11

African Journal of Science and Technology (AJST)
Science and Engineering Series \Vol. 6, No. 1, pp. 51 - 64

THE LINEAR ORDERING PROBLEM: ANALGORITHM FOR
THE OPTIMAL SOLUTION

Mushi, A. R.

Mathematics Department, University of Dar es salaam

ABSTRACT:- In this paper we describe and implement an algorithm for the exact solution of the
Linear Ordering problem. Linear Ordering isthe problem of finding a linear order of the nodes of
a graph such that the sum of the weights which are consistent with thisorder isaslarge as possible.
[tisan NP - Hard combinatorial optimisation problemwith alarge number of applications, including
triangulation of input - output matrices in Economics, aggregation of individual preferences and
ordering of teams in sports. We implement an algorithm for the exact solution using cutting plane
and branch and bound procedures. The program developed is then applied to the triangulation
problem for the input - output tables. We have been able to triangulate input - output matrices of

Sizeupto 41 x 41.

INTRODUCTION
TheLinear Ordering Problem (LOP)
The Linear Ordering Problem can be stated asfollows;

Givenacompletedigraph D_=(V ,A) of nnodeswitha

non-negative weight function C: A - [, , find an

acyclic sub digraph of maximum total weight. Expressed
equivalently, we want to find alinear order of the nodes
of D such that the sum of the arc weights, which are
consistent with this order, is as large as possible.

LOP is an NP-Hard problem, with many applications,
including archaeological seriation, aggregation of
individual preferencesin sports, and the triangul ation of
input-output tables.

Since LOPis NP-Hard, no exact algorithm is known for
the general solution. General agorithms exists but can
only be used for small sizeinstancesdueto the complexity
of the solutions space which grows exponentially with
the size of the problem. However, efforts have been made
to obtain improvements on the exact methods with some
success, where considerably large instances have been
solved to optimality (see[1] and [2] for thework doneon
the Travelling Salesman Problem).

Theideainthisapproachisto relax theinteger constraints
in the formulation of the problem and solve it as a
continuous problem. Algorithms such assimplex can solve
such continuous problems to optimality. The challenge
therefore isto develop facets, a set of inequalities which
describes the polytope associated with the problem. In
terms of the formulation of the problem, these are the
deepest cutsto therelaxation ([3] and [4])). Oncetheseare
known, they can be applied to the relaxation as constraints
and solved by simplex methods to obtain an optimal
solution with guaranteed integer optimal solution.

It is not possible though, to obtain all facets associated
with an NP-hard problem. So the relaxation is solved by
using theknown facets. If the optimal solutionisnot found,
a branch and bound procedure can be used to finish up
the problem. The algorithm is therefore known as branch
and cut.

We present the known facets of the Linear Ordering
Problem, the general cutting plane and branch and bound
algorithm and present our implementation on the
triangul ation of the input-output economic matrices.

Facetsof theLOP

Thetheory of polyhedral combinatoricsisused to describe
the structure of the linear ordering problem. Thisis done

51

AJST, \Vol. 6, No. 1: June, 2005

A.R.MUSHI

by describing the Linear Ordering Polytope (hereby denoted
as BY,) through its facets.

Since the solution is an acyclic sub-digraph say D, we

Ol if (i, j)0D,

defineavariable Xij = Otherwise

Minimal Inequalities[5]

Let n > 2. Then the system X; +X; =1 for all

i,jOV., K] isaminima equation system for

n .
LO
FacetsInduced by Dicycles
These are inequalities which excludes dicycles into the

solution vector. If CisadicycleinD,, n=3, consisting of 3
arcs, then the 3-dicycleinequality x(C) < 2 defines afacet

of BY.[5]
FacetsInduced by k-Fences
Definition:

A digraphD = (V, A) iscalled ak-fenceif it hasthefollowing
properties,

() V[=2k k=3,
(i) 'V can be partitioned into two disioint subsets U =
{u,..U}andL={l,...| } suchthat

A=iU:({(Ui,|i)} O{du H {L. kA)

LetD =(V, A) beak-fencecontainedinD , n>2k. Thenthe

k-fence inequality x(A) < k?-k+1 defines a facet of Plo

where x(C) isthe sum of arcsof C[5]. Thearcs(u,l) are
called pales, Whilearcs(lj,uj),jii are called pickets.

FacetsInduced by M 6biusL adder
Definition:

Let D =(V, M) beasub-digraph of D_ whichis
generated by thek-dicyclesC,,...,C, i.e.

vV =0V(C),
Ladder if it satisfiesthe following properties;

M=0 C

. D is called a M0bius

() k=3 andodd

(i) Thelengthof C isthreeorfour,i=1,...,k

(i) Thedegree of each nodeu [0 V(M) isat |east three

(iv) If twodicycles C and C, 2<i+1<j<k have anode,
say v in common, then C. is either |eft-adjacent or
right-adjacent to C. but not both

v) Given any dicycles C, j U {i,... k}, set (i)J =
{1,...kK}n{j-2,j-4, ...} 0{j+1,j+3,...}. Thenthe set
M\ {e |iJJ} contains exactly one dicycle namely
C.

Let D =(V, M) beaMobiusLadder inthecompletedigraph

D, generated by the k-dicycles C, C,... C,. Then the

k+1

Mobius Ladder inequality x(M) < [M] - T definesa

facetof BT, forn=|V/|.[6]

Branch and Cut Algorithm

We now describe how the algorithm for solving the Linear
Ordering problem was developed. The Linear Ordering
problem that we are interested in generally takes the
following form:

Given a complete digraph D = (V,, Ap) and a vector
cg "D then,

Maximise c'x (LO)

Subjectto X[Ry,

Wewould liketo solvearelaxation of this problemwhich
will contain as many facet defining inequalities as
possible. Considering the 3-dicycles, 3-fences, Mobius
|ladders, together with the minimal equation system we
havethefollowing relaxation:

AJST, \Vol. 6, No. 1: June, 2005

52

TheLinear Ordering Problem: An agorithm for the Optimal Solution

(RLO)

M aximize Cii Xii

g] J A
subject to
xjtx;=1 forall1<i<j<n,
x;20, forall 1<i,j<n,i#j,
X(C) £ 2, for all 3-DicyclesC in A,,
x(F) <7, for all 3-fences D=(V,F) in D,,
x(M) < 8, for all Mdbius ladders D=(V,M) in D,

This is a zero-one problem with n(n-1) variables. If we
drop theintegral condition of the variables, we can solve
the linear programming problem by the normal simplex
algorithm. If theresult of thisinitial simplex stepisintegral
no more needs to be done; otherwise we must further
solvethisinitia solution (by using an integer programming
algorithm) so as to obtain an integer solution.

[hQJ
However, it has been shown that this problem has %%

[hQJ
equations, n(n-1) nonnegativity constraints, 2 %?H 3-

[hQJ
dicycle inequalities, 120 %g 3-fence inequalities, and

(hQJ
360 Eb% Mobius ladder inequalities [6]. Due to this

enormous number of constraints, itisimpractical tolist all
the constraints and solve the linear program using
available computer code. Instead we apply the cutting
plane and branch & bound algorithms as shown by the
following pseudo code.

Procedurecuttingplane

{Solves RLO using cutting planes}

PAXM ""V|x x5 1fordkl <€ § n

Ji
x; 20foral1<i, j<n}

Found :=True;
Do While (Found)

Solve Max {CT X|XDF} and let X be the optimal

solution;

If there exists afacet defining inequality a'x< a, such

that a'X > a, then do;

P=Pn{xm "V|ak a]

Found := True;
Else Found := False;
End;
if x isintegral then X solves the linear ordering

problem;
Else start Integer programming agorithm (Branch
and Bound).

End cutting-plane;

Transformation of P

Thelinear program of PL“o hasn(n-1) variables. We can
halve the number of variables by the following
transformation;

Since the minimal equation is xj; + xjj = 1, for all
1<i< j<n,, thenwecansubstitutex;j, j <i, by 1-xjj
in all inequalities and in the objective function.

The3-dicycleinequaitiesx;; + X +Xj £2, aretransformed
intOXij +Xjk - Xjk < lifi<j<k, Ol’intO-in -Xj Xk < oif
i>j>k. The trivial inequalities and equations change to

O<x <lforall<i<j<n.

Theorigina PL% has now been replaced by its projection

— O
denoted by P into the real vector space [] BB which

isof full dimension and has the same number of vertices

as R Also the objective function is transformed as
follows.

53

AJST, Vol. 6, No. 1. June, 2005

A.R.MUSHI

Z Cij Xij = z CijXij t z Cij(l_in)
1]
i%]

i<] 1>]

= z CijXij t z (_Cij Xij) +z Cjj
1<) <] 1>]

Since the last term is a constant, which does not affect
optimal solution, then we

maximize: z =z ciX; + Z (=cijxi)

1<) 1<)

Theoptimal valuefrom P, differsfromthatof P, bya

constant value ;C” . The objective function will be

[Hg I}
denotedby € Txwith &7 [] 2 and G =(c;-c)) forall

1<i<j<n. Theinitial solutionisthereforejust thetrivial
inequalities stated above.

I mplementation

L ooking back to our general algorithm, thefollowing
guestions remain to be answered:

1 How can we detect the violated inequalities?

2. Which inequalities are to be added to the RLO if
more than one violation is found?

3. Should one class of facets have preference over
another?

We firstly answer the second question. It is noted that
for the case of 3-dicycles, alarge number of constraints
(violated inequalities) may sometimes be generated in a
single pass of the algorithm. This may create a storage
problem. There are three strategies which can be used
to overcomethis:

(i) All violated: If only afew inequalities have been
generated (a fixed number have to be set), then all
areinserted tothe RLO,

(i) kmost violated: If large number of inequalitieshave
been generated, then a fixed number of them say k
are chosen and added to the RLO. The choice is
based on the most violated criteria. That is those
with larger right hand sides.

(i) Arcdigoint: This caseis also applied in the case
where alarge number of constraints are generated.
A subset of the violated inequalities is chosen with
the property that no two corresponding 3-dicycles
have an arc in common. Thisis based on the idea

(not theoretically verified) that one inequality may
be sufficient to locally decrease the infeasibility of
the current solution. [5]

To answer thethird question, the 3-dicycles are preferred
because they have to be present to exclude infeasible
integer solutions and because they can be detected more
efficiently than the other classesof inequalities. Theorder
therefore is to check 3-dicycles first until no more are
detected, then detect the k-fences, and then Mdbius
ladders.

More specifically the algorithm then looks asfollows:

Algorithm cutting plane2

o
P={[]®|x; <L foral1<i<j<n,
—x; <0 forallsi<js<n

Found :=True;
Do While(Found)

Solve Max {C"X|XOP}and let X be the optimum
solution for the current LP;

Check_3 dicycles(P, X ,Found);{ If found, add
new constraints and } {return True to Found }
If Not(Found) then

Check_k_fence(P, X ,Found);
If Not(Found) then
Check_M_ladder(P, X ,Found);
Endwhile;
If X isintegral then done;
Else Solveinteger programming algorithm;
End algorithm cutting plane2

Thefollowing section answersthefirst of the abovethree
guestions:

Detection of violated inequalities:

Sincethereisadirect correspondence between the facet-

defining inequalitiesfor B, and P, we now describe

how to detect the facets of Ffo but during our

implementation we will usethetransformation I5'L”o . Since

theinitial linear program includes al trivial inequalities,
these are satisfied by al other subsequent solutions as
these solutions use the constraints of theinitial program.

AJST, \Vol. 6, No. 1: June, 2005

54

TheLinear Ordering Problem: An agorithm for the Optimal Solution

Detection of violated 3-dicycleinequalities:

tnt
Thereare2 %% different 3-dicyclesinAp,. Weenumerate

all possibleviolations. Thisprocedure has complexity of
order O (n3).

Procedure Check 3 Dicycle(P, X ,Found);

Found := False; { will changeto Trueif any inequality is
found}
Fori:=1ton-1do
Forj:=i+1Ton-1do
Fork:=j+1Tondo
IF(Xij +Xij - Xjk > 2) then
Inserth(i J.KkH,S{in
sorted ascending order}
Found := True;
Endif;
IF(-Xij - Xijk + Xjk > 2) then
{nsenH(k,j,i,H,S)
Found := True;
Endif;
Endfor;
Endfor;
Endfor;
IFFOUND Then
Add_k_most_violated(H) {tothe LP},
Endif;
EndProcedure Check_3 Dicycle;
An array H with four sections of equal size T is used to
store the violated 3-dicycles: If i, j,, k, are nodes of the
violated 3-dicycle, and i, isstored in position |, then |, is
stored in position |+T, and k, in [+2T.

Thisdicycle may represent theinequality (i) Xjj +Xjk - Xki <
1

or (i) -Xjj - Xjk + Xjk < 0. Thus position |+3T stores the
status of thisarc, (O if of type (i) and 1 otherwise).

This array is sorted in decreasing order of magnitude of
the violations. The violations are stored in the array S.
We select the first K of them, but if less than K are
generated then we select all of them.

Detection of k-fenceviolated inequalities:

hQd
There are 120 %Ek—fence inequalities for k = 3, while

there are more of such inequalitiesfor higher values of k.
Clearly enumeration over all inegualities is no longer
feasible. Wethusresort to aheuristic whichisformulated

after acareful study of the polytope Pg (Constructed from
3-dicyclesand trivial inequalities).

The projected polytope is as follows,

o
x; <1 forall<i<j<n,
—Xijso, forall<i<j<n}

This polytope has a matrix (denoted by Bj) with

Q] (ol
2 %%rows from 3-dicycles and 2 %Erows from the

trivial inequalities. Each vertex of this polytopeisone of

the solutions of the linear program (associated with PCn)

thd
and must have %D elements. If we let Cp, denote the
U

portion of By, corresponding to the 3-dicycleinequalities,
then the following theorem shows that the 3-dicycle
inequalities are not sufficient to characterise a vertex of

R

We are interested in solution vectors (vertices) violating
the 3-fenceinequality. These can befound by looking at
the properties of some of these violations. Consider a 3-

fenceD = (V, F) inacompletedigraph D andc_ [] *° as

its incidence vector. Maximising its objective function

c 'x over Pg an optimum solution y* was found as
F

depicted by Figure 1.

55

AJST, Vol. 6, No. 1. June, 2005

A.R.MUSHI

Optimum solutiony* over P?

PN

CJ

Figure 1: Md&bius Ladders

Note: The broken lines correspond to fractional
componentswith value 0.5 in both directions i.e. X i= 0.5
and Xji = 0.5). Thesolid lines correspond to components
havingvalue1 (i.e.xj; = 1andxjj = 0orxj; =0andxjj =1)in
the direction of the arrow.

Thus we note that the components indexed by arcs anti
paralel to the pickets, have the value 0, and all pickets
havethevaluel. Moreover we can seethat all paleshave
value0.5. If wesumthevaluesof al arcsinthe 3-fenceF,
we clearly see that the 3-fence inequality x(F) < 7 is
violated (sincethe sum of Fis7.5).

Heuristic:[5]

Thefollowing heuristic was described by Reinelt [6]. The
heuristic is based on the uniqueness of the solution in
Figure 1for any 3-fence. Thereforeit isassumed that the
common property of all inequalitiesviolating a3-fenceis
the nonintegrality of the pales.

If y isthe solution of the current cutting plane algorithm,
then we define a corresponding graph (undirected) Gy =

(A(Ay),Ay) by setting Ay, ={ij | yjj isfractional}. Inthis
Yooy =Y y 1) :

graph the fractional components may be different from
0.5 whenever the current polytope is not the ‘pure’
polytope. Moreover in order to speed up the running
time, instead of Ay we choose the arc set

Ay ={(, J)‘E <Y, S1-€ where £ wassetto0.1.

We then separate all 3-fences and test them as follows.
We enumerate thetriple edges of G which are non adjacent,
i.e. edges which have no nodein common. Each of these
3-pairsis assumed to be a pale of a 3-fence. For each of
these pairs, there are 8 possible orientations of their edges
for a3-fenceand at most one of themwill violate a3-fence
inequality. We check this violation by constructing all
possible orientations. We note that once a violation is
found there is no need to go on with the construction of
the remaining orientations since that violation is unique.

Thegeneral algorithmis:

ProcedureCheck_3 fence(P, X ,Found)

Found := False;

(i) Find_fractional _components of and store them in
an array say F;

(i) ldentify_non-adjacents on F {remove the rest from
P

Number Finorder 1,2,...,u.
If u £ 2 then Return; { No 3-fence}
Else{u>2}
(i) {Enumerateall possiblek-fences}
Whilethere are more 3-pair permutations do
While not(Found) and there are more
3-fence orientations do
(iv) Check_3 fence Violation(Found); { Returns Trueif
Found}
If(Found) then Storeconstraint(F);
Endwhile;
Endwhile;
Endif;
AddFences(F)
End Procedure Check 3 fence;

Graph datastructure

The graph Dy, in this approach is represented as an array
of length 2n. Thefirst n cells store thei part of the arcs
and the following n cells store the j part. For instance if
(i) isanarcinthegraph Dy, andi isstoredin position| <
ninthearray, thenj will be stored in position |+n.

AJST, \Vol. 6, No. 1: June, 2005

56

TheLinear Ordering Problem: An agorithm for the Optimal Solution

(i) Findingfractional components

ProcedureFind_fractionals(F, x, u);
u:=0

For eacharc (i,j) withi # jdo{with £ =0.1}

IF(€ <X, £1-€). Then
Increment(u) { number of fractional

components}
F(u) :=1i;
F(u+n) :=j;
Endif;

Endfor;
End_algorithm; { At the end the graph F will containu
components} .

(i) Finding non-adj acent components

Two arcs are non-adjacent if they have no node in
common. Thusif we have two different arcs (i1,j1) and
(12,j2), they can be adjacent in thefollowing four possible
ways:

L u 1IN v
i1-i2 i2 il jl=i2 |1 i
J X j |
j j1 152 j1=j2
otherwise 0il oi2
they are not
adjacent.e.
i1 j2

Figure 2: Finding non-adjacent components

All possible 2-pair arcsfrom fractional componentsF are
enumerated and checked for adjacency. We note that, if
two arcsin the set F are adjacent, then one must leavethe
set as they can not both be members of the set of non-
adjacent arcs.

Thuswestart with thefirst nodein F and eliminateall arcs
inF adjacent to it by setting their indicesin F to zero. We
then move to the next non-zero node in F and repeat the
above process. At the end we collect al non-zero arcsin
F as non-adjacent fractional components.

ProcedureFind_Non-Adjacents(F,u,x);

Fori:=1toudo
If (F(i) # 0) Then
Forj:=i+1toudo
If(F(G) # 0) Then
i1:=F(i);j1:=F(@+u);
i2:=F(j);j2:=F(+u);
If(i1=i2) OR(i1=j2) OR(j1-i2)

OR(j15j2) Then
F():=0;
F(j+u) :=0;
Endif;
Endif;
Endfor;

Endif;
Endfor;
For eachi with F(i) # 0do
Pull_Non_adjacents(F(i)) { pull non-adjacents
together}
Endfor;
Endalgorithm;
(iii) EnumeratingtheK-fences
We enumerate all possible subsets of k elements from u
elementsof F (fractional non-adjacent components). This
isdone by acall to subroutine NEXK SUB which returns
an array of k elements different to the previous call, until
all subsets are enumerated (see Nijenhuis, A 1978 [7]).
When al subsets have been exhausted, NEXK SUB returns
Falsetoalogical variableMTC (More To Come).

Each of these k element subsetsis considered to be a set
of palesof ak-fence, andischecked for k-fenceviolation.

(iv) Checkingfor k-fenceviolation

A set with k pairs of non-adjacent fractional arcsfromFis
checked for all possible orientations of a k-fence. For
instancefor a3-fence, there are eight possible orientations
for the pales of a 3-fence. Suppose the arcs chosen are
(11,j1), (i2j2), (i3,j3), (4,j4). Thefollowing are the eight
possible orientations of a 3-fence pales:

57

AJST, Vol. 6, No. 1. June, 2005

A.R.MUSHI

Wewant to find the general algorithm whichwill generate
all possible subsetsfor any k. First we note that we can
obtain the next subset from the previous one by swapping
an arc of the previous subset. For example, set Il is
obtained from set | by swapping arc (i1,j1), and set l11 is
obtained from |1 by swapping arc (i2,j2).

L [11 v
i1i23 jli23 jl1jA3 i1j23
000 000 000 000

! 0 000 00
j1j233 i1j33 i1ig3 j1i3
Vi V] Vil VI

ioi . j1iZ3 j1iy3
3—(])303 Iél.(:Zg?, 000 000
000 00 0 Lo D00
jli2i3 j1j2i3 i1j23 ili2i3

Figure 3: Checking for k-fence violation

Now suppose we have alist of k elements L, consisting
of binary values (0-1). We wish to find a successor to a
subset Sof L. Inother words, wewant to find theindex
j of the single element & in Swhich isto be changed (in
our case swapped) in order to form the successor.

For examplethelist Lgisasfollows: 000, 100,

110, 010, 011, 001, 101, 111. The
sequence of indices j of the changed co-ordinates
(indicated by bold numbers) is: 1,2,1,3,2,1,2.

This sequence of j values is generated by a subroutine
NEXSUB (Nijenhuis, A [7]). Each index isthen used to
generate the next subset until all subsets are exhausted.
Attheend NEXSUB returnsFalseto MTC. However if a
selected subset is found to violate a k-fence inequality

thealgorithm stops asthisk-fenceisunique. Theviolation
is added as anew constraint of an LP.

ProcedureCheck_F_violation(F)

MTC :=True,

Found := Falsg;

While(MTC and NOT Found) Do
NEXSUB(j)
Swep(F()),F(+n));
IE(X(F) > k2-k+1)Then

Found := True;
Add(F) {toLP}
Endif;
Endwhile;
Endalgorithm;

Detection of violated M 6biusL adders

Again enumeration of all possible Mdbius Laddersisnot
possible. The heuristic is based on finding one of the
smallest Mébius Ladders, as candidates for a Mobius
Ladder separation routine Given a Mdbius Ladder D =

(V,M) andit'sincidencevector ¢, M * if wemaximise

T 6 . .
c X over P2 weget the optimal solutiony* asshown by

the figure below. It'svalueisx(M) = 8.5 which clearly
violates M 6bius Laddersinequality (i.e. x(M) < (8).

Note: Faint lines correspond to the value 0.5 (in both
directions) and solid lines correspond to a value of 1.
Components opposite to the solid lines (not shown) have
valueO.

M resemblesFigure4 but with the solid line components

reversed. The heuristic exploitsthis structure and works
asfollows. Giveny asthe solution to the current problem,
we develop a graph Gy = (V(Ay),Ay) of fractional
components as done for the k-fences problem. We then
enumerate all 4-cycles without diagonals in Gy
corresponding to the four nodes 1,2,3,4, as shown. For
each of these 4-cycles, we try to find another node w
whichisadjacent to thefour nodes (node5 of Figure4). If
we are successful then we enumerate all nodes adjacent
to w as possible candidates for the role of node 6 above.
The role of node 6 is that such that when a node is in
position 6 it creates a new Mobius ladder. Each of the 6
nodes identified in the enumeration are treated as nodes

of a Mdbius Ladder isomorphicto pj or N and are
checked for M6bius Ladder inequality violations.

AJST, \Vol. 6, No. 1: June, 2005

58

TheLinear Ordering Problem: An agorithm for the Optimal Solution

/2) Algorithm_Mdbius L adder;

Find_fractionals(y,F) { enumerate all 2-pairsof Fwhich
formsa4-cycle, these are the non-adjacent arcs}
For each 4-cycle(a,b,c,d) do
Find_node_w(w) { adjacent to the 4-cycle}
{Sincethisisacomplete
digraph, then itis sufficient tofind a
node which is not one of the 4-cycle
nodes}
If (w_found) then
List 6 _node(q) { enumerate all nodes
adjacent to w as possible candidates
for node 6 role. That is not among the
5 nodes selected so far}
For each of (a,b,c,d,w,q) do
Check_Mobius d

Violation (a,b,c,d,w,q)
{add new constraint if
found}
@ Endfor
Endif
Endfor
Figure 4: Detection of violated M &bius Ladders Endalgorithm Mobius_L adder;

Summary of the Cutting Planealgorithm

start

Y

1.Initialize LP

g

‘ 2. Solve LP to get optimal solution x*

'

‘ 3. Himinate slack cutting planes ‘

#

4. Run cutting plane generating methods(facets)

5. Cuts (facets)
generated ?

7. x*Integer ?

-

LNO

8. Branch and bound

6. Revise LP (Reinitialize parameters)

Figure 5: Cutting Plane Algorithm

59 AJST, \ol. 6, No. 1: June, 2005

A.R.MUSHI

1 Preparation of the LPwith thetrivial inequalities.

2 SolvelLPtoget optimal solution, using an L P package
(LPsolver)

3. Eliminate cutting planes: We delete al constraints
having positive slack variables, so asto decrease the
size of thelinear program. These deleted constraints
may be reinserted during optimisation but practically
these results in smaller programs without
considerably affecting the speed of optimisation.
We find these slack variables by checking al basic
variables with indices greater than the number of
variablesn. Thesevariableswill correspond to slack
variableswhich remained basic (i.e. positive slacks)
inthe optimal solution.

4. The identification of the facets as explained
previously.

5. If cutswere generated, we go to step 6 for revision of
L P, otherwisewego to step 7 for integrality checking.

6. Revision of LP: Any cutting planes generated are
added to the LP and then the algorithm is repeated
from step 2.

7. If x* isintegral we have found a solution, otherwise
go to step 8.

8. Perform branch and bound to get an integral solution
using an LP solver.

Summary of Results

The 20x20 tables were extracted from the Input/Output
tables. Thek most violated inequalitiesfor 3-dicycleswere
chosen between 100 and 500. Inthefollowing tablewelist
the running time of the algorithms, the degree of linearity
and density of each table used. The running timesinclude
the time used in generating MPS format files and the
PRIMAL and DUAL agorithms. Thefirst two numbers of
the table names represent the size of the table and the
next two represent the year of thetablefromwhich it was
extracted (the first letter is used to distinguish one table
from another).

Table 1: Summary of Results for 20x20 tables

Table (k=100) |Density |Degreeof |CPUtime
Linearity |(seconds)

A2085.d 64.73 62.95 11.81
B2085.d 59.47 93.21 11.76
C2085.d 35.53 62.00 19.70
D2085.d 39.74 90.29 10.94
E2085.d 56.05 53.43 16.34
F2085.d 52.63 88.83 1222
(G2085.d 30.78 79.99 17.37
H2085.d 33.42 91.57 1152
A2064.d 60.53 65.57 11.09
B2064.d 65.53 90.74 9.65
C2064.d 64.21 76.19 18.23
D2064.d 7132 85.63 11.68
A2069.d 52.63 67.34 2245
B2069.d 60.79 88.11 9.65
C2069.d 62.37 84.36 17.70
D2069.d 70.26 92.50 11.81
A2075.d 55.00 72.52 12.16
B2075.d 50.00 95.83 14.75
C2075.d 34.74 63.06 12.18
D2075.d 46.05 90.91 12.28

Table 2: Summary of Results for 25x25 tables

Table (k =200) |Density |Degreeof |CPUtime
Linearity [(Seconds)
A2585.d 59.00 62.67 20.81
B2585.d 51.00 94.39 33.37
C2585.d 41.00 63.75 17.59
D2585.d 49.67 86.75 23.82
E2585.d 5183 55.96 21.56
F2585.d 44.67 87.12 24.31
G2585.d 35.83 55.89 30.75
A2564.d 66.50 67.55 28.20
A2569.d 58.33 69.66 3136
A2575d 48.83 70.60 29.50
B2575.d 42.00 95.14 22.16

AJST, \Vol. 6, No. 1: June, 2005

60

TheLinear Ordering Problem: An algorithm for the Optimal Solution

Table 3: Summary of Results for 33x33 tables

Table (k =500) |Density |Degreeof |CPUtime
Linearity |(seconds)
A3385d 52.18 70.33 97.45
B3385.d 45.36 65.21 63.88
A3364.d 70.45 7160 50.16
A3369.d 67.23 74.27 93.73
A3375.d 41.10 75.65 67.84

Table 4: Summary of Results for 41x41 tables

Table (k =500) [Density |Degreeof [CPUtime value and the degree of linearity for each phase of the
Linearity |(seconds) problem.
A4185d 48.66 69.79 237.14
B4185.d 42.62 71.97 17341
CA175d 41.83 7542 146.17
Table 5: Optimisation Process; 20x20 tables
Table (k=100) [PRIMAL Facets Objective| Size Degree of [CPU Time
Iterations [generated value Linearity
I A2085.d 66|- 2541.50 381 23.65 2.87
1 471118 Dicycles 2463.70 481 58.74 4.63
11 8[39 Dicycles 2463.40 520 62.95 431
| A2064.d 61(- 173648.00 381 47.55 2.75
I 33|68 Dicycles 171608.00 449 58.81 4.10
11 11|39 Dicycles 171531.00 452 65.57 4.24
I A2069.d 62|- 241189.00 381 45.67 2.89
1 52|129 Dicycles |238944.00 481 45.48 472
I 36|54 Dicycles | 238070.00 535 66.66 5.19
v 14|19 Dicycles 238063.00 554 67.34 4.92
\% 1|7 Dicycles 238063.00 561 67.34 4.73
Table 6: Optimization Process; 33x33 tables
Table (k=500) |PRIMAL |Facets Objective|Size Degreeof |CPUtime
iterations [generated |value (number |Linearity [(sec.)
of rows)
| A3385.d 157]- 3594 1057 52.45 9
Il 233|670 Dicycles 3409.2 1557 74.19 2544
11 201|321 Dicycles 3376.2 1878 75.58 30.49
\Y} 11|31 Dicycles 3376 1909 75.65 16.74
\Y 1|1 Dicycle 3376 1910 75.65 15.78

The results show that tables with up to 41 sectors can be
triangul ated within reasonable time scale. It can also be
observed that thereisvery little relationship between the
degree of linearity, density and time. This showsthat the
density of the problem can hardly affect the optimization
time. This is due to the fact that the zero values in the
table will only affect the objective row of the simplex
tableau which isavery small part of the whole tableau.

We now illustrate the optimization processin afew cases.
The number of iterationsin thesimplex agorithmislisted
together with the facets generated, the objective function

61

AJST, \Vol. 6, No. 1: June, 2005

A.R.MUSHI

Table 7: Optimisation Process; 41x41 tables

Table (k=500) |PRIMAL |Facets Objective|Size Degreeof [CPUtime
iterations [generated ([value (number of [Linearity |[(Sec.)
(Dicycles) r ows)
I A4185.d 251|- 4743.50 1641 45,78 17.48
I 211 1358 4541.90 2141 59.27 33.37
1" 215 999| 4431.10 2641 67.30 4553
A% 362 231 4394.20 2872 68.30 82.31
Vv 41 132 4393.10 3004 68.89 3100
Vi 18 13| 4389.10 3017 69.79 2820

Observationsfrom Table5 - Table 7;

* Inall tablesonly the 3-dicycles were needed to
find an optimal solution.

» Branch and bound stage was not needed in any
case.

e Only asmall nhumber of phases were necessary
to reach an optimum solution. Thus our
semi-automatic algorithm was ableto solvethese
real life problemsin avery convenient way.

e Generally, the addition of facets showed an
improvement in the degree of linearity and the
objective value, which shows the effectiveness
of facet defining inequalities (3-dicyclesin this
case) inimproving the solution.

The number of iterations of the DUAL procedure and the
time taken are highest in the middle phases but decrease
towards the last phase. Since the size of the problem
showed an increase with the number of phases, it was
expected that the time would increase too (together with
the number of iterations). This was not the case, and is
dueto the fact that the DUAL simplex procedure greatly
improves the performance of the algorithm. To see this,
we compare the results obtained by the application of the

PRIMAL procedure alone and those from the DUAL
procedure for the 41 sector table A4185.d.

Table 8: Comparisons of PRIMAL and DUAL performances

PHASE PRIMAL DUAL

Size Time Size Time
| 1641 17.48 1641 17.48
I 2141 4374 2141 3337
1" 2641 92.35 2641 4553
v 2774 232.69 2872 8231
V 2803, 302.48 3004 3100
VI 2817 426.17 3017 28.20
VI 2823 309.11
Total time 1424.02| 237.89

Sincethe Dual Simplex a gorithm works by removing the
infeasibilitiesintroduced to the previous basis due to the
added cuts, the fewer the cuts added the faster the DUAL
procedure will be. From the Table 5 - Table 7, the last
phases involve only afew facets and hence few cuts are
added. This makes the DUAL procedure very fast
compared to PRIMAL. We compare the performance of
the 3-dicyclesprocedurein relation to variousk-violation
strategies. This is illustrated by table A2085.d for k =
50,100and all.

AJST, \Vol. 6, No. 1: June, 2005

62

TheLinear Ordering Problem: An algorithm for the Optimal Solution

Table 9: Performance of 3-dicycles in relation to k-violations

Table Phase PRIMAL |Facets Objective |Size (number |CPU time
A2085 iterations |generated value of rows) (seconds)
| 66]- 2541.5 381 2.87
K=50 Il 30(118 Dicycles 2471.4 431 4.05
11 16|117 Dicycles 2471 481 4.26
v 19|29 Dicycles 2463.4 510 536
Total time 15.54
| 66]- 2541.5 381 2.87
k=100 Il 47|118 Dicycles 2463.7 481 4.63
11 8(39 Dicycles 2463.4 520 431
Total time 11.81
| 66]- 2541.5 381 2.87
all Il 52(118 Dicycles 2463.7 499 477
11 4|24 Dicycles 24634 523 447

Inthefirst case (k=50), 118 dicycleswerefound in phase
one. But only 50 were introduced to the tableau in phase
Il. Thisresulted in arelatively small sized problem and
was solved faster (4.05 seconds). The next phase generated
117 dicycles, and the algorithm took four phasesto reach
optimality.

In the second case (k = 100), 100 dicycles were added to
the tableau in phaseIl. Thisresulted in arelatively large
problem (compared to the first case). The time taken to
solveit wasalso relatively long (4.63 Seconds), but only
three phases were required to reach optimality.
Inthethird case, all 118 dicycleswere added to thetableau
in phase I1. The time taken to solve it was longest (4.77
Seconds) and again three phases were needed to reach
optimality.

Wemay concludethat, for large valuesof k the LP becomes
large and time consuming, while for small values of k, a
cut generation routineis called quite often and thus gives
more phases of the algorithm. But, on the other hand, we
have seen that the size of the LP does not necessarily
affect the time. 1t depends on the number of cuts added.

In general, there is no specific criterion for the selection
of k. Itisabetter ideato do sometest for each sizein order
to determinethe best value of k. In our table (Table 9) the
overall time was best for the second case (k=100). We

Total time 12.11

thusused K= 100 for the 20 nodestables. Using the same
ideawe selected k = 200 for 25 nodes and 500 for 41 nodes.

CONCLUSION

The aim of the study was to use the theory of polyhedral
combinatorics to develop a computer algorithm for the
solution of the Linear Ordering problem. This was done
by describing the facet structure of the Polytope
associated with the Linear Ordering Problem. Linear
Programming methods were applied to devel op a cutting
plane agorithm. The a gorithm implemented the Polytope
descriptions (in terms of equations and inegualities) to
find the exact solution to our problem.

It was also the intention of this project, to apply the
developed algorithm to the practical problem,
‘Triangulation of Input - Output tables’, and hence to
investigate the importance of the facets of this Polytope.
Wedeveloped asemi - automatic algorithm which involved
the use of cutting plane procedure and branch and bound.
Wethen presented and analyzed the computational results.
The following can be concluded;

. The k-Fence and Md&bius Ladder facets did not
appear on any of the problems tested. Only
3-dicycles were found and these were sufficient to
get an optimal solution. We conclude that the
3-dicycles are the most important facets.

63

AJST, \Vol. 6, No. 1: June, 2005

A.R.MUSHI

TheDual - Simplex procedureisavery useful tool in
this cutting plane algorithm, its use decreased the
solution timesfor large problemsto agreat extent.
Thea gorithm performed well on the problemstested.
We can thus conclude that polyhedral combinatorics
is a useful tool for attacking hard combinatorial
optimization problems. It seemsto be worthwhileto
relate the polytope to combinatorial optimization
problems whose vertices correspond to the feasible
solutions, and then try to describe the facet structure
of this Polytope.

It has been demonstrated that it is possible to use a
linear programming approach to the problem
Polytope as a means of formulating algorithms for
the exact solutions of some of the NP - Hard
combinatorial optimization problems.

REFERENCES

Grotschel, M. and Padberg, M W. (1983a):
“Polyhedral aspects of the Travelling Salesman
Problem|. Theory”, European Ingtitutefor Advanced
Studiesin Management. W. Germany.

Grotschel, M. and Padberg, M W. (1983b):
“Polyhedral aspects of the Travelling Salesman
Problem I1. Computation.” European Institute for
Advanced Studiesin Management. W. Germany.

3

Bachem,A and Grotschel, M (1982): “ New aspects of
Polyhedral Theory” inKorte, B (ed): Modern Applied
Mathematics: “ Optimization and Operations
Research”, North-Holland Publishing Co. Amsterdam
- New York -. Oxford, 1982, 51-106

Grotschel, M (1982): “Approaches to Hard
Combinatorial Optimization Problems” in Korte,B
(ed) : Modern Applied Mathematics: “ Optimization
and Operations Research”, North-Holland
Publishing Co. Amsterdam - New York -. Oxford, 1982,
437-575.

Reinelt, G (1985): “The Linear Ordering Problem:
Algorithms and Applications’, Herman Verlag
Berlin.

Grotschel, M, Junger, M and Reinelt, G (1983) : “A
cutting plane algorithm for the Linear Ordering
Problem”, European Journal of Operations Research
6(1984), 1195-1220.

Nijenhuis, A and Wilf, H, S(1978): “ Combinatorial
Algorithms for Computers and Calculators”,
Academic Press Inc. New York - San Francisco -
London.

AJST, \Vol. 6, No. 1: June, 2005

