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ABSTRACT:- A comparison of thermodynamics properties of two-dimensional linear rigid rotator
is presented in the absence, and presence of an impressed weak electric field at low and high
temperatures. It is shown that specific heat and entropy fall off rapidly at low temperatures. At ultra
low temperatures, the entire normal entropy is lost and we have complete ordering by the impressed
field. In the classical limit it is shown that there is a temperature dependent polarizability
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INTRODUCTION

We first present some formalism of statistical mechanics
and thermodynamics[1,2]. Let us imagine for a moment that
our two-dimensional dipoles are tacked down such that
there is no translational motion and that they are well
separated so that they do not exert direct forces on each
other. Imagine further that there is a buffer gas of neutral
molecules that constitutes a reservoir at temperature T.
Then the probability that a dipole will be found in the jth

energy state (E
j
) is

 /jE E
j j

j
P e e

β β− −= Σ                (1)

This is a canonical distribution where 1
KTβ= and K is

the Boltzmann constant

It is important to note that the assumption here is that
each dipole is in a weak contact with the reservoir. For
example, a dipole might be hit impulsively by the molecules
of the reservoir[3]. These collisions serve to send the
dipole into one or another of its energy states. But most
of the time the dipole is alone in the external field[4]. The
average energy of a buffer molecule in two-dimension is
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. However some have more and some have

less energy which gives rise to the energy distribution of

the dipole molecules [5].  The average energy ( ),E Fβ of

a dipole is
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( )
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β ββ − −= Σ Σ (2)

where F is the impressed field.

The specific heat per dipole at constant external field is

F

F

E
C

T

 ∂= ∂ 
(3)

We note here that if we have ρ as the dipole per unit

volume, we first multiply extensive quantities by ρ to get,
for example, specific heat per unit volume C

V.

Now the ( ),E Fβ  quantity is to be identified with

internal energy. Thus entropy S per dipole for the canonical
distribution is defined as

( )ln ,j jS K P P S Fβ= − Σ = (4)

Finally the free energy ( ),A Fβ  is defined as

( ) 1
, lnA F Zβ

β
= − (5)
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( ) ( ),, jE FH

j
Z F e e βββ − −= = Σ (6)

and ( ),Z Fβ is the partition function of the system in

the presence of an impressed electric field.

We can quickly check that the above identifications agree
with the well known thermodynamic relations.  For example
the Gibbs-Helmholtz equation is

2

F

A
E T

T

∂ =−  ∂  (7)

and we have the usual relation

A E TS= − (8)

To check this we note that in equilibrium
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This paper is organized as follows. Section 2 is devoted
to the treatment of the two-dimensional rotator in the
absence and presence of the impressed fields at low and
high temperature limits. The classical limit of statistics is
discussed in section 3 and it is shown that there is a
temperature dependant polarizability.  In section 4 a study
of the way that the classical limit emerges from the formulae
of quantum statistics is presented.

TWO DIMENSIONAL RIGID ROTATOR

Our main objective here is to compute certain
thermodynamic quantities for the two-dimensional dipole
[6].  We shall therefore focus attention on the partition
function for a given dipole

jE

j
Z e

β−=Σ              (10)

Absence of External Field

In the absence of the field, we have immediately
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This sum can be done in the classical limit where

2

1,
2
h

I

β 〈〈  that is, 2 / 2KT h I〉〉 . Here h is Planck’s

constant and I is the moment of inertia of a linear rotator.
Thus, the successive terms in the sum differ only slightly
from each other except for high values of m, where the
contributions rapidly become small.

Denoting 
2

,
2I

α β≡ �
 where α  is the thermal de

Broglie angle, we have
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+∞
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=−∞
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For the classical limit, we treat m as continuous then

2o mZ e dmα π
α
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−∞

⇒ =∫              (13)

Thus the average internal energy of a dipole
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and the specific heat is 2
K

The free energy is given by

0 0lnA KT Z=−              (15)
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and thus

{ }0 ln ln
2classical

KT
A π α⇒ − −              (16)

The entropy S0 is given by
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            (17)

Thus even though this is classical, it contains 2 ,� which

enters as an additive constant fixed by quantum theory,
and it is clear from (17) that entropy increases with
temperature.

At low temperatures 1α 〉〉 , and we must therefore use

the quantum expression where only the lowest and first
energy levels are populated, thus

2

21 2 .................. 1 2oZ e e
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0ln 2Z e α−⇒

simply because ( )
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31
ln 1 ~ .......
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x
x x x for+ − + +

1 1x− ≤ ≤ , and taking only the first term in the series

expansion. Thus the free energy is given by
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The average internal energy E
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The specific heat
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It is trivial to show that (21) vanishes rapidly as 0T → .

This is attributable to the scarcity of available levels due
to quantization. The rapid fall of the specific heat at low
temperatures is always attributable to the scarcity of the
low-lying states.

Dipole in an External Field

Turning to the behaviour in an external field F(t), we note
that it is not as easy as one might first think.  First of all it
is necessary to know the energy levels in the presence of
the field before we can evaluate

( )m FE

m
Z e β

+∞
−

=−∞
= Σ             (22)

The strength of the interaction is measured by the

dimensionless ratio ( )2 2
F

I
µ

� , where µ  is the dipole

moment operator. Simple perturbation theory holds for

2 / 2F Iµ 〈〈 � . This depends crucially on Planck’s

constant being nonzero. In statistical mechanics, there is

the second dimensionless parameter 

2 2

.
2 2I I KT

α β= =� �

We will hence limit our consideration to the weak external

field ( )2 / 2F Iµ 〈〈 � , for which we apply quantum

mechanical perturbation theory in the limit of low and high
temperature regions.

Let us introduce the following parameter 2

2
.

I
F

h
λ µ= .

When 1,λ 〈〈 in lowest non-vanishing order, the energy

levels are

( )
2 2 2 2
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1
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λ= + ⋅ ⋅ +
−

� �
       (23)

If the perturbation theory is valid for the lowest (m=0)
level, it is even better for the excited states.
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Let us now make some nontrivial estimates.  For a small
molecule, the dipole moment is of the order of the electronic

charge 104.8 10e x −= e.s.u multiplied by a typical atomic

separation of 1 Å in a molecule. For HCl, 181.03 10xµ −=
in e.s.u. Since 1 e.s.u = 300 volts, a field of 300 volts/cm

has 18~10Fµ −  ergs and in general 
1810

300
vF

Fµ −  =   
ergs, where F

v 
is the field in volts per centimeter. In HCl

2 15/ 2 ~ 2 10h I x −  ergs, hence 
3

2

2 10

2 300
vFI

Fλ µ
−  = =   �

.

This value of λ is much less than unity for reasonable

fields.  We therefore have for the weak field case
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The above partition function serves two distinct cases,
i.e. the low and the high temperature regions.

(i) Low temperatures

Here

2 2

1
2 2

h h

I KT I
α β= = 〉〉

For HCl molecule, 
2

15~ 2 10
2

h
x

I
−  ergs so that 

15.2

T
α =

where T is in degrees Kelvin. Thus for 5oT K〈  our

condition is well satisfied and only the lowest (m = 0) and
the first set of the energy levels are populated.
Consequently, the partition function takes the form
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The free energy is given by
2
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2 42
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and the entropy of the system is
2 2

2
4 4~ 2 1

4
S K e e K e e

α λ λ
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− + + 
 

   (27)

We note here that when ~ 0λ  (very weak field) entropy

is given by

( )2S K e αα −= +              (28)

and for a finite λ , the change in entropy S∆ is given by
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There are now two subcases:  The first one is when
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or
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For HCl, 
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 so that 

2

1
4
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usual case unless the temperature is well below 1oK.  In
that case then we expand the exponential to get

2
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The above expression (31) indicates entropy decreases
on ordering by the field. The dominant term is

2 2

2

K
e αα λ −− and is very small.

The second subcase is at very low temperatures where

1α 〉〉 , hence for HCl 
15.2

T
α = , we note here that since

λ is independent of temperature, we can reach this case

at ultra low temperatures. Then 0S →  i.e., the entire

normal entropy is lost and we have complete ordering by
the impressed field.
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(ii) High temperatures

Here

2 2

1
2 2
h h

I I KT
α β= = 〈〈

We still have the weak field case 2

2
1

I
F

h
λ µ= ⋅ 〈〈  so the

quantum perturbation theory is valid.  But now many
energy levels are populated and we must sum over all
levels in the partition function.
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We will however, split off the term m = 0 in any case since
we know that the perturbation shift is anomalous.  Thus
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Now that α as well as λ are 1,〈〈 we can replace the sum

by an integral
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It is possible to analyse the above integral more carefully,
however under our conditions it is more legitimate to
expand.
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Taking X mα=  we come to
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For a fixed α , the change in the partition function due to
the applied field is

( )
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22
11Z e F

λ
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             (37)

where 1Fα  is a positive function of α expressed as

( ) 2
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Thus ( ){ }0
0

~ ln ln
Z

A KT Z Z KT
Z

∆− +∆ =−  is of

the order 2λ  as is the entropy change. Z0 is the partition

function in the absence of the external field (§ 2.1).

THE CLASSICAL LIMIT OF STATISTICS

Let us consider macromolecules for which the moment of
inertia is hundreds of times that of HCl, so that

2

2
1

I
Fλ µ= 〈〈
�

 and 
2

1
2IKT

α = 〈〈�
 at moderate

temperatures. We now briefly recall the classical theory
and then examine the relationship between classical and
quantum statistics in more detail.

The classical analogue of the partition function is
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π
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θ
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Here we use the Hamiltonian description

( )
2

, cos
2

P
H P F

I
θ
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where Pθ  and θ  are the independent variables i.e.,

canonical momentum and coordinate. The above multiple
integral goes over the phase space and it is important to

note particularly that the range of integration of Pθ  is

−∞  to +∞ i.e., the angular momentum can be as large as
one likes,  and the constant � is introduced for
dimensional reasons.

In the present case, it is easy to evaluate the partition
function
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The remaining integral is a Bessel function [7, 8]
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2
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0
2y

oe d I y
π

θ θ π−∫ =              (41)

where /y F KTµ=
Thus
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   (42)

for 1y 〉〉
and

( ) 21
1 ...

4oI y y⇒ − +              (43)

for 1y 〈〈
We can now go through our previous calculation and
first in importance is polarization average per dipole
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The kinetic energy factor in the partition function Z drops
out in the differentiation and we obtain

( )1
ln oP y

Fβ
∂=− Ι  ∂              (45)

For small y
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so that there is a temperature dependant polarizability
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This is the case where thermal motion is unimportant. Thus
the free energy is given by
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and for weak fields
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Consequently the field dependent part has the following
variation,

( )21
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The internal energy can be computed directly as
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In the weak field case, the internal energy change is given
by
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The entropy, variation is thus given by
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2 4
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             (54)

CLASSICAL LIMITING BEHAVIOR OF QUANTUM
STATISTICS

We shall now present a short account of the way that the
classical limit emerges from the formulae of quantum
statistics. We start by studying a free two-dimensional
rotator for which

2o m

m

Z e α
+∞

−

=−∞
= ∑               (55)

where 2 / 2h Iα β= . The classical limit emerged at high

temperatures ( )1α 〈〈 when we replaced the sum by an

integral and the leading term was 
0
classicalZ

π
α

=  refer

to Eqn. (13).

Now we want to examine the corrections to this limit,
obtaining some sort of series in α The sum involved in Zo

is a theta function whose properties have been well studied
[8, 9]. We can therefore already see that there may be some
difficulty in replacing the sum by an integral.  For even if
α is very small (but not zero), there will always be some

value of m  beyond which the terms in the sum begin to

change rapidly.

The Euler-Maclaurin formula [9] is customarily used to
replace a sum by an integral and to obtain corrections.
This formula states
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               ....
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f n f x dx f a

f a f a
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= ∫ + −

+

∑
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The coefficients are related to the well known Bernouilli
numbers [9]. To apply this to our present case, we write
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0 0

1 2 2 1o m m

m m

Z e eα α
∞ ∞

− −

= =
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Thus

oZ
π
α
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The following exact relation is known from the theory of
theta functions [8].
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m m

e e
π

α απ
α

+∞ ∞ −−

= −∞ =−∞
=∑ ∑              (59)

The LHS is a rapidly converging series for 1α 〉〉 , whereas

the RHS expression converges rapidly for 1α 〈〈 .

Thus

2 24

1 2 2 .....oZ e e
π π
α απ

α
− −

  = + + + 
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             (60)

where 
22

2

2I KT

e e
ππ

α
−−

= � and the dependence on

temperature is exponential. Thus the corrections to Zo do
not form a power series in h2 or 1/KT.  The same thing is
true of the thermodynamic functions such as the free
energy or specific heat. The study of the corrections to
the classical limit in the presence of an applied field is
much more complex and is the subject of a later
communication.
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