1

2

1 0

,

, . ,

,

m

m r

j
j

r m

j
j

w

x g g x

x g

α β
α β

α α β
α β

α
α

α β λ λ

λ α λ β

λ α

=

= =

= =

=

 
=  

 

∑

∑ ∑

∑ ∑

from where for any m=0,1,2…. The rank of the quadratic
form (1.5) does not exceed r.

THEOREM 1.2. (ON RANK)

In order for a linearly representable sequence to be
quasistationary of rank ρ , it is necessary and sufficient

that ( )dim I T T H r∗− = < ∞ , in which case rρ = .

PROOF

It is enough in the proof to establish only the necessary
condition.

For any m=0,1,2… we let H(m) to be a subspace consisting
of the elements of the type:

( )
0

m

k
k

h c x k
=

= ∑ , kc ∈ % , then
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( ) ( )
, 0

( ) , ,
m

I T T h h w α β
α β

α β λ λ∗

=
− = ∑ , ( )( )H mλ ∈

(1.6)

Define the subspace ( )m mG P I T T H∗= − , where mp

is the orthornormal projection on ( )H m .  Its clear that

( )m mG p I T T H∗⊆ − . From (1.6) it follows that the

rank of the quadratic form

( )
, 0

,
m

w α β
α β

α β λ λ
=

∑ , ( )( ) ,I T T h h∗− ,

( )
0

m
h xα

α
λ α

=

 
= 

 
∑  equals dim mG . Consider the

sequence ( ) ( )1 2 .....H H⊂ ⊂ .  Since the sequence

x(n) is embedded in the space XH H=  then

lim mm
p I

→∞
= and consequently

( )lim mm
G I T T H∗

→∞
= −  from the relationship

dim ,(m=0,1,2...) mG ρ≤ it follows that

( )dim lim dim mm
r I T T H G ρ∗

→∞
= − = ≤

since  then r rρ ρ≤ = and the theorem is proved.

DISSIPATIVE RANDOM SEQUENCES
Definition 1.4

A quasistationary sequence x(n) is called dissipative if
nonnegative all the quadratic forms:

( )
. 0

, 0
N

n m
n m

w n m λ λ
=

≥∑            (1.7)

From the definition it follows that, if a random sequence is
dissipative, then the quadratic form

( )
. 0

,
N

n m
n m

k n p m p λ λ
=

+ +∑  is a  nonincreasing

sequences in p.

In particular, the sequence k(n,n) is nonincreasing in n.
From here it follows that there exists the limit:

( ) 2lim ,
n

k n n σ∞
→∞

=

Two cases are possible here:

1. 2 0σ∞ =

2. 2 0σ∞ >

In the first case, we say that the sequence x(n) is
asymptotically diminishing while in the second case, we
say that the sequence is asymptotically nondiminishing.

LEMMA 1.3

For dissipative sequences, there always exist the limit:

( )lim ,
p

k n p m p
→∞

+ +

PROOF

Consider the relationship

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2
1,
4

x n x m x n x m
k n m

i x n ix m i x n ix n

 + + − =  
 + + − − 

(1.8)
Since

( )
2

0 , 0
( , )

n N

k k q
k k q

x k p k k p q pλ λ λ
= =

+ = + +∑ ∑ ,

then for a dissipative sequence the quadratic form

( )
2

0

N

k
k

x k pλ
=

+∑  is  nonincreasing in p.

If we change in  (1.8) n with n+p and m with m+p, we
obtain that every summand in (1.8) has a limit and
consequently there exist the limit:

( )lim ,
p

k n p m p
→∞

+ + . Let ( ) 0
nx n T x=  be a linearly

representable sequence.  Since in this case, the covariance
difference has the form

( ) ( ) ( ) ( )( ), ,w n m I T T x n x m∗= − =
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( )( ) ( )( ),
1

, .
r

x n g g x nα α
α =
∑

where, ( )dimr I T T H∗= − , ( )
1

.,
r

I T T g gα α
α

∗

=
− = < >∑ ,

then it is easy to  note that if T is a contraction operator,
then the sequence x(n) is dissipative. The next theorem
proves that, among the linearly representable sequences,
dissipative are only those sequences whereby in their
representations T is a contraction operator.

THEOREM 1.3

In order for a linearly representable sequence

( ) 0
nx n T x= , to be dissipative, it is necessary and

sufficient that T be a contraction operator and

( )dim .I T T H∗− < ∞
Proof

It remains to prove only the necessary condition. Let

( ) 0
nx n T x= , be a dissipative sequence, then according

to the definition it is  quasistationary and in view of theorem

(1.2), ( )dim I T T H r∗− = < ∞ .  On the other hand

from the relationship (1.7) it follows that:

( )( ), 0I T T h h∗− ≥ , ( )
0

m
h xα

α
λ α

=
= ∑ . Since the

vectors of the type ( )
0

m
xα

α
λ α

=
∑ are dense in xH , then

the operator T is bounded and  consequently for any

xh H∈ , ( )( ), 0I T T h h∗− ≥ .

 Let T be a contraction operator acting in Hilbert space H.

It is clear that the sequence 
n n

nA T T∗=   is a monotonic

nondecreasing sequence of positive bounded operators.
According to the theorem on convergence of the
sequences of operators [5], there exists a strong limit:

. lim
n

n
R s T T∗

→∞
= . It is easy to note that R is a positive

contraction operator satisfying the relationships:

1. ( ),
m n n mT RT RT n m∗ −= ≥

2. ( ) ( ) ( )0 00
lim , ,n m
p

k n p m p RT x x k n m−
∞→

+ + = = −

3. ( )lim , 0
p

w n p m p
→∞

+ + =

THEOREM 1.4

Let T be a contraction operator acting in H. Suppose that

( ){ }n

T I T T H H∗ ∗− = , then the sequence n
nG T= ,

n=0,1,2…tend to Zero in a weaker sense when n → ∞ .

PROOF

Since the operator T is a contraction operator, then there
exists an operator

( )
1
2I T T∗− , Such that for any h H∈

( ) ( )( )
21

2lim lim , 0n n n

n n
I T T T h I T T T h T h∗ ∗

→∞ →∞
− = − =

Let  and g H k +∈ ∈ & , then

( )( )lim ,
kn

n
T h T I T T g∗ ∗

→∞
− =

( )( )lim , 0n k
n

I T T T h g∗ +

→∞
− =

From here and also the comparison 1nT ≤ , n=0,1,2,…

follows that the sequence  n
nG T=  tends to zero in a

weak sense when n → ∞

CLASSIFICATIONS OF DISSIPATIVE LINEARLY
REPRESENTABLE SEQUENCES

Let in Hilbert space H be given a contraction operator T,

such that there exist a complex number r 1r = and that

the operator  ( )rI T− is invertible in a weaker sense i.e.
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the operator ( ) 1rI T −−  is bounded and everywhere

defined. Consider  T rT′ =  , it is possible without loss
of generality to consider that r=1. If therefore T is a
contraction operator in H such that the point 1 is a regular
point for it, then consider the operator

( )( ) ( )1 12A i I T I T i I T I− −= + − = − −           (1.9)

The operator A thus defined is called Kelley’s
transformation of the operator T. From an obvious
relationship

( ) ( )( )1 12A A I T I T T I T
i

∗ − −∗ ∗− = − − −       (1.10)

follows that the operator A is a dissipative bounded
operator of Hermitian rank equal to rank of nonunitary
operator T. The operator T is defined through the operator
A with the aid of the formulas:

( )( ) ( )1 12T A iI A iI I i A iI− −= − + = − +        (1.11)

In future we consider only quasiunitary contraction
operators for which

( ) ( )dim dimI T T H I TT H ρ∗ ∗− = − = < ∞
We state without proof some necessary information for
future purposes regarding Kelley’s transformations.

Theorem 1.5
The operators T and A have similar invariant subspaces,

whereas if 0H is invariant in relation to A subspace,
then:

( )( )0 0 0 0 0

1
/ / / / /H H H H HT A iI A iI

−
= − +        (1.11)

Theorem 1.6

The operator T in nonunitary(simple) if and only if the
operator A  is non-selfadjoint(simple).

Proof

Assume that the operator T is simple. If the operator

( )( ) 1A i I T I T −= + −
is not simple, then the space H is a direct sum of two

invariant in relation to A subspaces 0H  and 1H , such

that the operator 
00 /HA A=  is self-adjoint operator [7].

From theorem (1.5) it follows that 0H  and 1H ,are

invariants in relation to T and ( )0 00 0/H HT T A iI= = −

( )0

1
0 HA iI

−
+ then from obvious relationships

( ) ( ) ( )1 12 A AI T T A iI A iI
i

∗− −∗ ∗  −− = − + 
 

    (1.12)

( ) ( ) ( ) 112 A AI TT A iI A iI
i

∗ −−∗ ∗ −− = + − 
 

        (1.13)

it follows that  
00 /HT T=  is a unitary operator which

contradicts initial assumption. The sufficient condition is
established analogously.

Theorem 1.7

Let 1A and 2A  be two dissipative bounded operators

acting in 1H  and 2H correspondingly. Let 1T and 2T  be
their corresponding Kelley’s transformations. Then if in a

certain invariant subspace 0 1H H⊂ , the operator

1A is unitary equivalent to operator 2A , then in the same

subspace, the operator 1T is unitary equivalent to the

operator 2T .

The proof of this theorem follows from (1.11)

The importance of the last theorem is that it helps to
construct the universal models of quasiunitary contraction
operators with the aid of universal models of dissipative
operators [3,7,8].

Definition 1.5

The dissipative operator A is called complete, if the linear
closed span of all its invariants subspaces, corresponding
to nonreal eigen values of the spectrum (points of the
spectrum lying inside a unit circle) coincides with H.

Let T be a contraction operator in H, such that (I-T) is
invertible in a simple sense and let

( )( ) 1A i I T I T −= + − . From the relationships:
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( ) ( )1 1 1
1 1

I I A iI A i λλ
λ λ

− + − = + − − − 
, 1λ ≠

( ) ( )1 1 z iA zI I T T
z i z i

− − − = − − + + 
, ( )z i≠ −

follows that the point 1λ ≠ 1λ ≠  belongs to the
spectrum of the operator T if and only if, when the point

( )1
1

i
z

λ
λ

+
=

−
 belongs to the spectrum of the operator A

and is an easy matter to prove that the real vector h of the
operator T corresponds to the real number λ if and only

if when ( ) 1g A iI h−= + is a real vector of operator A

and corresponds to the real number

( )1
1

i
z

λ
λ

+
=

−

Theorem 1.8

The operator T is complete if and only if when

( )( ) 1A i I T I T −= + −  is complete.

Theorem 1.9

Let T be a contraction quasiunitary operator of rank
ρ < ∞ , such that the operator (I-T) is invertible in a simple
sense. Then any point of the spectrum of the operator T,
lying inside a unit circle is a real eigen value of a finite
multiplicity.

Proof

Consider the operator ( )( ) 1A i I T I T −= + −  . From the

finiteness of the subspace ( )I T T H∗− , it follows that

the operator

( ) ( )( )1 12A A I T I T T I T
i

∗ − −∗ ∗− = − − − is completely

continuous.

Let now ( )1λ λ < be the point of the operator T, then

the point 
( )1
1

i
z

λ
λ

+
=

−
 belongs to the spectrum of the

operator A and consequently in view of the theorem  5.2
[9], z is a nonreal eigen value of the operator A of finite
multiplicity.

The theorem 1.9 was derived in the works [9] for a more
wider class of operators, that allows a representation of
the form:  T=U+B

Where U is a unitary operator and B is a completely
continuous operator with a view that the operator T has
one regular point inside the unit circle. Let now be given

a random linearly representable sequence ( ) 0
nx n T x= ,

where T is a contraction quasiunitary operator and the
operator  (I-T) is invertible in a simple sense. As was

mentioned earlier the operator ( )( ) 1A i I T I T −= + −
is bounded and dissipative operator of a finite
nonHermitian rank. Its known [7,10] that such operators
allows the representation of the form:

( ) ( )0

1
det

dti
j t

A
jj

z
w e

z
λ αλ

λ
λ

∫∞
−

=

−
=

−∏
#

, ( )0>#

where ( )xα is a nonincreasing function on [ ]0,#  and

{ }kz is a sequence of nonreal eigen values of the operator

A.

( ) ( ) 1 ,Aw I i A I g gα βλ λ −= − −

1
.,

rA A g g
i α α

α

∗

=

− = < >∑  and ( )dim 2Imr AH= .

Using the fact that 
1
1

j
j

j
z i

λ
λ

+
=

− ,  j=1,2,3….   Where

{ } 1j j
λ

∞

=   is a sequence of eigen values of the operator T,

lying inside the unit circle, we obtain
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( ) ( ) ( )
( ) ( )

( )0j

j1

1 1-
det x

1-

dti
j t

A
jj

i
w e

i i
λ αλ λ λ λ

λ
λ λ λ λ

∫∞
−

=

− − +
=

+ + −∏
#

(1.15)
We are going to say that a dissipative linearly represent-
able sequence

( ) 0
nx n T x=  belongs to the class  ( ) ( ), ,r

kH xλ α  
r<∞  if the rank of the quasiunitary operator does not

exceed r ( )rρ ≤ .

The operator  (I-T) is invertible in a simple sense and the

operator ( )( ) 1A i I T I T −= + − is true for the relation-

ship  (1.15). If the discrete operator is missing, then the

corresponding class we denote by ( ) [ ]  r
kH λ . In case

of a complete operator T, the corresponding class we de-

note by ( ) [ ]r
kk λ .

CONCLUSION

From the first chapter it follows that for linearly represent-

able sequences ( ) 0
nx n T x= , the properties of the

quasistationarity and dissipativeness are only expressed
through the properties of the operator T. Further, for some
bounded on the operator T, theorem 1.9 allows to obtain
the classifications of such sequences only according to
the spectrum of the operator T.
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