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ABSTRACT:- A comparison of thermodynamics properties of two-dimensional linear rigid rotator
is presented in the absence, and presence of an impressed weak electric field at low and high
temperatures. It is shown that specific heat and entropy fall off rapidly at low temperatures. At ultra
|ow temperatures, the entire normal entropy islost and we have complete ordering by the impressed
field. In the classical limit it is shown that there is a temperature dependent polarizability
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INTRODUCTION

Wefirst present some formalism of statistical mechanics
and thermodynamics*2. L et usimaginefor amoment that
our two-dimensional dipoles are tacked down such that
there is no translational motion and that they are well
separated so that they do not exert direct forces on each
other. Imaginefurther that thereis abuffer gas of neutral
molecules that constitutes a reservoir at temperature T.
Then the probability that adipole will be found in the ji"
energy state (Ej) is

_ o BE; -BE
P=e /2em M

Thisisacanonical distribution Where,3=}{<-r andKis

the Boltzmann constant

It is important to note that the assumption here is that
each dipoleisin aweak contact with the reservoir. For
example, adipolemight behitimpulsively by themolecules
of the reservoir®. These collisions serve to send the
dipole into one or another of its energy states. But most
of thetimethe dipoleisalonein the external field“. The
average energy of abuffer moleculein two-dimensionis

2% OKTO
B7H However some have more and some have

less energy which givesrise to the energy distribution of
thedipole molecules!®. The average energy E(B, F)of
adipoleis

E(BF)=2E (F)e’™ 1250
where F istheimpressed field.

The specific heat per dipole at constant external fieldis
_BED

“Torh ®

We note here that if we have P as the dipole per unit

volume, wefirst multiply extensive quantitiesby 0 to get,
for example, specific heat per unit volume C,,

Now the E(B, F) quantity is to be identified with

internal energy. Thusentropy Sper dipolefor the canonical
distribution is defined as

S=-K 3P, InP, =S(B,F) @
Finally the freeenergy A(/8, F) isdefined as

A(B,F):—;Inz 5
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Z(B’F):e_ﬁH :jze_EJ(B'F) ©

and Z (ﬁ, F) is the partition function of the systemin
the presence of an impressed electric field.
We can quickly check that the aboveidentifications agree

with thewell known thermodynamicrelations. For example
the Gibbs-Helmholtz equationis

—_ _,0AQ

and we have the usual relation

A=E-TS ®)

To check thiswe note that in equilibrium
e P5

S=-KZRInp =-K == {-BE, 4nZ
-BE
e ]

S=-K 3P, InP, =-K ==_—{ BE, 4nZ

J J
S=KBE+KInZ ©

=KBE+K (-BA)

This paper is organized as follows. Section 2 is devoted
to the treatment of the two-dimensional rotator in the
absence and presence of the impressed fields at low and
high temperaturelimits. Theclassical limit of statisticsis
discussed in section 3 and it is shown that there is a
temperature dependant polarizability. In section 4 astudy
of theway that theclassical limit emergesfromtheformulae
of quantum statistics is presented.

TWODIMENS ONAL RIGIDROTATOR

Our main objective here is to compute certain
thermodynamic quantitiesfor the two-dimensional dipole
6. We shall therefore focus attention on the partition
function for agiven dipole

z=5e "5

J (10)

Absenceof External Field

In the absence of thefield, we haveimmediately

Z°= (12)

m=-—oo

This sum can be done in the classical limit where

ph?
2l
constant and | isthe moment of inertia of alinear rotator.
Thus, the successive termsin the sum differ only slightly
from each other except for high values of m, where the
contributionsrapidly become small.

M1, that is, KTOIh?/2l . Here h is Planck’s

52
Denoting (XE,BE, where \/g is the thermal de

Broglieangle, we have

+ o0

z e—a m?

m=-—oo

Z°= (12)

For the classical limit, we treat m as continuous then

+ 00
Z° 0 Ie’“mzdm \/E
2 a

Thus the average internal energy of adipole

E:i + 00 h2m2 e—(;{mz
Z°% m=-w 2|

(13)

+ o0

, J’ x2e dx

g 1 = =
21 % ﬁ
a

s . K
and the specific heat is /2

KT
2 (14)

The free energy is given by

A’ =—KTInZz° (15)

95

AJST, \Vol. 6, No. 2: December, 2005



J.O. MALO

and thus
A assical - KZT{Inﬁr In ¢ (16)
The entropy S is given by
0A°
Soclasical_ Kﬁzaﬁ
0 InDZI@
2 2
_K iﬁnn_ln[H B{%
2 0B B B an
B =
—EInD 21 KT
2 2 H

Thus even though thisis classical, it contains 42, which

enters as an additive constant fixed by quantum theory,
and it is clear from (17) that entropy increases with
temperature.

At low temperatures o [I1L, and we must therefore use

the quantum expression where only the lowest and first
energy levels are populated, thus

B
Z°04 26 % i, =1 2e 2 (18)
Inz°0 2e7@
x> 14
smply becauseln(1+x):x—?+§x +....... for

—1<x<1, and taking only the first term in the series
expansion. Thus the free energy is given by

1 _pe
AOZ—fZE Brl2l 19
B (19)

The average internal energy |

h? o B2l

er 2l
ED 1+2e—B2/2|

(20)
~h_2e—ﬁh2/2l
|

The specific heat
2 42 " 0# f 2
co KBZéE "eba okp g P
I 2l KT
(2)

Itistrivial to show that (21) vanishesrapidly as T - 0.

Thisisattributable to the scarcity of available levels due
to quantization. The rapid fall of the specific heat at low
temperatures is always attributable to the scarcity of the
low-lying states.

Dipolein an External Field

Turning to the behaviour in an external field F(t), we note
that it isnot as easy asonemight first think. First of al it
is necessary to know the energy levelsin the presence of
thefield before we can evaluate

m=-—oo

(22)

The strength of the interaction is measured by the

uF
dimensionlessratio %hZ/ZI ) ,where U isthedipole
moment operator. Simple perturbation theory holds for
uF %2/ 21 . This depends crucially on Planck’s

constant being nonzero. In statistical mechanics, thereis

W 7
~B= .
217 21KT

Wewill hencelimit our consideration to the weak external

the second dimensionless parameter @ =

field (uF A%/ 21 ) for which we apply quantum

mechanical perturbation theory inthelimit of low and high
temperature regions.

2l

Let usintroduce the following parameter A =uF. h
When A [ in lowest non-vanishing order, the energy

levelsare

E (F)=h2m2+ﬁﬁkl +
m 21 21 2 4mP-1

If the perturbation theory is valid for the lowest (m=0)
level, it is even better for the excited states.

(23)
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Let us now make some nontrivial estimates. For asmall
mol ecul e, the dipole moment isof the order of the electronic

charge e=4.8x10 % e.sumultiplied by atypical atomic

separation of 1A inamolecule. For HCI, 11=1.03x107*®
ine.s.u. Since 1 e.s.u= 300 volts, afield of 300 volts/cm

g0OF, O
has F ~107*® ergsandin general UF =108 5V

ergs, where F isthefield in volts per centimeter. In HCI

2| _10‘3 OF, O

-15 A=
~2x107" ergs, hence =uF 5 %H

h?/21 ~
This value of A is much less than unity for reasonable
fields. Wetherefore have for the weak field case

+00 th

ZZeZI

m=—co

0 1 O
[m2+ ——0

2 4n?-17 (29

The above partition function serves two distinct cases,
i.e. thelow and the high temperature regions.
(i) Lowtemperatures

Here
h2
2I KT 2I

B

h? _ 15.2
For HCI molecule, e 2x10™" ergssothat @ =7

where T is in degrees Kelvin. Thus for T [B°K our

conditioniswell satisfied and only thelowest (m= 0) and
the first set of the energy levels are populated.
Consequently, the partition function takes the form

/\2 2
aA 0
a2 GI.+ 2% e-—+....00 (25)
t
The free energy is given by
2 a’
e e
and the entropy of the system is
aA? A2
an” 0 A2[] A”
S~2Ke%e- 4 +Ka [jL+A—Deﬂ e’ 4 (27)
0 40

We note here that when A ~0 (very weak field) entropy
is given by

S=K(2+a)e™®

and for afinite A , the changeinentropy ASisgiven by

(28)

O o> [
AS=2Ke 7 [ 4 —]ﬁ+
O O LA & (9
kae @ [ 4 _I0+K” 4eTe 4

There are now two subcases: The first one is when

2
ﬂDI]]. then
4
1 R 2RI 1pFD. 210
= 7 (uF == F m
42IKT(IJ )H{ZH axtaH 2
(30)
or
LHF ym
4 KT
pF _10° OFvQ a}\zm_
For HCI, KT 14_|_ EBOOHSOthaI isthe

usual case unless the temperature is well below 1°K. In
that case then we expand the exponential to get

hz
"N 2 2y 2 O
AS=K e P2 [[—ﬂ _a? +......0 (31)
o 4 2 0

The above expression (31) indicates entropy decreases
on ordering by the field. The dominant term is

_a®A’K

€ % andisvery small.

The second subcase is at very low temperatures where

15.2
a [, hencefor HCI O = ? , we note here that since

A isindependent of temperature, we can reach this case

at ultra low temperatures. Then S — 0 i.e., the entire

normal entropy islost and we have complete ordering by
theimpressed field.
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(i) Hightemperatures

h? h?
a=p—=

ere le 21 KT

|
Westill havetheweak field case A =M F Ethz M s the

guantum perturbation theory is valid. But now many
energy levels are populated and we must sum over all
levelsinthe partition function.

+00 B D /\2 1 I:l
Z= e 2
m:z_w D’ﬂz 2 4m? l% (32)

Wewill however, split off thetermm= Oinany casesince
we know that the perturbation shift is anomalous. Thus

A1 0, 22 1 O
Z=e""Z + 5 e+
2 2 Em 24m2—15 (33)

Now that 0 aswell as ) are [II1, we can replace the sum
by an integral

D2+,\2 1 D
2 4nv 1D

aAZ LD

om
Z~¢€" 7+2]dme“”D (34)

Itispossibleto analysethe aboveintegral more carefully,
however under our conditions it is more legitimate to
expand.

0 aA/Z ]

AZ " —m?E 4 -1 TR S
Z=¢€" 7+2jdme (35)
Taking X =,/a m wecometo
252
aAc/20
Z=e 2 2
} D 4x —a% (36)

For afixed a , thechangein the partition function dueto
theappliedfieldis

O 2 0O

AZ &U 2 _1@ Fl (37)

where Fa isapositive function of o expressed as

1

2 ° a
\/EJg 4x° —-a

)
e “dx

Fi(a)=

Thus A: - KT{ln(ZO +AZ} =—KT|n§% isof

the order )2 asisthe entropy change. Z°is the partition
function in the absence of the external field (§ 2.1).

THECLASS CAL LIMIT OF STATISTICS

L et us consider macromol ecul esfor which the moment of
inertia is hundreds of times that of HCI, so that

2| h?
A=uF—M and a=
HE e o an 21KT

temperatures. We now briefly recall the classical theory
and then examine the relationship between classical and
guantum statisticsin more detail .

(ML at moderate

The classical analogue of the partition function is

127T00

I I e Pdr,do (39)
Herewe use the Hamiltonian description
P2
H (Pe,e):?‘;—uF cos6 (39)

where B, and @ are the independent variables i.e.,
canonical momentum and coordinate. The above multiple
integral goes over the phase space and it is important to
note particularly that the range of integration of B is

—o0 0 +oo i.€., theangular momentum can be aslargeas
one likes, and the constant 4 is introduced for
dimensional reasons.

In the present case, it is easy to evaluate the partition
function

2=17 & PR DjeB“Fwsede
W' 2l
1 a2 @)

gn e—BpF cos 6 de

r\ B
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The remaining integral isaBessel function [7:8

2
[ e do=2ml,(y) (42)
0
where y = uF / KT
Thus
e’ 1 H
I, % —+ —— ... H 42
2y g 8y 2(8y) §
for y Il
and
1
l,(y) 04 Zyi 43)
for y I

We can now go through our previous calculation and
firstinimportanceis polarization average per dipole

fucosd e PHdp, do

P= .
[e P dr, do

2

[ ucosd e* uFcos’ dryd,
0

2

{) e BuF cos8dP, d,

10 8 6% “
—_ B uF cosf

B oF 5[ ‘
__10
o (Inz)

Thekinetic energy factor in the partition function Z drops
out in the differentiation and we obtain

10
P:‘Ea?@”'o(y)ﬁ (45)
For small y

1 ag;uzFZD 1020
P+ —— B+ —0O—0F

BoF 4 (kT?H  2gkTg O

so that there is a temperature dependant polarizability

1p?
2 KT
U e O
P:—liln ©
B oF ZHyE
47
E3 ijﬂ@ “n
B oF

Thisisthe casewheretherma motionisunimportant. Thus
the free energy is given by

A=KTInZ

=KTIni /ZZI -KTIngml, (g ©®

and for weak fields

A KTInEEK? ZIH

O (49)
£l

Consequently the field dependent part has the following
variation,
2
F
_1(kF)

50
4 KT 0

Theinternal energy can be computed directly as

_JH e’ dr, de
[eP"dr, do

(51)

Intheweak field case, theinternal energy changeisgiven
by

(52)

2 (LFY'o 20

AE=T T°H

_1WFO
_zﬁ%HwF

(53)
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The entropy, variation is thus given by

1 Ell HF 1 uFg
TTH KT 4 KTH
_ K OuFrf (54)
"4 HkTH
CLASSICAL LIMITING BEHAVIOR OF QUANTUM
STATISTICS

We shall now present a short account of the way that the
classical limit emerges from the formulae of quantum
statistics. We start by studying a free two-dimensional
rotator for which

+00 5
Z (0] - e—am
2.

(55)

where o :‘Bh2 /2| . Theclassical limit emerged at high

temperatures (a [III.) when we replaced the sum by an

. . 0 _ |t
integral and the leading term was Zgassical = p refer
to Egn. (13).

Now we want to examine the corrections to this limit,
obtaining some sort of seriesin @ Thesum involvedin z°
isathetafunction whose propertieshave been well studied
8.9 We can therefore already see that there may be some
difficulty in replacing the sum by anintegral. For evenif
a isvery small (but not zero), there will always be some

value of ‘ I’d beyond which the termsin the sum begin to
change rapidly.

The Euler-Maclaurin formula[9] is customarily used to
replace a sum by an integral and to obtain corrections.
Thisformula states

)dx+;f(a)—

1 (56)
= fH
¥ 720 (a)

The coefficients are rel ated to the well known Bernouilli
numbers[9]. To apply thisto our present case, we write

202142 § €9 22§ g
mZO mz=o

Thus

(57)

T
Z°0 |~
a
Thefollowing exact relation is known from the theory of
theta functions!®.

(59)

2

ol S

TheLHSisarapidly converging seriesfor a [, whereas

(59)

m— —00

the RHS expression converges rapidly for a [I1.

Thus
\/7§+2€ a +26 a +....[J (60)
B
s -’21 KT
where e a —e and the dependence on

temperature is exponential. Thus the correctionsto Z° do
not form apower seriesin h? or ’KT. The samethingis
true of the thermodynamic functions such as the free
energy or specific heat. The study of the corrections to
the classical limit in the presence of an applied field is
much more complex and is the subject of a later
communication.
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