Main Article Content
The ‘suitcase hypothesis’: Can entrainment of meroplankton by eddies provide a pathway for gene flow between Madagascar and KwaZulu-Natal, South Africa?
Abstract
Similarities in the marine fauna found off the coasts of southern Madagascar and KwaZulu-Natal Province (KZN), South Africa, led to the development of the ‘suitcase project,’ with the aim of establishing whether eddies that form off southern Madagascar may package and transport biological material across the Mozambique Channel, facilitating connectivity and gene flow. Meroplankton (larval stages of fishes and benthic invertebrates) were collected on the Madagascan shelf and along a transect through a cyclonic eddy in the Mozambique Channel. The samples were analysed using microscopy and DNA barcoding, seeking to identify species known to be common to both the southeast coast of Madagascar and the east coast of South Africa and thereby to reveal potential indicators of connectivity between these regions. The greatest zooplankton biovolume in the upper 200 m occurred on the shelf, followed by in the western part of the eddy and in the region outside the eddy to the west, and was lowest in the region outside the eddy to the east. The meroplankton were dominated by taxa of coastal origin and these were also most abundant on the shelf and in the western part of the eddy, with the lowest abundances in the region outside the eddy to the east. The findings show greater zooplankton biovolumes and larval abundances and the presence of reef-associated larval assemblages on the Madagascan shelf and along the transect through the cyclonic eddy, providing support for the suitcase hypothesis that planktonic organisms are entrained within eddies as they propagate south-westwards of the Madagascan shelf.
Keywords: biovolume, connectivity, DNA barcoding, fish larvae, invertebrate larvae, larval dispersal, mesoscale eddies, Mozambique Channel, phylogenetic analysis