Main Article Content
Ecological features of harmful algal blooms in coastal upwelling ecosystems
Abstract
At least four dinoflagellates from upwelling systems form chains leading to increased swimming speeds, and may be an adaptation for growth in coastal upwelling habitats. Red tides are frequent and fundamental features of upwelling systems, particularly during intermittent upwelling relaxations, rather than dichotomous (sometimes catastrophic) interruptions of the diatom blooms characteristically induced by upwelling. Successional sequences and the “red tide” zone may differ between upwelling and non-upwelling systems. In the latter, red tides diverge from the main sequence and are appropriately positioned in the Mandala’s ecological space of high nutrients and low turbulence. An amended Mandala based on Pingree’s S-kh model and the Smayda and
Reynolds life-form model is presented to accommodate the range of red tide development and their successional routing found in coastal upwelling systems. Ecophysiological data support the Pitcher and Boyd seeding mechanism model, which can lead to red tides in upwelling systems. Nutrients, phyto-stimulation and grazing pressure as triggering factors in upwelling-system red tides are considered. Some red tides may be stimulated by nutrients and growth promoting factors excreted by migrating shoals and “boils” of clupeoid stocks, with selective zooplankton
grazing contributory. Substantial collapses in grazing pressure may be essential in anoxic red tide events. The mass mortalities that accompany anoxia, common to the Benguela and Peru upwelling systems, may be a trophic control mechanism to maintain biogeochemical balance and regional homeostasis, which are vital to upwelling ecosystem dynamics. Some traditional concepts of phytoplankton ecology may not completely
apply to dinoflagellate bloom events in coastal upwelling systems.