
51 AJST, Vol. 6, No. 1: June, 2005

African Journal of Science and Technology (AJST)
Science and Engineering Series Vol. 6, No. 1, pp. 51 - 64

THE LINEAR ORDERING PROBLEM: AN ALGORITHM FOR
THE OPTIMAL SOLUTION

Mushi, A. R.

Mathematics Department, University of Dar es salaam

ABSTRACT:- In this paper we describe and implement an algorithm for the exact solution of the
Linear Ordering problem. Linear Ordering is the problem of finding a linear order of the nodes of
a graph such that the sum of the weights which are consistent with this order is as large as possible.
It is an NP - Hard combinatorial optimisation problem with a large number of applications, including
triangulation of input - output matrices in Economics, aggregation of individual preferences and
ordering of teams in sports. We implement an algorithm for the exact solution using cutting plane
and branch and bound procedures. The program developed is then applied to the triangulation
problem for the input - output tables. We have been able to triangulate input - output matrices of
size up to 41 x 41.

INTRODUCTION

The Linear Ordering Problem (LOP)

The Linear Ordering Problem can be stated as follows;

Given a complete digraph Dn = (Vn,An) of n nodes with a

non-negative weight function :C A +→ ℜ , find an
acyclic sub digraph of maximum total weight. Expressed
equivalently, we want to find a linear order of the nodes
of Dn such that the sum of the arc weights, which are
consistent with this order, is as large as possible.

LOP is an NP-Hard problem, with many applications,
including archaeological seriation, aggregation of
individual preferences in sports, and the triangulation of
input-output tables.

Since LOP is NP-Hard, no exact algorithm is known for
the general solution. General algorithms exists but can
only be used for small size instances due to the complexity
of the solutions space which grows exponentially with
the size of the problem. However, efforts have been made
to obtain improvements on the exact methods with some
success, where considerably large instances have been
solved to optimality (see [1] and [2] for the work done on
the Travelling Salesman Problem).

The idea in this approach is to relax the integer constraints
in the formulation of the problem and solve it as a
continuous problem. Algorithms such as simplex can solve
such continuous problems to optimality. The challenge
therefore is to develop facets, a set of inequalities which
describes the polytope associated with the problem. In
terms of the formulation of the problem, these are the
deepest cuts to the relaxation ([3] and [4])). Once these are
known, they can be applied to the relaxation as constraints
and solved by simplex methods to obtain an optimal
solution with guaranteed integer optimal solution.

It is not possible though, to obtain all facets associated
with an NP-hard problem. So the relaxation is solved by
using the known facets. If the optimal solution is not found,
a branch and bound procedure can be used to finish up
the problem. The algorithm is therefore known as branch
and cut.
We present the known facets of the Linear Ordering
Problem, the general cutting plane and branch and bound
algorithm and present our implementation on the
triangulation of the input-output economic matrices.

Facets of the LOP

The theory of polyhedral combinatorics is used to describe
the structure of the linear ordering problem. This is done

52AJST, Vol. 6, No. 1: June, 2005

A. R. MUSHI

by describing the Linear Ordering Polytope (hereby denoted

as n
LOP) through its facets.

Since the solution is an acyclic sub-digraph say nD we

define a variable
1 if (,)
0 Otherwise

n
ij

i j D
x

∈
= 



Minimal Inequalities [5]

Let n > 2. Then the system 1ij jix x+ = for all

, , ni j V i j∈ < is a minimal equation system for

n
LOP .

Facets Induced by Dicycles

These are inequalities which excludes dicycles into the
solution vector. If C is a dicycle in Dn, n≥3, consisting of 3
arcs, then the 3-dicycle inequality x(C) ≤ 2 defines a facet

of n
LOP . [5]

Facets Induced by k-Fences

Definition:

A digraph D = (V, A) is called a k-fence if it has the following
properties;

(i) |V| = 2k, k≥3,
(ii) V can be partitioned into two disjoint subsets U =

{u1,…Uk} and L = {l1,…,lk} such that

1
({(,)} {(,)} | {1,..., },)

k

i i i j
i

A u l l u j k j i
=

= ∪ ∈ ≠∪

Let D = (V, A) be a k-fence contained in Dn, n ≥ 2k. Then the

k-fence inequality x(A) ≤ k2-k+1 defines a facet of n
LOP

where x(C) is the sum of arcs of C [5]. The arcs (ui,li) are
called pales, while arcs (lj,uj), j≠i are called pickets.

Facets Induced by Möbius Ladder

Definition:

Let D = (V, M) be a sub-digraph of Dn which is
generated by the k-dicycles C1,…,Ck i.e.

(), i iV V C M C= ∪ = ∪ D is called a Möbius
Ladder if it satisfies the following properties;

(i) k≥3 and odd
(ii) The length of Ci is three or four, i = 1,…,k
(iii) The degree of each node u ∈ V(M) is at least three
(iv) If two dicycles Ci and Cj, 2<i+1<j≤k have a node,

say v in common, then Cj is either left-adjacent or
right-adjacent to Ci but not both

v) Given any dicycles Cj, j ∈ {i,…,k}, set (i)J =
{1,…,k}∩{j-2, j-4, …}∪ {j+1,j+3,…}. Then the set
M \ {ei | i∈ J} contains exactly one dicycle namely
Cj.

Let D = (V, M) be a Möbius Ladder in the complete digraph
Dn generated by the k-dicycles C1, C2… Ck. Then the

Möbius Ladder inequality x(M) ≤ |M| -
1

2
k +

 defines a

facet of n
LOP for n≥|V|. [6]

Branch and Cut Algorithm

We now describe how the algorithm for solving the Linear
Ordering problem was developed. The Linear Ordering
problem that we are interested in generally takes the
following form:

Given a complete digraph D = (Vn, An) and a vector
(1)n nc −∈ ℜ then,

 Maximise cTx (LO)

 Subject to n
LOx P∈

We would like to solve a relaxation of this problem which
will contain as many facet defining inequalities as
possible. Considering the 3-dicycles, 3-fences, Möbius
ladders, together with the minimal equation system we
have the following relaxation:

AJST, Vol. 6, No. 1: June, 2005

The Linear Ordering Problem: An algorithm for the Optimal Solution

53

,

 (RLO)

1, for all 1 ,

0, for all 1 , , ,
() 2, for all 3-Dicycles C in ,
() 7, f

ij ij
i j
i j

ij ji

ij

n

Maximize c x

subject to
i j nx x

i j n i jx
x C A
x F

≠

+ = ≤ ≤ ≤
≥ ≤ ≤ ≠

≤
≤

∑

,

n

or all 3-fences D=(V,F) in D
() 8, for all Möbius ladders D=(V,M) in D

n

x M ≤

This is a zero-one problem with n(n-1) variables. If we
drop the integral condition of the variables, we can solve
the linear programming problem by the normal simplex
algorithm. If the result of this initial simplex step is integral
no more needs to be done; otherwise we must further
solve this initial solution (by using an integer programming
algorithm) so as to obtain an integer solution.

However, it has been shown that this problem has 2
n 

 
 

equations, n(n-1) nonnegativity constraints, 2 3
n 

 
 

 3-

dicycle inequalities, 120 6
n 

 
 

 3-fence inequalities, and

360 6
n 

 
 

 Möbius ladder inequalities [6]. Due to this

enormous number of constraints, it is impractical to list all
the constraints and solve the linear program using
available computer code. Instead we apply the cutting
plane and branch & bound algorithms as shown by the
following pseudo code.

Procedure cutting plane

{Solves RLO using cutting planes}

(1):{ 1 for all 1

0 for all 1 , }

n n
ij ji

ij

P x x x i j n

x i j n

−∈ ℜ + = ≤ ≤ ≤

≥ ≤ ≤
Found := True;
Do While (Found)

Solve Max { }Tc x x P∈ and let x be the optimal

solution;

If there exists a facet defining inequality T
oa x a≤ such

that T
oa x a≥ then do;

{ }(1): n n T
oP P x a x a−= ∩ ∈ℜ ≤

Found := True;
 Else Found := False;
 End;

if x is integral then x solves the linear ordering
problem;
Else start Integer programming algorithm (Branch
and Bound).

End cutting-plane;

Transformation of n
LOP

The linear program of n
LOP has n(n-1) variables. We can

halve the number of variables by the following
transformation;

Since the minimal equation is xij + xji = 1, for all

1 i j n≤ ≤ ≤ , , then we can substitute xij, j < i, by 1 - xji
in all inequalities and in the objective function.

The 3-dicycle inequalities xij + xjk + xki £ 2, are transformed
into xij + xjk - xik ≤ 1 if i<j<k, or into -xji - xkj + xki ≤ 0 if
i>j>k. The trivial inequalities and equations change to

0 1ijx≤ ≤ for all 1 i j n≤ < ≤ .

The original n
LOP has now been replaced by its projection

denoted by n
LOP into the real vector space 2

n 
 
 ℜ which

is of full dimension and has the same number of vertices

as n
LOP Also the objective function is transformed as

follows:

54AJST, Vol. 6, No. 1: June, 2005

A. R. MUSHI

,
(1)

 ()

ij ij ij ij ij ji
i j i j i j
i j

ij ij ij ij ij
i j i j i j

c x c x c x

c x c x c

< >
≠

< < >

= + −

= + − +

∑ ∑ ∑

∑ ∑ ∑
Since the last term is a constant, which does not affect
optimal solution, then we

maximize: z = ()ij ij ij ij
i j i j

c x c x
< <

+ −∑ ∑

The optimal value from n
LOP differs from that of n

LOP by a

constant value ij
i j

c
>
∑ . The objective function will be

denoted by c Tx with 2
n

c
 
 
 ∈ ℜ and ijc = (cij - cji) for all

1 ≤ i < j ≤ n. The initial solution is therefore just the trivial
inequalities stated above.

Implementation

Looking back to our general algorithm, the following
questions remain to be answered:

1. How can we detect the violated inequalities?
2. Which inequalities are to be added to the RLO if

more than one violation is found?
3. Should one class of facets have preference over

another?

We firstly answer the second question. It is noted that
for the case of 3-dicycles, a large number of constraints
(violated inequalities) may sometimes be generated in a
single pass of the algorithm. This may create a storage
problem. There are three strategies which can be used
to overcome this:

(i) All violated: If only a few inequalities have been
generated (a fixed number have to be set), then all
are inserted to the RLO,

(ii) k most violated: If large number of inequalities have
been generated, then a fixed number of them say k
are chosen and added to the RLO. The choice is
based on the most violated criteria. That is those
with larger right hand sides.

(iii) Arc disjoint: This case is also applied in the case
where a large number of constraints are generated.
A subset of the violated inequalities is chosen with
the property that no two corresponding 3-dicycles
have an arc in common. This is based on the idea

(not theoretically verified) that one inequality may
be sufficient to locally decrease the infeasibility of
the current solution. [5]

To answer the third question, the 3-dicycles are preferred
because they have to be present to exclude infeasible
integer solutions and because they can be detected more
efficiently than the other classes of inequalities. The order
therefore is to check 3-dicycles first until no more are
detected, then detect the k-fences, and then Möbius
ladders.

More specifically the algorithm then looks as follows:

Algorithm cutting plane2

2: { | 1, for all 1 ,

 0, for all 1 .

n

ij

ij

P i j nx
i j nx

 
 
 = ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤
ℜ

−
Found := True;
Do While(Found)

Solve Max { }Tc x x P∈ and let x be the optimum

solution for the current LP;

Check_3_dicycles(P, x ,Found);{ If found, add
new constraints and } {return True to Found }
If Not(Found) then
Check_k_fence(P, x ,Found);
If Not(Found) then
Check_M_ladder(P, x ,Found);

Endwhile;
If x is integral then done;
Else Solve integer programming algorithm;
End algorithm cutting plane2

The following section answers the first of the above three
questions:

Detection of violated inequalities:

Since there is a direct correspondence between the facet-

defining inequalities for n
LOP and n

LOP , we now describe

how to detect the facets of n
LOP but during our

implementation we will use the transformation n
LOP . Since

the initial linear program includes all trivial inequalities,
these are satisfied by all other subsequent solutions as
these solutions use the constraints of the initial program.

AJST, Vol. 6, No. 1: June, 2005

The Linear Ordering Problem: An algorithm for the Optimal Solution

55

Detection of violated 3-dicycle inequalities:

There are 2 3
n 

 
 

 different 3-dicycles in An. We enumerate

all possible violations. This procedure has complexity of
order O (n3).

Procedure Check_3_Dicycle(P, x ,Found);

Found := False; {will change to True if any inequality is
found}
For i := 1 to n-1 do

For j := i+1 To n-1 do
For k := j+1 To n do

IF(xij + xji - xik > 2) then
 InsertH(i,j,k,H,S);{in
 sorted ascending order}

Found := True;
Endif;
IF(-xij - xjk + xik > 2) then

InsertH(k,j,i,H,S)
Found := True;

Endif;
Endfor;

Endfor;
Endfor;
IF FOUND Then
 Add_k_most_violated(H) {to the LP},
EndIf;
EndProcedure Check_3_Dicycle;
An array H with four sections of equal size T is used to
store the violated 3-dicycles: If i1, j1, k1 are nodes of the
violated 3-dicycle, and i1 is stored in position l, then j1 is
stored in position l+T, and k1 in l+2T.

This dicycle may represent the inequality (i) xij + xjk - xki ≤
1,

or (ii) -xij - xjk + xik ≤ 0. Thus position l+3T stores the
status of this arc, (0 if of type (i) and 1 otherwise).

This array is sorted in decreasing order of magnitude of
the violations. The violations are stored in the array S.
We select the first K of them, but if less than K are
generated then we select all of them.

Detection of k-fence violated inequalities:

There are 120
6
n 

 
 

k-fence inequalities for k = 3, while

there are more of such inequalities for higher values of k.
Clearly enumeration over all inequalities is no longer
feasible. We thus resort to a heuristic which is formulated

after a careful study of the polytope n
CP (Constructed from

3-dicycles and trivial inequalities).

The projected polytope is as follows;

2{ | 1, for all 1 ,

 0, for all 1 ,

 1, for all 1 ,

 0, for all 1 }

n
n

ij jk ikC

jk ikij

ij

ij

P i j k nx x x
i j k nx xx

i j nx
i j nx

 
 
 = + − ≤ ≤ < < ≤

− + ≤ ≤ < < ≤

≤ ≤ < ≤

≤ ≤ < ≤

ℜ
−

−
This polytope has a matrix (denoted by Bn) with

2
3
n 

 
 

rows from 3-dicycles and 2
2
n 

 
 

rows from the

trivial inequalities. Each vertex of this polytope is one of

the solutions of the linear program (associated with n
CP)

and must have 2
n 

 
 

 elements. If we let Cn denote the

portion of Bn corresponding to the 3-dicycle inequalities,
then the following theorem shows that the 3-dicycle
inequalities are not sufficient to characterise a vertex of

n
CP .

We are interested in solution vectors (vertices) violating
the 3-fence inequality. These can be found by looking at
the properties of some of these violations. Consider a 3-
fence D = (V, F) in a complete digraph D6 and cF 30∈ ℜ as
its incidence vector. Maximising its objective function

c
F

Tx over 6
CP an optimum solution y* was found as

depicted by Figure 1.

56AJST, Vol. 6, No. 1: June, 2005

A. R. MUSHI

Optimum solution y* over 6
CP

Figure 1: Möbius Ladders

Note: The broken lines correspond to fractional
components with value 0.5 in both directions (i.e. xij = 0.5
and xji = 0.5). The solid lines correspond to components
having value 1 (i.e. xij = 1 and xji = 0 or xij = 0 and xji = 1) in
the direction of the arrow.

Thus we note that the components indexed by arcs anti
parallel to the pickets, have the value 0, and all pickets
have the value 1. Moreover we can see that all pales have
value 0.5. If we sum the values of all arcs in the 3-fence F,
we clearly see that the 3-fence inequality x(F) ≤ 7 is
violated (since the sum of F is 7.5).

Heuristic:[5]

The following heuristic was described by Reinelt [6]. The
heuristic is based on the uniqueness of the solution in
Figure 1 for any 3-fence. Therefore it is assumed that the
common property of all inequalities violating a 3-fence is
the nonintegrality of the pales.

If y is the solution of the current cutting plane algorithm,
then we define a corresponding graph (undirected) Gy =

(A(Ay),Ay) by setting Ay = {ij | yij is fractional}. In this
graph the fractional components may be different from
0.5 whenever the current polytope is not the ‘pure’
polytope. Moreover in order to speed up the running
time, instead of Ay we choose the arc set

{(,) 1ijAy i j yε ε= ≤ ≤ − where ε was set to 0.1.

We then separate all 3-fences and test them as follows.
We enumerate the triple edges of G which are non adjacent,
i.e. edges which have no node in common. Each of these
3-pairs is assumed to be a pale of a 3-fence. For each of
these pairs, there are 8 possible orientations of their edges
for a 3-fence and at most one of them will violate a 3-fence
inequality. We check this violation by constructing all
possible orientations. We note that once a violation is
found there is no need to go on with the construction of
the remaining orientations since that violation is unique.

The general algorithm is:

Procedure Check_3_fence(P, x ,Found)
Found := False;
(i) Find_fractional_components of and store them in

an array say F;
(ii) Identify_non-adjacents on F {remove the rest from

F}
Number F in order 1,2,...,u.
If u £ 2 then Return; {No 3-fence}
Else {u >2}

(iii) {Enumerate all possible k-fences}
While there are more 3-pair permutations do

While not(Found) and there are more
3-fence orientations do

(iv) Check_3_fence_Violation(Found); {Returns True if
Found}

If(Found) then Storeconstraint(F);
Endwhile;

Endwhile;
Endif;
AddFences(F)

End Procedure Check_3_fence;

Graph data structure

The graph Dn in this approach is represented as an array
of length 2n. The first n cells store the i part of the arcs
and the following n cells store the j part. For instance if
(i,j) is an arc in the graph Dn, and i is stored in position l ≤
n in the array, then j will be stored in position l+n.

AJST, Vol. 6, No. 1: June, 2005

The Linear Ordering Problem: An algorithm for the Optimal Solution

57

(i) Finding fractional components

Procedure Find_fractionals(F, x, u);
u := 0

For each arc (i,j) with i ≠ j do {with ε = 0.1}

IF (1)ijxε ε≤ ≤ − . Then
Increment(u) {number of fractional
components}

F(u) := i;
F(u+n) := j;

Endif;
Endfor;
End_algorithm; {At the end the graph F will contain u
components}.

(ii) Finding non-adjacent components

Two arcs are non-adjacent if they have no node in
common. Thus if we have two different arcs (i1,j1) and
(i2,j2), they can be adjacent in the following four possible
ways :

i1=i2

I II III IV

j1=i2i2 i1 i1 i2

i1=j2 j1=j2j1 j2 j1 j2

i1 i2

j1 j2

otherwise

adjacent, i.e.
they are not

i1=i2

I II III IV

j1=i2i2 i1 i1 i2

i1=j2 j1=j2j1 j2 j1 j2

i1 i2

j1 j2

otherwise

adjacent, i.e.
they are not

Figure 2: Finding non-adjacent components

All possible 2-pair arcs from fractional components F are
enumerated and checked for adjacency. We note that, if
two arcs in the set F are adjacent, then one must leave the
set as they can not both be members of the set of non-
adjacent arcs.

Thus we start with the first node in F and eliminate all arcs
in F adjacent to it by setting their indices in F to zero. We
then move to the next non-zero node in F and repeat the
above process. At the end we collect all non-zero arcs in
F as non-adjacent fractional components.

Procedure Find_Non-Adjacents(F,u,x);

For i := 1 to u do
If (F(i) ≠ 0) Then
 For j := i+1 to u do

If(F(j) ≠ 0) Then
i1 := F(i); j1 := F(i+u);
i2 := F(j); j2 := F(j+u);
If(i1=i2) OR (i1=j2) OR (j1-i2)
OR (j1=j2) Then

F(j) := 0;
F(j+u) := 0;

EndIf;
EndIf;

 Endfor;
EndIf;

Endfor;
 For each i with F(i) ≠ 0 do

Pull_Non_adjacents(F(i)) {pull non-adjacents
together}
 Endfor;
Endalgorithm;

(iii) Enumerating the K-fences

We enumerate all possible subsets of k elements from u
elements of F (fractional non-adjacent components). This
is done by a call to subroutine NEXKSUB which returns
an array of k elements different to the previous call, until
all subsets are enumerated (see Nijenhuis, A 1978 [7]).
When all subsets have been exhausted, NEXKSUB returns
False to a logical variable MTC (More To Come).

Each of these k element subsets is considered to be a set
of pales of a k-fence, and is checked for k-fence violation.

(iv) Checking for k-fence violation

A set with k pairs of non-adjacent fractional arcs from F is
checked for all possible orientations of a k-fence. For
instance for a 3-fence, there are eight possible orientations
for the pales of a 3-fence. Suppose the arcs chosen are
(i1,j1), (i2,j2), (i3,j3), (i4,j4). The following are the eight
possible orientations of a 3-fence pales:

58AJST, Vol. 6, No. 1: June, 2005

A. R. MUSHI

We want to find the general algorithm which will generate
all possible subsets for any k. First we note that we can
obtain the next subset from the previous one by swapping
an arc of the previous subset. For example, set II is
obtained from set I by swapping arc (i1,j1), and set III is
obtained from II by swapping arc (i2,j2).

i1

j1

 i2

 j2

i3

j3

j1

i1

 i2

 j2

i3

j3

j1

i1

 j2

 i2

i3

j3

i1

j1

 j2

 i2

i3

j3

j1

i1

 i1

 i2

j3

i3

j1

i1

 i2

 j2

j3

i3

i1

j1

 i2

 j2

j3

i3

i1

j1

 j2

 i2

j3

i3

I II III IV

V VI VII VIII

i1

j1

 i2

 j2

i3

j3

j1

i1

 i2

 j2

i3

j3

j1

i1

 j2

 i2

i3

j3

i1

j1

 j2

 i2

i3

j3

j1

i1

 i1

 i2

j3

i3

j1

i1

 i2

 j2

j3

i3

i1

j1

 i2

 j2

j3

i3

i1

j1

 j2

 i2

j3

i3

I II III IV

V VI VII VIII

Now suppose we have a list of k elements Lk consisting
of binary values (0-1). We wish to find a successor to a
subset S of Lk. In other words, we want to find the index
j of the single element aj in S which is to be changed (in
our case swapped) in order to form the successor.
For example the list L3 is as follows: 000, 100,
110, 010, 011, 001, 101, 111. The
sequence of indices j of the changed co-ordinates
(indicated by bold numbers) is : 1,2,1,3,2,1,2.

This sequence of j values is generated by a subroutine
NEXSUB (Nijenhuis, A [7]). Each index is then used to
generate the next subset until all subsets are exhausted.
At the end NEXSUB returns False to MTC. However if a
selected subset is found to violate a k-fence inequality

the algorithm stops as this k-fence is unique. The violation
is added as a new constraint of an LP.

Procedure Check_F_violation(F)

MTC := True;
Found := False;
While(MTC and NOT Found) Do

NEXSUB(j)
Swap(F(j),F(j+n));
IF(x(F) > k2-k+1)Then

Found := True;
Add(F) {to LP}

Endif;
Endwhile;
Endalgorithm;

Detection of violated Möbius Ladders

Again enumeration of all possible Möbius Ladders is not
possible. The heuristic is based on finding one of the
smallest Möbius Ladders, as candidates for a Möbius
Ladder separation routine Given a Möbius Ladder D =

(V,M) and it’s incidence vector 30
Mc ∈ ℜ if we maximise

cT

M
x over 6

CP we get the optimal solution y* as shown by
the figure below. It’s value is x(M) = 8.5 which clearly
violates Möbius Ladders inequality (i.e. x(M) ≤ (8).

Note: Faint lines correspond to the value 0.5 (in both
directions) and solid lines correspond to a value of 1.
Components opposite to the solid lines (not shown) have
value 0.

M resembles Figure 4 but with the solid line components
reversed. The heuristic exploits this structure and works
as follows. Given y as the solution to the current problem,
we develop a graph Gy = (V(Ay),Ay) of fractional
components as done for the k-fences problem. We then
enumerate all 4-cycles without diagonals in Gy
corresponding to the four nodes 1,2,3,4, as shown. For
each of these 4-cycles, we try to find another node w
which is adjacent to the four nodes (node 5 of Figure 4). If
we are successful then we enumerate all nodes adjacent
to w as possible candidates for the role of node 6 above.
The role of node 6 is that such that when a node is in
position 6 it creates a new Möbius ladder. Each of the 6
nodes identified in the enumeration are treated as nodes
of a Möbius Ladder isomorphic to M or M and are
checked for Möbius Ladder inequality violations.

Figure 3: Checking for k-fence violation

AJST, Vol. 6, No. 1: June, 2005

The Linear Ordering Problem: An algorithm for the Optimal Solution

59

Figure 4: Detection of violated Möbius Ladders

Algorithm_Möbius_Ladder;

Find_fractionals(y,F) {enumerate all 2-pairs of F which
forms a 4-cycle, these are the non-adjacent arcs}

For each 4-cycle(a,b,c,d) do
Find_node_w(w) { adjacent to the 4-cycle}

{Since this is a complete
digraph, then it is sufficient to find a
node which is not one of the 4-cycle
nodes}

If (w_found) then
List_6_node(q) {enumerate all nodes
adjacent to w as possible candidates
for node 6 role. That is not among the
5 nodes selected so far}
For each of (a,b,c,d,w,q) do

 Check_Mobius_ d_
Violation (a,b,c,d,w,q)
{add new constraint if
found}

Endfor
Endif

Endfor
Endalgorithm Möbius_Ladder;

start

1.Initialize LP

2. Solve LP to get optimal solution x*

3. Eliminate slack cutting planes

4. Run cutting plane generating methods(facets)

5. Cuts (facets)
 generated ?

Yes

No
Yes

No

7. x* Integer ?

6. Revise LP (Reinitialize parameters) 8. Branch and bound

Stop

Figure 5: Cutting Plane Algorithm

Summary of the Cutting Plane algorithm

60AJST, Vol. 6, No. 1: June, 2005

A. R. MUSHI

1. Preparation of the LP with the trivial inequalities.
2. Solve LP to get optimal solution, using an LP package

(LP solver)
3. Eliminate cutting planes: We delete all constraints

having positive slack variables, so as to decrease the
size of the linear program. These deleted constraints
may be reinserted during optimisation but practically
these results in smaller programs without
considerably affecting the speed of optimisation.
We find these slack variables by checking all basic
variables with indices greater than the number of
variables n. These variables will correspond to slack
variables which remained basic (i.e. positive slacks)
in the optimal solution.

4. The identification of the facets as explained
previously.

5. If cuts were generated, we go to step 6 for revision of
LP, otherwise we go to step 7 for integrality checking.

6. Revision of LP: Any cutting planes generated are
added to the LP and then the algorithm is repeated
from step 2.

7. If x* is integral we have found a solution, otherwise
go to step 8.

8. Perform branch and bound to get an integral solution
using an LP solver.

Summary of Results

The 20x20 tables were extracted from the Input/Output
tables. The k most violated inequalities for 3-dicycles were
chosen between 100 and 500. In the following table we list
the running time of the algorithms, the degree of linearity
and density of each table used. The running times include
the time used in generating MPS format files and the
PRIMAL and DUAL algorithms. The first two numbers of
the table names represent the size of the table and the
next two represent the year of the table from which it was
extracted (the first letter is used to distinguish one table
from another).

Table (k=100) Density Degree of
Linearity

CPU time
(seconds)

A2085.d 64.73 62.95 11.81
B2085.d 59.47 93.21 11.76
C2085.d 35.53 62.00 19.70
D2085.d 39.74 90.29 10.94
E2085.d 56.05 53.43 16.34
F2085.d 52.63 88.83 12.22
G2085.d 30.78 79.99 17.37
H2085.d 33.42 91.57 11.52
A2064.d 60.53 65.57 11.09
B2064.d 65.53 90.74 9.65
C2064.d 64.21 76.19 18.23
D2064.d 71.32 85.63 11.68
A2069.d 52.63 67.34 22.45
B2069.d 60.79 88.11 9.65
C2069.d 62.37 84.36 17.70
D2069.d 70.26 92.50 11.81
A2075.d 55.00 72.52 12.16
B2075.d 50.00 95.83 14.75
C2075.d 34.74 63.06 12.18
D2075.d 46.05 90.91 12.28

Table (k = 200) Density Degree of
Linearity

CPU time
(Seconds)

A2585.d 59.00 62.67 20.81
B2585.d 51.00 94.39 33.37
C2585.d 41.00 63.75 17.59
D2585.d 49.67 86.75 23.82
E2585.d 51.83 55.96 21.56
F2585.d 44.67 87.12 24.31
G2585.d 35.83 55.89 30.75
A2564.d 66.50 67.55 28.20
A2569.d 58.33 69.66 31.36
A2575.d 48.83 70.60 29.50
B2575.d 42.00 95.14 22.16

Table 1: Summary of Results for 20x20 tables

Table 2: Summary of Results for 25x25 tables

AJST, Vol. 6, No. 1: June, 2005

The Linear Ordering Problem: An algorithm for the Optimal Solution

61

Table 3: Summary of Results for 33x33 tables

A3385.d 52.18 70.33 97.45
B3385.d 45.36 65.21 63.88
A3364.d 70.45 71.60 50.16
A3369.d 67.23 74.27 93.73
A3375.d 41.10 75.65 67.84

Table (k = 500) Density Degree of
Linearity

CPU time
(seconds)

Table 4: Summary of Results for 41x41 tables

A4185.d 48.66 69.79 237.14
B4185.d 42.62 71.97 173.41
C4175.d 41.83 75.42 146.17

Table (k = 500) Density Degree of
Linearity

CPU time
(seconds)

The results show that tables with up to 41 sectors can be
triangulated within reasonable time scale. It can also be
observed that there is very little relationship between the
degree of linearity, density and time. This shows that the
density of the problem can hardly affect the optimization
time. This is due to the fact that the zero values in the
table will only affect the objective row of the simplex
tableau which is a very small part of the whole tableau.

We now illustrate the optimization process in a few cases.
The number of iterations in the simplex algorithm is listed
together with the facets generated, the objective function
value and the degree of linearity for each phase of the
problem.

I A2085.d 66 - 2541.50 381 23.65 2.87
II 47 118 Dicycles 2463.70 481 58.74 4.63
III 8 39 Dicycles 2463.40 520 62.95 4.31
I A2064.d 61 - 173648.00 381 47.55 2.75
II 33 68 Dicycles 171608.00 449 58.81 4.10
III 11 39 Dicycles 171531.00 452 65.57 4.24
I A2069.d 62 - 241189.00 381 45.67 2.89
II 52 129 Dicycles 238944.00 481 45.48 4.72
III 36 54 Dicycles 238070.00 535 66.66 5.19
IV 14 19 Dicycles 238063.00 554 67.34 4.92
V 1 7 Dicycles 238063.00 561 67.34 4.73

Size Degree of
Linearity

CPU Time Table (k=100) PRIMAL
Iterations

Facets
generated

Objective
value

PRIMAL
iterations

Facets
generated

Objective
value

Size
(number
of rows)

Degree of
Linearity

CPU time
(sec.)

I A3385.d 157 - 3594 1057 52.45 9
II 233 670 Dicycles 3409.2 1557 74.19 25.44
III 201 321 Dicycles 3376.2 1878 75.58 30.49
IV 11 31 Dicycles 3376 1909 75.65 16.74
V 1 1 Dicycle 3376 1910 75.65 15.78

Table (k=500)

Table 5: Optimisation Process; 20x20 tables

Table 6: Optimization Process; 33x33 tables

62AJST, Vol. 6, No. 1: June, 2005

A. R. MUSHI

PRIMAL procedure alone and those from the DUAL
procedure for the 41 sector table A4185.d.

Table 8: Comparisons of PRIMAL and DUAL performances

PHASE
Size Time Size Time

I 1641 17.48 1641 17.48
II 2141 43.74 2141 33.37
III 2641 92.35 2641 45.53
IV 2774 232.69 2872 82.31
V 2803 302.48 3004 31.00
VI 2817 426.17 3017 28.20
VII 2823 309.11
Total time 1424.02 237.89

PRIMAL DUAL

Since the Dual Simplex algorithm works by removing the
infeasibilities introduced to the previous basis due to the
added cuts, the fewer the cuts added the faster the DUAL
procedure will be. From the Table 5 - Table 7, the last
phases involve only a few facets and hence few cuts are
added. This makes the DUAL procedure very fast
compared to PRIMAL. We compare the performance of
the 3-dicycles procedure in relation to various k-violation
strategies. This is illustrated by table A2085.d for k =
50,100 and all.

PRIMAL
iterations

Facets
generated
(Dicycles)

Objective
value

Size
(number of
rows)

Degree of
Linearity

CPU time
(Sec.)

I A4185.d 251 - 4743.50 1641 45.78 17.48
II 211 1358 4541.90 2141 59.27 33.37
III 215 999 4431.10 2641 67.30 45.53
IV 362 231 4394.20 2872 68.30 82.31
V 41 132 4393.10 3004 68.89 31.00
VI 18 13 4389.10 3017 69.79 28.20

Table (k=500)
Table 7: Optimisation Process; 41x41 tables

Observations from Table 5 - Table 7;

• In all tables only the 3-dicycles were needed to
find an optimal solution.

• Branch and bound stage was not needed in any
case.

• Only a small number of phases were necessary
to reach an optimum solution. Thus our
semi-automatic algorithm was able to solve these
real life problems in a very convenient way.

• Generally, the addition of facets showed an
improvement in the degree of linearity and the
objective value, which shows the effectiveness
of facet defining inequalities (3-dicycles in this
case) in improving the solution.

The number of iterations of the DUAL procedure and the
time taken are highest in the middle phases but decrease
towards the last phase. Since the size of the problem
showed an increase with the number of phases, it was
expected that the time would increase too (together with
the number of iterations). This was not the case, and is
due to the fact that the DUAL simplex procedure greatly
improves the performance of the algorithm. To see this,
we compare the results obtained by the application of the

AJST, Vol. 6, No. 1: June, 2005

The Linear Ordering Problem: An algorithm for the Optimal Solution

63

Table
A2085

Phase PRIMAL
iterations

Facets
generated

Objective
value

Size (number
of rows)

CPU time
(seconds)

I 66 - 2541.5 381 2.87
K=50 II 30 118 Dicycles 2471.4 431 4.05

III 16 117 Dicycles 2471 481 4.26
IV 19 29 Dicycles 2463.4 510 5.36

I 66 - 2541.5 381 2.87
k=100 II 47 118 Dicycles 2463.7 481 4.63

III 8 39 Dicycles 2463.4 520 4.31

I 66 - 2541.5 381 2.87
all II 52 118 Dicycles 2463.7 499 4.77

III 4 24 Dicycles 2463.4 523 4.47

Total time 15.54

Total time 11.81

Total time 12.11

Table 9: Performance of 3-dicycles in relation to k-violations

In the first case (k=50), 118 dicycles were found in phase
one. But only 50 were introduced to the tableau in phase
II. This resulted in a relatively small sized problem and
was solved faster (4.05 seconds). The next phase generated
117 dicycles, and the algorithm took four phases to reach
optimality.

In the second case (k = 100), 100 dicycles were added to
the tableau in phase II. This resulted in a relatively large
problem (compared to the first case). The time taken to
solve it was also relatively long (4.63 Seconds), but only
three phases were required to reach optimality.
In the third case, all 118 dicycles were added to the tableau
in phase II. The time taken to solve it was longest (4.77
Seconds) and again three phases were needed to reach
optimality.

We may conclude that, for large values of k the LP becomes
large and time consuming, while for small values of k, a
cut generation routine is called quite often and thus gives
more phases of the algorithm. But, on the other hand, we
have seen that the size of the LP does not necessarily
affect the time. It depends on the number of cuts added.

In general, there is no specific criterion for the selection
of k. It is a better idea to do some test for each size in order
to determine the best value of k. In our table (Table 9) the
overall time was best for the second case (k=100). We

thus used K= 100 for the 20 nodes tables. Using the same
idea we selected k = 200 for 25 nodes and 500 for 41 nodes.

CONCLUSION

The aim of the study was to use the theory of polyhedral
combinatorics to develop a computer algorithm for the
solution of the Linear Ordering problem. This was done
by describing the facet structure of the Polytope
associated with the Linear Ordering Problem. Linear
Programming methods were applied to develop a cutting
plane algorithm. The algorithm implemented the Polytope
descriptions (in terms of equations and inequalities) to
find the exact solution to our problem.

It was also the intention of this project, to apply the
developed algorithm to the practical problem,
‘Triangulation of Input - Output tables’, and hence to
investigate the importance of the facets of this Polytope.
We developed a semi - automatic algorithm which involved
the use of cutting plane procedure and branch and bound.
We then presented and analyzed the computational results.
The following can be concluded;

• The k-Fence and Möbius Ladder facets did not
appear on any of the problems tested. Only
3-dicycles were found and these were sufficient to
get an optimal solution. We conclude that the
3-dicycles are the most important facets.

64AJST, Vol. 6, No. 1: June, 2005

A. R. MUSHI

• The Dual - Simplex procedure is a very useful tool in
this cutting plane algorithm, its use decreased the
solution times for large problems to a great extent.

• The algorithm performed well on the problems tested.
We can thus conclude that polyhedral combinatorics
is a useful tool for attacking hard combinatorial
optimization problems. It seems to be worthwhile to
relate the polytope to combinatorial optimization
problems whose vertices correspond to the feasible
solutions, and then try to describe the facet structure
of this Polytope.

• It has been demonstrated that it is possible to use a
linear programming approach to the problem
Polytope as a means of formulating algorithms for
the exact solutions of some of the NP - Hard
combinatorial optimization problems.

REFERENCES

1. Grötschel, M. and Padberg, M W. (1983a):
“Polyhedral aspects of the Travelling Salesman
Problem I. Theory”, European Institute for Advanced
Studies in Management. W. Germany.

2. Grötschel, M. and Padberg, M W. (1983b):
“Polyhedral aspects of the Travelling Salesman
Problem II. Computation.” European Institute for
Advanced Studies in Management. W. Germany.

3. Bachem,A and Grötschel, M (1982): “New aspects of
Polyhedral Theory” in Korte, B (ed): Modern Applied
Mathematics: “ Optimization and Operations
Research”, North-Holland Publishing Co. Amsterdam
- New York -. Oxford, 1982, 51-106

4. Grötschel, M (1982): “Approaches to Hard
Combinatorial Optimization Problems” in Korte,B
(ed) : Modern Applied Mathematics: “ Optimization
and Operations Research”, North-Holland
Publishing Co. Amsterdam - New York -. Oxford, 1982,
437-575.

5. Reinelt, G (1985): “The Linear Ordering Problem:
Algorithms and Applications”, Herman Verlag
Berlin.

6. Grötschel, M, Junger, M and Reinelt, G (1983) : “A
cutting plane algorithm for the Linear Ordering
Problem”, European Journal of Operations Research
6 (1984), 1195-1220.

7. Nijenhuis, A and Wilf, H, S (1978): “Combinatorial
Algorithms for Computers and Calculators”,
Academic Press Inc. New York - San Francisco -
London.

