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IDENTIFICATION AND CLASSIFICATION OF VERTICAL CHLOROPHYLL
PATTERNS IN THE BENGUELA UPWELLING SYSTEM AND ANGOLA-
BENGUELA FRONT USING AN ARTIFICIAL NEURAL NETWORK

N. F. SILULWANE*, A. J. RICHARDSON%*, F. A. SHILLINGTON*
and B. A. MITCHELL-INNEST

Information on the vertical chlorophyll structure in the ocean is important for estimating integrated chlorophyll
a and primary production from satellite. For this study, vertical chlorophyll profiles from the Benguela up-
welling system and the Angola-Benguela front were collected in winter to identify characteristic profiles. A
shifted Gaussian model was fitted to each profile to estimate four parameters that defined the shape of the
curve: the background chlorophyll concentration (By), the height parameter of the peak (%), the width of the
peak (o) and the depth of the chlorophyll peak (z,,). A type of artificial neural network called a self-organizing
map (SOM) was then used on these four parameters to identify characteristic profiles. The analysis identified a
continuum of chlorophyll patterns, from those with large surface peaks (>10 mg m-3) to those with smaller
near-surface peaks (<2 mg m-3). The frequency of occurrence of each chlorophyll pattern identified by the SOM
showed that the most frequent pattern (~12%) had a near-surface peak and the least frequent pattern (~2%) had
a large surface peak. These characteristic profile shapes were then related to pertinent environmental variables
such as sea surface temperature, surface chlorophyll, mixed layer depth and euphotic depth. Partitioning the
SOM output map into environmental categories showed large peaks of surface chlorophyll dominating in water
with cool temperature, high surface chlorophyll concentration and shallow mixed layer and euphotic depth.
By contrast, smaller peaks of subsurface chlorophyll were in water with warmer temperature, lower surface
chlorophyll concentration, intermediate mixed layer and deep euphotic depth. These relationships can be used
semi-quantitatively to predict profile shape under different environmental conditions. The SOM analysis high-
lighted the large variability in shape of vertical chlorophyll profiles in the Benguela. This suggests that an ideal
typical chlorophyll profile, as used in the framework of biogeochemical provinces, may not be applicable to this
dynamic upwelling system.
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recognition, self-organizing maps

Information on the vertical chlorophyll structure is
important not only for estimating integrated chlorophyll
(Platt er al. 1988, Sathyendranath et al. 1995), but
also as input to analytical models of primary production
that require depth-dependent values of chlorophyll
concentration (Sathyendranath ef al. 1995). This sub-
surface chlorophyll structure needs to be extrapolated
spatially and temporally for the estimation of integrated
pigment content and primary production (Sathyen-
dranath er al. 1995). However, because satellite ocean
colour sensors can only measure near-surface
chlorophyll, satellites cannot detect deep chlorophyll
maxima (André 1992, Kameda and Matsumura 1998).
Primary production is then under-estimated when a
homogeneous vertical chlorophyll structure is as-
sumed (Platt ef al. 1991).

To address this problem, Platt et al. (1988) parti-
tioned the ocean into four primary domains, each
with their own characteristic physical processes and

biological characteristics. These primary domains
were further subdivided into biogeochemical provinces
based on regional oceanographic processes (Longhurst
et al. 1995, Sathyendranath er al. 1995). One such bio-
geochemical province within the coastal domain is
the Benguela upwelling system, from Cape Peninsula
(34°S) north to Cape Frio (18°S). Features of this
province include coastal upwelling, anticylonic eddy
fields and a shelf-break front (Longhurst ef al. 1995).
It has been assumed that each biogeochemical province
is characterized by a group of typical (usually seasonal)
chlorophyll profiles.

Considering the dynamic physical oceanographic
forcing within upwelling systems, it is likely that there
is considerable variability in chlorophyll profile
shapes. Previous studies in the Benguela upwelling
system suggest that vertical patterns of chlorophyll
distribution differ spatially and temporally. Often
there is a cross-shore change in chlorophyll profiles,
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Fig. 1: Cruise map showing the station positions where vertical
chlorophyll profiles were collected during the BENEFIT
research cruise in June/July 1999

from larger surface peaks inshore to smaller subsur-
face peaks offshore (Pitcher et al. 1992). Drogue
studies, following the path of newly upwelled water,
have highlighted the temporal change in profile
shape during the maturation of upwelled water.
Newly upwelled water generally is low in chlorophyll
throughout the water column (Brown and Hutchings
1987). Following warming and stratification, surface
phytoplankton blooms occur. After 6—8 days, the
bloom declines and the chlorophyll maximum be-

comes subsurface. Therefore, the main control of
phytoplankton bloom formation is the stability of the
water column (Pitcher et al. 1996, Brown and
Hutchings 1997). Consequently, if shapes of chloro-
phyll profiles can be related to pertinent environmen-
tal variables, improved regional estimates of primary
production in the Benguela would be possible.

A number of techniques can be used to identify and
characterize chlorophyll profile shapes. One such
technique is artificial neural networks. Artificial neural
networks are computer algorithms that are good at
identifying and classifying patterns. Their architecture
and functioning are inspired by the massive intercon-
nectivity of the animal brain and its ability to solve
non-linear problems without prior assumptions about
the data (Chen and Ware 1999). Artificial neural net-
works, like their biological counterparts, do not require
an explicitly programmed solution to a problem, but
rather learn patterns within the data. Artificial neural
networks have been fruitfully applied in a variety of
disciplines, including speech recognition, target iden-
tification for military purposes, stock market prediction
and weather forecasting, although there have been
few applications in marine ecology and fisheries (but
see Jarre-Teichmann er al. 1995, Aoki and Komatsu
1997, Chen and Ware 1999, Storbeck and Daan 2001).

In this study, a type of artificial neural network
called a self-organizing map (SOM), which is particu-
larly adept at pattern recognition (Kohonen et al.
1995), is used. The SOM has the ability to capture
non-linear patterns and to span breakpoints in the
data. For identifying groups in a dataset, the primary
advantage of SOMs over traditional multivariate
techniques such as cluster analysis is that the relation-
ship among the identified patterns can be visualized
(Hewitson and Crane in press). Therefore, output
patterns are arranged in a two-dimensional array (the
“self-organizing map”), in which similar patterns are
found closer to one another and dissimilar patterns
farther apart. The number of output patterns identified
is set by the user, depending on the detail required.
SOMs, as in other artificial neural networks, also
have the advantages of being able to handle large
datasets and missing values.

In this study, a preliminary assessment of whether
the Benguela Current biogeochemical province is
characterized by a single characteristic profile in
winter is made from in situ data. A self-organizing
map has been used to identify characteristic vertical
chlorophyll profiles objectively. These patterns were
then related to easily measured environmental variables.
The study forms part of an ongoing project to identify
characteristic chlorophyll profiles throughout the
Benguela upwelling system in an attempt to improve
regional estimates of primary production from satellite.
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Fig. 2: (a) A shifted Gaussian curve showing the four parameters (B, h, o and z,,) used to describe in situ vertical
chlorophyll profiles, (b) the effect of changing By, h, ¢ and z,,, on the shape of the Gaussian curve

MATERIAL AND METHODS

Data

Vertical fluorescence profiles were collected during the
BENguela Environment Fisheries Interaction and
Training (BENEFIT) research cruise in June/July 1999.
The cruise covered the Benguela Current and the
Angola-Benguela front (Fig. 1). Fluorescence profiles
were measured (down to 100 m) using a profiling
fluorometer (Chelsea Instruments AquaTracka
MKIII). To convert the fluorescence profiles into
chlorophyll equivalents, in situ fluorescence readings
were related to extracted chlorophyll concentrations.
Samples for extracted chlorophyll a were collected in
Niskin bottles at the surface and the depth of maxi-
mum fluorescence. Water samples were filtered using
Whatmann GF/F filters and extracted in 90% acetone
at 20°C for 24 h. Samples were then measured fluoro-
metrically using a Turner designs Model 10-000R
fluorometer before and after addition of hydrochloric

acid to adjust for phacopigments.

In situ fluorescence readings were then related to
the extracted chlorophyll concentrations by linear re-
gression analysis of log-transformed values of chloro-
phyll a against fluorescence. High values of extracted
chlorophyll at the surface corresponding to low fluo-
rescence values measured by the profiling fluorometer
were considered photo-inhibited and were excluded
from the calibration regression. Chlorophyll profiles
that corresponded to these photo-inhibited values
were discarded from all subsequent analyses. After
exclusion of the profiles that appeared photo-inhibited,
a total of 60 chlorophyll profiles remained.

Underwater irradiance was measured concurrently
with the fluorescence profiles using a LI-COR
Underwater Quantum sensor attached to the sampling
rosette. The euphotic depth was the depth where the
irradiance was 1% of the surface irradiance. The mixed
layer depth was calculated as the depth where the
difference in temperature from the surface was 0.5°C
(Longhurst 1995).
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Parameterizing vertical chlorophyll profiles

To describe the shape of each vertical chlorophyll pro-
file, a shifted Gaussian curve was fitted (Fig. 2a). This
equation has four parameters: the background chloro-
phyll concentration (B, the height parameter (%), the
width of the peak (o), and the depth of the chloro-
phyll peak (z,,; Lewis et al. 1983, Platt et al. 1988,
1991, Sathyendranath et al. 1995). The equation for
the shifted Gaussian curve is given by

h (Z_Zm)z

e 202

B(z)=By+
() 0 G\/2Tl’,

The effect that each of these parameters has on the
shape of the shifted Gaussian curve is shown in Fig. 2b.
The shifted Gaussian curve was fitted to each profile
using the quasi-Newton algorithm. The background
chlorophyll concentration, the height parameter and the
width of the peak were constrained to be positive, be-
cause they are only meaningful for positive values. The
depth of the chlorophyll peak was also constrained to
be positive, even though negative values are meaning-
ful (Platt ef al. 1991), because the i parameter was
sometimes unrealistically large (A >10 000 mg m-2).
Constraining the z,, parameter to be positive in situa-
tions when it was negative effectively meant that it was
~0 (surface peak). This constrained model had no
effect on models with positive z,, values and very little
effect on the “goodness of fit” of models for profiles
with negative z,, values (12 values changed by <3%).

Using a self-organizing map to identify patterns

To characterize in situ chlorophyll profiles, a self-
organizing map (SOM) was used on the four model-
derived profile parameters. Input data consisted of
the four parameter values (columns) and a number of
profiles (rows). Column normalization was performed
prior to the SOM analysis to give each parameter
equal weighting.

The SOM consists of two layers, each with a number
of processing units or nodes. The first is the input
layer, which consists of the input data (here the param-
eters for each profile), and the second is the output
layer or map, which are the parameter values for the
vertical patterns identified (these can be visualized
directly). These layers are interconnected by connection
weights, in which each node of the input layer is con-
nected to every node in the output layer (Dayhoff
1990). The basic SOM algorithm is briefly outlined
below, but more details can be found in Kohonen (1997)
and Hewitson and Crane (in press).
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The shape or topology of the output map can be
chosen to be either rectangular or hexagonal. A rect-
angular topology places adjacent nodes on the corners
of a square, whereas a hexagonal topology places ad-
jacent nodes at the apices of a hexagon. Hexagonal
topology produces more continuous output patterns,
whereas rectangular topology is easier to plot. The
dimensions of the output map determine the number
of output patterns. Too many nodes do not adequately
reduce the data to characteristic patterns, but too few
nodes do not adequately differentiate underlying pat-
terns. In the present analysis, a map of four columns
by three rows with rectangular topology was used.
The 4 x 3 SOM provided sufficient resolution of the
underlying patterns, although 3 x 2 and 6 X 4 SOMs
were also investigated.

Prior to the training process, connection weights for
each node need to be initialized (these are the initial
values of the four Gaussian parameters in the present
analysis). These can either be chosen to be random,
or they can be initialized with the first two orthogonal
components of a principal components analysis of
the input data. In this analysis, the four-dimensional
input data (normalized parameter values for each
profile) were initialized with a principal components
analysis on the input data, ensuring that the major diag-
onals of the SOM were axes of most variation.

Input data are presented to the SOM sequentially
in a training cycle. The first input vector (parameters
of the first profile in the present analysis) is compared
(using Euclidean distance) with the vector on each
node on the output map. The node that is most similar
to the profile (smallest Euclidean distance) is de-
clared the “winning” node and the centre of the “up-
date neighbourhood”. Weights for all nodes that are
topologically close (within the update neighbour-
hood) learn from the same input and their weights
are adjusted by a spatial decay function to be similar
(although not identical) to that input vector. The spatial
decay function can either be a bubble (hat-shaped) or
Gaussian (bell-shaped). With the bubble function, the
winner and surrounding nodes within the update
neighbourhood are adjusted to the same extent. The
Gaussian function updates the winning node and the
surrounding nodes according to a Gaussian function,
with the degree of update decreasing with distance
from the winning node. The radius of the update neigh-
bourhood determines the spatial extent of the update
function. The update neighbourhood creates a relation-
ship between neighbouring nodes, resulting in a con-
tinuum of patterns across the node space. The training
procedure is repeated for all input data.

The training cycle is repeated until convergence is
reached. This typically involves a large number of cycles
(105-109). During each training cycle, the learning
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Fig. 3: Each vertical chlorophyll profile collected (points) fitted with a shifted Gaussian curve (line). At the
top left of each figure is the profile number (see Table 1), and in the top right is a number (in
parenthesis) indicating the pattern that the profile mapped to in the SOM
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Fig. 3 (continued)
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rate parameter (o) determines the extent to which
weights are adjusted. Both the learning rate and the
update radius decrease throughout the entire training
process. This aids convergence by establishing rough
patterns early in the training process, which increase
in detail later in training. Convergence is achieved when
the overall error (the mean of the Euclidean distances
for all input data and the pattern to which they are
mapped) is a minimum (the error is dimensionless after
normalization of input data). In the present analysis,
the training consisted of 100 000 iterations with an
initial learning rate (o) of 0.2, a bubble neighbourhood
function and an initial update neighbourhood of 6.

Once the underlying patterns (classes) have been
identified, the SOM can be used to classify the input
data (profiles in this analysis) into these classes. For
each input vector, there is also an error value, the
Euclidean distance between the input vector and the
pattern in the SOM output map to which it gets
mapped. Therefore, large errors identify input data
that are not well represented by the output map.

A frequency map of the chlorophyll patterns from
the SOM was then constructed to determine the relative
frequency of each of the patterns in the dataset.
Frequency maps have the dimensions of the SOM
output and show the relative frequency (%) of each
pattern. All relative frequencies on a self-organizing
map sum to 100%.

Relating vertical chlorophyll patterns to environ-
mental variables

Vertical chlorophyll patterns identified in the SOM
were then related to environmental variables that
may influence the profile shape. This was achieved
by partitioning the overall frequency map of the
SOM into categories based on different values of the
environmental variable in question. Environmental
variables used were sea surface temperature (SST),
surface chlorophyll, mixed layer depth (the depth
where the difference in temperature from the surface
is 0.5°C) and euphotic depth (1% surface light
depth). SST was chosen because it is related to the
age of upwelled water in an upwelling system
(Brown and Hutchings 1987, Platt et al. 1995).
Surface chlorophyll was included because it has been
related previously to the shape of chlorophyll pro-
files (Morel and Berthon 1989, Sathyendranath et al.
1995). Mixed layer depth was used because it is re-
lated to stability of the water column and to physical
forcing mechanisms such as wind (Mann and Lazier
1991). Euphotic depth was included because the depth
to which light penetrates is related to the vertical
chlorophyll distribution. Chlorophyll and SST can be
estimated from satellite imagery so they can be mea-
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sured synoptically in real time. Whenever possible,
categories were chosen to have approximately the
same number of profiles within each category of an
environmental variable.

RESULTS

Fitted vertical chlorophyll profiles

Gaussian curves generally fitted the raw chlorophyll
profiles well (Fig. 3). Of the total of 60 profiles, 52 had
an r2 value for the Gaussian model >70% and were
used for further analysis. The four model-derived
parameter values for each profile are listed in Table I.

Characteristic profile shapes

The SOM analysis produced a continuum of chloro-
phyll patterns in a two-dimensional (4 X 3) array
(Fig. 4a). To assess how well the patterns represent the
raw profiles, the curves in Figure 3 can be compared
with the SOM output map in Figure 4. Generally, the
characteristic patterns identified by the SOM represent
the chlorophyll profiles well. Chlorophyll patterns on
the left side of the SOM had larger (~13 mg m-3) surface
chlorophyll concentration (e.g. #1 in the SOM mag)
than those with smaller subsurface peaks (~2 mg m)
on the right side (e.g. #12). Moreover, chlorophyll
patterns on the left side of the SOM had surface
peaks (<5 m) and these graded to patterns with sub-
surface maxima (~20 m) on the right side (z,, in-
creasing). Also, the total chlorophyll beneath the
curve decreased from top to bottom and from left to
right (h decreasing). The width of the peak also
changed across the SOM output, peaks at the bottom
left corner being narrower than those towards the top
right corner (G increasing). The background chloro-
phyll concentration increased from a minimum in the
top right corner to a maximum in the bottom left corner
(B increasing). Therefore, the continuous change of
shape of chlorophyll patterns across the SOM output
map reflects the continuous change in the profile
parameters.

The frequency of occurrence of each of the chloro-
phyll patterns in the SOM output map is shown in
Figures 4b and c for the Benguela Current system
and the Angola-Benguela front. Note that each map
in Figures 4b and ¢ has 12 grid squares: each corre-
sponds to the pattern in the same position in the SOM
in Figure 4a. In Figure 4b, profiles with moderate
near-surface peaks (2—4 mg m-3) dominated. Pattern
#3 was the most frequent chlorophyll pattern (~11%)
identified by the SOM. Pattern #5 was the least frequent
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Table |: Parameter values (B,, h, ¢ and z,,) for each profile obtained by fitting a shifted Gaussian model. The variance explained
(r2 value) is included to show how well the model fitted each profile. Only profiles with r2 > 70% were used in further

analysis
Profile number |  Station grid By h o Zm 2 value (%) thi)g}tlt (;Irlléli;([))e d
1 202 0.3 220.0 15.1 14.1 93 7
2 203 0.4 166.6 10.7 9.3 97 6
3 205 0.4 136.1 15.3 11.9 96 7
4 301 0.2 99.1 19.3 5.9 94 3
5 302 0.6 100.3 9.0 2.9 94 10
6 303 0.1 105.0 18.9 18.0 98 8
7 304 0.2 88.7 29.4 25.5 84 4
8 401 0.9 378.8 11.0 0.0 98 5
9 402 0.5 180.8 10.3 3.7 96 6
10 403 0.5 163.1 13.3 14.0 87 7
11 404 0.2 121.3 16.7 14.4 98 7
12 405 0.3 95.9 23.7 8.2 97 3
13 503 0.3 29.6 18.6 21.8 80 4
14 502 0.3 17.4 9.4 24.1 79 12
15 602 0.2 189.7 27.5 5.8 77 3
16 604 0.1 70.7 20.2 22.7 83 8
17 801 1.4 1452 4.6 3.0 94 9
18 803 0.0 550.8 23.9 7.3 99 1
19 804 0.0 495.6 18.5 7.0 97 2
20 901 3.7 144.6 7.1 5.9 88 9
21 901A 3.6 113.8 5.6 4.9 87 9
22 902 0.8 744.3 11.7 9.3 99 1
23 903 1.6 1329.3 25.8 0.0 95 1
24 1004 0.3 45.0 9.0 13.0 86 11
25 202 0.0 146.8 9.6 13.4 94 11
26 203 0.2 25.6 10.2 11.1 91 11
27 204 0.3 110.3 26.1 9.4 83 3
28 205 0.0 90.7 21.6 11.8 95 3
29 302 0.4 49.5 6.9 9.1 88 10
30 305 0.1 20.0 16.1 18.2 96 8
31 402 0.5 340.7 7.6 8.1 94 6
32 404 0.2 42.7 17.4 19.1 84 8
33 405 0.0 83.7 21.0 17.8 82 4
34 502 0.5 21.7 2.3 11.9 88 11
35 503 0.5 57.2 12.6 20.3 88 12
36 504 1.0 210.6 8.9 12.4 74 10
37 505 0.4 250.1 15.6 4.1 98 2
38 601 0.0 170.9 18.2 12.1 88 3
39 602 0.0 133.2 12.8 11.2 82 7
40 603 0.2 58.0 11.0 10.2 90 11
41 604 0.2 264 18.7 17.6 87 8
42 701 0.3 8.9 1.9 41.6 86 12
43 703 0.2 20.3 13.2 12.2 81 7
44 704 0.7 30.7 3.5 3.0 76 10
45 705 0.8 752.5 26.7 0.0 70 1
46 706 0.4 40.3 3.9 5.1 73 10
47 707 0.0 239.7 21.2 20.5 75 4
48 709 0.5 239.5 23.0 0.0 94 2
49 600 0.3 82.9 11.3 9.9 88 11
50 801 0.7 129.2 12.7 0.0 95 6
51 802 0.4 167.4 11.0 7.4 98 6
52 803 0.5 85.0 10.0 4.7 94 6
53 408 0.0 78.9 40.4 328 47 -
54 603 0.3 36.8 25.6 9.5 51 -
55 701 0.0 50.1 27.9 21.0 43 -
56 303 0.9 65.3 20.0 0.7 66
57 304 0.0 136.1 243 22.9 56 -
58 403 0.0 78.8 11.7 18.0 68 -
59 605 0.3 5.0 7.6 31.0 62 -
60 702 0.3 12.1 14.9 294 68 -
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12 grid squares, corresponding to the same position in the SOM in Figure 4(a)
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(<2%) within the Benguela Current system (Fig. 4b).
For the Angola-Benguela front, only patterns with mod-
erate near-surface peaks (3—6 mg m-3) were identified,
with pattern #6 being dominant (~5%; Fig. 4c). The
frequency map showed patterns of the Angola-Benguela
front to be similar to those of the Benguela Current
system. Therefore, data from the two systems were
combined because of the relatively small dataset, and
will be henceforth referred to as the Benguela system
for simplicity. Considering the overall frequency of
occurrence of patterns for the Benguela system, pattern
#7 was the most frequent vertical chlorophyll pattern
identified by the SOM.

Relationship of profile shapes to environmental
variables

There were marked changes in the shape of chlorophyll
profiles with different levels of each environmental
variable, as can be seen from differences in the relative
frequency maps (Fig. 5). In terms of SST, there was a
general deepening and decline in the size of the peak
as water warmed. At cool temperatures (SST <14°C),
chlorophyll profiles had large (>10 mg m-3) surface
chlorophyll peaks. At intermediate temperatures (14
—17°C) the peaks were still near the surface, but they
had decreased in magnitude. At warm temperatures
(SST >17°C), there was a variety of small (<2 mg m-3)
and moderate peaks (~6 mg m-3) that were relatively
deep in the water column.

To aid interpretation of the relationship between
the SOM output map and environmental variables,
relationships were identified between each profile
parameter and each environmental variable using bi-
variate scatterplots with a distance-weighted least
squares smoother fitted. These changes in profile shape
as temperature warmed were a consequence of the
decrease in background chlorophyll concentration, a
smaller height parameter, a general decrease in the
width of the peak, and a deepening of the chlorophyll
maximum (Fig. 6a).

The shape of the profiles was also strongly related
to surface chlorophyll concentration, with a clear mi-
gration in the position of maximum frequency from
the right side of the SOM output map to the left as
chlorophyll increased (Fig. 5b). At low concentration
of surface chlorophyll (<2 mg m-3), subsurface peaks
were most common. At moderate concentration of
surface chlorophyll (2-10 mg m-3), the chlorophyll
peak had increased in size and shifted towards the
surface. As the surface chlorophyll concentration in-
creased even further (>10 mg m-3), the depth of maxi-
mum chlorophyll was even shallower. These changes
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in profile shape as surface chlorophyll increased
were a consequence of an increase in the background
chlorophyll concentration, a substantial increase in
the height parameter and a general shallowing of the
chlorophyll maximum (Fig. 6b). There was no change
in the width of the peak as surface chlorophyll in-
creased.

The shape of the profiles was also related to mixed
layer depth, although not as strongly as for SST and
surface chlorophyll (Fig. 5¢). Profiles with surface and
subsurface peaks were common at shallow depths of
the mixed layer (<20 m). At intermediate depths of
the mixed layer (20—40 m), there was considerable
variability in profile shape, from those with large
peaks of surface chlorophyll to those with smaller
deeper peaks. Deep mixed layers (>40 m) were char-
acterized by chlorophyll profiles with surface and
near-surface chlorophyll maximum. These changes in
profile shape as the mixed layer deepens were a con-
sequence of a decrease in background chlorophyll
concentration, a broadening of the chlorophyll peak
and a deeper chlorophyll maximum (Fig. 6¢). The
height parameter appeared to have a dome-shaped
relationship, with higher values at intermediate depths
of the mixed layer (these profiles mapped to the top
left corner of the frequency map for intermediate, i.e.
20-40 m, mixed layer depths). This suggests that the
total chlorophyll in the peak was smaller for very
shallow and deep mixed layers.

The shape of the chlorophyll profile was strongly
related to euphotic depth, with a clear migration from
the right to the left side of the SOM map (Fig. 5d). At
shallow and deeper euphotic depths (<15 and >30 m),
small and relatively deep peaks were common. Large
peaks in surface chlorophyll were frequent at inter-
mediate depths (15-30 m). These changes in profile
shape as the euphotic layer deepens were a consequence
of a general decrease in both the background chloro-
phyll concentration and the height parameter, and an
increase in the depth of the chlorophyll maximum
layer (Fig. 6d). There was no consistent change in the
width of the peak (G) as the euphotic layer deepened.

DISCUSSION

To our knowledge, this is the first time that an artificial
neural network such as a self-organizing map has
been used to identify characteristic vertical chlorophyll
profiles in the ocean. This technique is more impartial
than subjectively grouping profiles into classes. A
major advantage of the technique is that the output is
easy to interpret: the profile shapes can be visualized
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Fig. 6: Relationships between the four parameters of the shifted Gaussian curve (By, h, ¢ and z,,) fitted to each profile and
(a) SST, (b) surface chlorophyll concentration, (c) upper mixed layer depth and (d) euphotic depth. Lines were fitted
using the least squares distance-weighted smoothing procedure
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directly and the relationship among classes is clear. This
is in contrast with the output from conventional multi-
variate techniques such as principal components, multi-
dimensional scaling and cluster analysis, that use
various abstractions of the data. In addition, the
SOM makes it possible to visualize large datasets
with potentially thousands of profiles.

Characteristic profiles of the Benguela system

The SOM analysis identified a continuum of charac-
teristic chlorophyll profiles, from those with large
surface peaks to those with smaller subsurface ones.
Although there were no chlorophyll profiles with very
deep subsurface peaks, there was still considerable
spatial variability in the shape of chlorophyll profiles
in the Benguela system during winter. The surface
and subsurface peaks identified by the SOM technique
resemble those in many eutrophic and mesotrophic
waters (Morel and Berthon 1989). Moreover, it is
likely that the diversity of profile shapes has been un-
derestimated, for two main reasons. First, the dataset
was limited to only 52 profiles from only one winter
cruise, and deep (>40 m) chlorophyll maxima were
not observed, even though they are common midshelf
and on the shelf-edge of the southern Benguela system
(Brown and Hutchings 1987). Second, eight profiles
were not used in the SOM analysis because the shifted
Gaussian curve did not fit well, so from the outset
some profiles that were different were excluded. The
diversity of profiles identified in the Benguela system
suggests that a single seasonal profile is insufficient
to capture the variability in chlorophyll patterns in
the Benguela Current biogeochemical province. If
this variability in profile shape is related to environ-
mental variables, then improved regional estimates of
primary production may follow.

Relationship of profile shapes to environmental
variables

Despite the relatively small dataset, some strong rela-
tionships between profile shape and environmental
variables were identified. The shape of vertical chloro-
phyll profiles was related to SST, surface chloro-
phyll, mixed layer depth and euphotic layer depth.
Profiles with large peaks in surface chlorophyll domi-
nated cool water with high concentrations of surface
chlorophyll, shallow-to-deep depths of the mixed layer
and intermediate euphotic depths. By contrast, profiles
with smaller subsurface peaks dominated warm water,
with low concentration of surface chlorophyll, inter-
mediate mixed layers and deep euphotic layers.
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These relationships are a consequence of the strong
influence of physical processes such as upwelling,
stratification and turbulence (Pitcher ef al. 1992,
Ediger and Yilmaz 1996, Mitchell-Innes et al. 1999,
2001), which limit the availability of nutrients and light
in the water column. Phytoplankton biomass is initially
low in very cold, nutrient-rich, newly upwelled water.
As upwelled water warms, the high level of available
light and warm conditions in the surface layers lead
to high phytoplankton growth and the development
of surface phytoplankton blooms. Bloom development
leads to high concentrations of chlorophyll in the eu-
photic layer (Morel and Berthon 1989) and also
causes less light penetration (shading) at depth, re-
sulting in low subsurface phytoplankton biomass. As
nutrients become depleted in the surface layers and
the water column stabilizes, phytoplankton biomass
shifts deeper, where more nutrients are available,
leading to subsurface chlorophyll peaks (Cullen 1982,
Brown and Hutchings 1987, Morel and Berthon
1989, Pitcher er al. 1992). Although high concentrations
of nutrients are present deep in the water column, light
limitation at these depths leads to low subsurface
chlorophyll concentration.

The variability in profile shape is also evident with-
in a particular range of an environmental variable: the
SOM did not identify a single typical profile, but
rather a variety of profile shapes. This is because
blooms do not necessarily develop and decline in dis-
crete water parcels moving offshore. Because upwelling
is pulsed, there are strong shearing motions between
water parcels, and turbulence and horizontal advection
causes considerable mixing of new and old water
(Pitcher et al. 1992). Also, considerable variation in
bloom development and hence profile shape is caused
by different phytoplankton seed communities in newly
upwelled water (Pitcher 1990).

Frequency maps from the SOM output can be used
semi-quantitatively to predict the probability of differ-
ent profile shapes at a particular level of an environ-
mental variable. This is an improvement in parameter-
ization of vertical chlorophyll structure over assuming
a single typical seasonal profile. This study has been
a “proof of concept” (only 60 profiles were avail-
able) for using the SOM technique to identify char-
acteristic vertical chlorophyll profiles. The SOM has
proven to be a powerful tool for classifying the shapes
of chlorophyll profiles and relating them to environ-
mental variables. This technique is now being applied
to a larger dataset (~500 profiles) from the southern
Benguela. The current study suggests that estimates of
vertical chlorophyll structure and hence the regional
primary production estimated from ocean colour data
could be improved by use of critical environmental
variables to predict the shape of the chlorophyll
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biomass profile. The rapid sampling and synoptic
coverage of SST and surface chlorophyll measured
by satellite could permit prediction of the shape of
chlorophyll profiles over appropriate scales of time
and space in a dynamic upwelling area. The use of
other techniques, such as generalized linear modelling
and generalized additive modelling, to predict profile
parameters directly from SST, surface chlorophyll
and a suite of other key environmental variables, is
now being investigated.
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