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The Impact of Sludge Manure Adoption on Crop Yields: 

Evidence from a Propensity Score Matching Approach. 
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Abstract 
This study examines the impact of sludge manure adoption on household farm production, 

focusing on matooke (bananas), maize, beans, sweet potatoes, coffee and cassava. We employ 

a propensity score matching methodology and estimate the average treatment effect on the 

treated (ATT), and we report the results from the nearest neighbor algorithm and test for 

robustness using the kernel algorithm. The study uses household survey data collected from 

the central districts of Uganda between January and February 2023. Our key findings indicate 

increased and significant yields of bananas, maize, coffee and cassava. These results are similar 

to those of different estimation algorithms. From a policy perspective, our results suggest that 

the design of agricultural productivity enhancing programmes, especially for farm households, 

requires leveraging organic technologies to promote agricultural production. 
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1. Introduction 

Over the years, the use of agricultural supplements in agro-based countries has increased 

considerably. This has been caused by the persistent increase in the world population, which 

has translated into increased demand for food and raw materials for agro-processing firms. 

However, soils have continuously degraded, failing to support increased farm production. In 

Africa, for example, Dimkpa et al. (2023) reported that over 40% of African soils are degraded, 

which causes both immediate and long-term adverse effects on agricultural production and the 

well-being of rural agricultural households (Amare et al., 2017). Soil fertility affects food 

security (Mwaniki, 2006; Zakari et al., 2014), household crop income (Hörner & Wollni, 2021; 

Yamano & Kijima, 2011) and school enrolment (Hörner & Wollni, 2021). Hörner and Wollni 

(2021) argued that enhanced soil fertility improves farm production and household incomes, 

which positively impacts education attainment and overall human capital development. 

 

In sub-Saharan Africa (SSA), food insecurity is still a major challenge, with FOASTAT data 

showing that 26.6% of the total population in the region is experiencing severe food insecurity 

(FAO, 2023). This food insecurity is attributed to a number of factors, e.g., insufficient nutrient 

application and poor soil management practices, as well as harsh climatic conditions (Hörner 

& Wollni, 2021; Onyeneke et al., 2018; Sanginga & Woomer, 2009). Sanginga and Woomer 

(2009) attributed food insecurity in SSA to high fertilizer costs and adverse policy 

environments. 

 

Several agricultural interventions have been implemented across the globe to counteract food 

insecurity and enhance farm household welfare. Such interventions include input subsidy 

programs, agricultural technological training and the provision of improved quality inputs, 

especially inorganic fertilizers. Such interventions have also been implemented in many 

African countries, though to varying degrees. Sheehan and Barret (2017) document varying 

consumption of inorganic fertilizers in some African countries. More specifically, Sheehan and 

Barret (2017) reported that the consumption of inorganic fertilizers across all households in 

Malawi stands at 146 kg/ha, followed by Nigeria (128 kg/ha), Ethiopia (45 kg/ha), Tanzania 

(16 kg/ha), Niger (2.5 kg/ha), and Uganda (1.2 kg/ha). Although Uganda uses 1.2 kg/ha of 

fertilizer nutrients, the country still has a high rate of annual nitrogen, phosphorous, and 

potassium depletion per hectare (MAAIF, 2016), which suggests limited soil nutrients and 

supports the argument that future growth in Uganda’s farm production will depend on 

improved soil management (Bekunda et al., 2002; Nkonya et al., 2008), e.g., through the 

application of more agricultural supplements. 

 

Agricultural supplements can be broadly categorized into two groups, i.e., organic and 

inorganic supplements. Organic supplements are mainly made of plant and animal wastes, 

while inorganic supplements are synthetics mainly composed of minerals and chemicals mined 

from the earth. Even though inorganic supplements support high farm yields (because they are 

manufactured to fit a specific crop), they tend to affect the environment (Rahman & Zhang, 

2018; Walsh et al., 2012) and, over time, can affect crop yields (Rahman & Zhang, 2018). With 

such effects, the use of organic supplements can be thought of as “a game changer” for 

sustainable farming (Oyetunde-Usman et al., 2021). The adoption of organic fertilizers 

increases soil bulk density, organic matter, and critical soil elements such as nitrogen, 

phosphorus, potassium, calcium, and magnesium (Agbede et al., 2019; Sarka & Siegh, 2003). 

They also improve the physical structure and biochemical elements of soils and have long-term 

impacts on farm production (Ball et al., 2005; Li et al., 2017) and the environment (Li et al., 

2017). 
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Organic supplements are mainly decompositions of plant and animal wastes, but recently, 

human wastes (hereafter, sludge manure) have been adopted by farmers to enhance farm 

production or fight pests (with pests, farmers mainly use urine collected in containers). 

Although the use of sludge manure improves farm yields (see Akdeniz et al., 2006; Grau et al., 

2017; Guzha, 2005; Zuo et al., 2018), the literature on this effect is still limited. Moreover, 

most of the existing studies are crop specific (e.g., Akdeniz et al., 2006 for sorghum; 

Andersson, 2011 and Guzha, 2005 for maize; Zuo et al., 2018 for rice). Only Grau et al. (2017) 

focused on two crops, Rapharus sativus and Capsicum Anuum. Additionally, most of the 

aforementioned literature is based on sludge manure collected from human waste at the 

household level. By implication, most of these materials are unprocessed with the possibility 

of no technical guidance on their application. In this paper, we examined the impact of sludge 

manure processed at the Lubigi Sewarage Treatment Plant (LSTP) (a detailed process is 

described in subsection 1.1 below) a government-managed facility on a number of crops. 

 

1.1 Processing of sludge manure at the LSTP 

 

Sludge manure is an agricultural input made from faecal sludge, and by itself, faecal sludge is  

the material or primarily faecal solids and urine that accumulate at the bottom of a pit, septic 

tank or vault (Tayler, 2018). The process of making sludge manure starts with the deposition 

of faecal sludge at the LSTP1.  

 

Faecal sludge reaches the LSTP through two inlets. The first inlet consists of cesspool trucks 

that deliver faecal sludge from household pits and septic tanks to the LSTP. Cesspool trucks 

are emptied directly into screening/sedimentation tanks to remove grit, e.g., bottles, wood, 

clothes, etc. During the sedimentation process, liquids/effluents are separated from solids, and 

some solid particles can be pumped directly to the drying ponds. However, the remaining 

liquids with some solid particles are pumped to anaerobic ponds where they mix with faecal 

sludge from inlet 2. The second inlet (Inlet 2) is through national water and sewerage 

cooperation sewerage pipes, which are directly deposited into screening ponds to remove grit; 

thereafter, the effluent is pumped into anaerobic ponds. The primary function of anaerobic 

ponds is stabilization and to allow for the breakdown of the high concentrations of organic 

pollutants contained in sludge. This is done by removing oxygen from the affluent to encourage 

the growth of bacteria, which helps in the decomposition process. Another important function 

of anaerobic ponds is to reduce pathogens that are harmful to human life. After decomposition 

in anaerobic ponds, the sludge is pumped into facultative ponds to remove ammonia through a 

biological process. The use of facultative ponds is to increase the efficiency of bacterial 

removal from sludge manure. From the facultative ponds, the sludge manure is pumped out to 

drying ponds (beds), where it is allowed to dry and foster further decomposition for 

approximately five to six months. During this period, sludge manure reaches a moisture content 

of 60%, and at this moisture content, pathogens (disease-causing organisms) are believed to be 

lifeless and fit for human handling. When the sludge manure is dry enough, it is ready for use 

by farmers. The graphical description of the same process is given in appendix 3. 

 

 

                                                             
1 LSTP is a government owned sewerage processing plant affiliated to National Water and Sewerage Corporation 

(NWSC). A government institution mandated to provide viable water and sewerage services in the country at 

affordable costs. LSTP provides sludge manure to farmers without any restrictions except, farmers incur a cost of 

transporting the manure to their farms. LSTP is located in Lubigi water stream along Northern Express highway 

in Kampala district. 
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The remainder of this paper is organised as follows. Section 2 reviews the literature on sludge 

manure and farm production. Section 3 describes the methodology. Section 4 presents and 

discusses the estimated results. Section 5 concludes.  

 

2.0 Literature Review 

2.1 Sludge manure and farm production 

The potential of human excreta to enhance farm production has been documented (see 

Andersson et al. 2011; Akdeniz et al., 2006; Grau et al., 2017; Zuo et al., 2018). For instance, 

Zuo et al. (2018) reported an increase in the yield of rice on newly reclaimed mudflat lands in 

China. Specifically, the study reported 125.1%, 124.7% and 127.9% increases in rice 

production in 2016, 2017 and 2018, respectively, in sludge-treated mudflats. Zuo et al. (2018) 

also reported a significant reduction in soil salinity in sludge-treated areas. 

 

Zou et al. (2021) reported increased biomass and gross energy content in sweet sorghum 

resulting from sewerage sludge amendment in China. Specifically, sweet sorghum exhibited 

maximum biomasses of 4.73 and 6.62 t ha−1 at a 250 t ha−1 sewerage sludge amendment rate in 

2016 and 2017, respectively, while the maximum gross energy contents were 79.62 and 104.47 

GJ ha−1 at a sewerage sludge amendment rate of 250 t ha−1 in the same period. Similarly, 

Akdeniz et al. (2006) reported increased grain yield of sorghum in the Van areas of Turkey 

when sewerage sludge and nitrogen supplements were applied to sorghum. Grau et al. (2017) 

reported improved yields of Rapharus sativus and Capsicum Anuum in Sri Lanka when 

cocomposited manure (a mixture of dewatered faecal sludge and organic fractions of municipal 

solid waste) was applied by farmers. Furthermore, during 1997–1999, Jonsson et al. (2004) 

tested human urine, chicken manure and meat +bone meal on spring grain and winter wheat. 

The study reported an average increase in winter wheat yield of 18 kg of grain per N for human 

urine, 14 kg for dry chicken manure and 10 kg for meat +bone meal. 

 

On the African continent, the application of sludge supplements by farmers is still limited, and 

the majority of sludge users apply it on a small scale; however, such supplements are among 

the least expensive and most environmentally friendly agricultural supplements that African 

farmers can adopt. Existing studies on the African continent show positive effects of sludge 

supplements. For example, Guzha (2005) reported a positive effect on maize production in 

Zimbabwe when exhausted soils were restored by sanitized human excreta. Similarly, 

Andersson (2011) reported improved maize yields among smallholder farmers in South 

Africa’s Thurela River basin resulting from fertilization with stored human urine, while 

Andersson (2015) reported increased maize yields of up to 120% among smallholder farmers 

in Tororo district in eastern Uganda after the application of urine collected from their 

households.2 

 

Furthermore, Cofie et al. (2005) reported that composting faecal sludge with organic waste is 

a good approach for recovering locked nutrients and organic matter for food production. The 

study documented that the users of excreta in Ghana earned three times greater net income than 

nonusers. Moya Diaz-Aguado et al. (2017) compared the impact of faecal sludge manure to 

that of chemical fertilizers in Madagascar and reported that human excreta had significant 

effects on farm yields. Yanggen et al. (1998) documented an average increase in cereal 

production of approximately 50 kg of cereals per person per year when human excreta was 

used as a farm supplement. Andersson & Rosemarin (2016) predicted that the safe reuse of 

                                                             
2 Smallholder farmers use urine because it is considered pathogen free and safe to use in the gardens after a one-

week storage for cooling purposes. 
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nutrients contained in urine and faecal sludge from on-site systems is sufficient to sustain 

50,000 hectares of cultivated rice in Dakar, Senegal. 

 

This paper makes three contributions to the literature. First, it contributes to the literature that 

relates organic manure to farm production in the context of developing countries. Most of the 

existing studies on sludge manure and farm production are based more advanced countries (see 

Akdeniz et al., 2006 on Turkey, Annandale et al (2020) on Bangladesh Grau et al. (2017) on 

Sri Lanka and  Zou et al. 2021 on China) with a few studies on developing contries (see Cofie 

et al. (2005) on Ghana, Guzha, (2005) on Zimbabwe,  and Moya Diaz-Aguado et al. (2017) on 

Madgascar). moreover, most of the literature is crop specific. The studies on African continent 

has focused on cereals. This paper provides more insights on the impact of sludge manure on 

the number of crops including perenial crops (bananas and coffee). Second, the paper presents 

evidence from sludge manure collected from a formally instituted government institution where 

faecal sludge is processed into sludge manure. Other literature is based on unprocessed human 

excreta, which is likely to elicit resentment owing to diseases and stigma. This can cause 

limited use of sludge manure, thereby, leading to a lower measured impact than its potential. 

 

3. 0 Methodology 

3.1 Data and sampling strategy 

To test whether sludge manure has an effect on farm production, we use household survey data 

collected from central Uganda between January and February 2023. The data were collected 

from the districts of Mpigi, Masaka, Mityana, Mukono, Luweero, and Wakiso. Our respondents 

were users of sludge manure processed at the Lubigi Sewerage Treatment Plant (LSTP). The 

use of sludge manure processed at the LSTP is still limited in a few districts, possibly because 

(1) the existence of plants is still unpopular among farmers countrywide and (2) the plant is 

located at the border of Kampala city and Wakiso district, and the cost of transporting manure 

to distant districts could be relatively high. We collected data from 522 farm households (199 

sludge manure adopters and 323 nonadopters). 

 

 During sample selection, we employed a mix of sampling procedures. First, the selection of 

adopters was guided by lists of farmers who had collected sludge manure from the LSTP. The 

lists contain information about the farmer, e.g., name and contact, district, subcounty and 

village. From the lists, we purposively selected six districts based on the number of farmers 

who collected sludge manure3. From each district, two subcounties were randomly sampled, 

and from each subcounty, two parishes were selected (still randomly) as study areas. At the 

parish level, all adopters participated in the study except those who chose not to participate or 

who were absent at the time of the field visit. 

 

The nonadopters were selected from the same study area. Prior to the fieldwork, we previsited 

the local/village leaders and obtained village census books. We dropped the adopters using the 

lists obtained from the LSTP and dropped immediate neighbours (defined by distance and 

relationship) to adopters using guidance from village leaders. From the remaining residents in 

each village, we randomly selected and constructed a list of nonadopters. In Table 1, we 

summarize the basic demographic information combining adopters and nonadopters of sludge 

manure, and in Table 2, we present a summary of demographic information separating the 

adopters of sludge manure from nonadopters. 

                                                             
3 At the time of the survey, some districts had very few adopters, to a total of approximately 5 which would be 

unviable in logistical terms. We also remained silent about Kampala because evidence obtained from LSTP 

showed that many adopters in the city take very small quantities of manure for their house-bound flowers or for 

planting paspalum grass in their courtyards. 
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Table 1: Summary statistics (adopters and nonadopters combined, N = 522)4 

Variables Mean SD Min Max 

Dependent variables     

Banana (bunches) 85.618 120.635 0 960 

Maize (sacks) 12.226 19.265 0 180 

Beans (sacks) 1.848 5.428 0 100 

Swt potato (sacks) 2.807 7.891 0 55 

Coffee(kgs) 406.408 965.498 0 6800 

Cassava (sacks) 2.018 4.462 0 50 

Independent variables     

Age_household head 45.927 12.280 20 86 

household_size 6.295 3.008 1 23 

Distance market 3.782 6.575 0 46 

Income_household 378243.3 546851.6 0 6000000 

Hired_labor 0.492 0.500 0 1 

Synthetic_fertilizer 0.417 0.493 0 1 

Compost_manure 0.281 0.450 0 1 

Hybrid_seeds 0.567 0.495 0 1 

Government_support 0.151 0.358 0 1 

Credit_access 0.461 0.499 0 1 

Education_household head 0.906 0.291 0 1 

Leadership 0.243 0.429 0 1 

Group member 0.229 0.421 0 1 

Irrigation 0.201 0.401 0 1 

Landsize 4.623 6.301 0 100 

 

Results in table 1 shows that on average, the respondents were approximately 46 years old, 

with an average family size of 6 people. The average distance to the market is 3.4 to 4 

kilometers, and each household earns an average income of 378243 shillings per month 

(≈100.27 USD). On average, households hire 5 people on their farms, and close to 42 percent 

of the households use synthetic fertilizers, 28 percent use composite manure, and 57 percent 

have planted hybrid seeds at least in the last 2 seasons. Furthermore, 46 percent of the surveyed 

households accessed loans in the year preceding the survey, while only 15 percent had accessed 

government support. The majority of the respondents (90 percent) attended formal education, 

and more than 24 percent of the household heads held at least a leadership position. Twenty-

three percent of the household heads are members of at least one farmer group, 20 percent of 

the households irrigate their crops, and the average land size owned by households is 4.6 acres. 

 

 

 

 

 

 

 

 

                                                             
4 The variables used in the logistic estimation are described in section 3.2 
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Table 2: T test for adopters and nonadopters of sludge manure (n=522)5 

Variables Adopters 

(N=199) 

Nonadopters 

(N=323) 

Mean 

Difference 

P Value 

Age_household head 44.412 46.860 2.448 0.013 

household_size 6.432 6.210 -0.221 0.793 

Distance market 3.378 4.031 0.653 0.135 

Income_household 319598 414374.6 94776.6 0.027 

Hired_labor 0.623 0.411 -0.211 1.000 

Synthetic_fertilizer 0.100 0.613 0.512 0.000 

Compost manure 0.155 0.359 0.203 0.000 

Hybrid_seeds 0.492 0.613 0 .120 0.003 

Government_support 0.155 0.148 -0.007 0.588 

Credit_access 0.402 0.498 0.096 0.016 

Education_household head 0.889 0.916 0.026 0.153 

Leadership 0.201 0.269 0.068 0.039 

Group member 0.201 0.247 0.046 0.120 

Irrigation 0.125 0.247 0.122 0.001 

Landsize 5.015 4.381 -0.633 0.868 

Source: Author’s computation using survey data 

 

Turning to Table 2, in which we split the sample between sludge adopters and nonadopters, 

several two-sample t test statistics indicate that some variables are differently distributed 

between the two groups, for example age of the household head, synthetic fertilizer, compost 

manure, hybrid seeds use, whether a household head hold a leadership position in the 

community, and whether a household irrigates its crops regularly. This suggests a need to 

control for them in our regression estimations. 

 

3.2 Variable definitions and their influence on sludge manure adoption 

This section describes the variables that influence the adoption of sludge manure. It also shows 

the hypothesised direction of influence. The variables are based on the literature that relates 

organic manure to farm production (Ajewole, 2010; Kateme & Bauer, 2011; Orinda, 2013; 

Uaiene et al., 2009; Uwagboe et al., 2012). These variables are presented in table 3.  

 

 

 

 

 

 

                                                             
5 We also try to balance the sample size between adopters and nonadopters to check whether the groups remain 

statistically homogeneous when the two groups are relatively equal. We use Stata command sample 62 if 

nonadopters and randomly dropped 38% of the respondents in the control group. We remained with 200 

observations and compare them with 199 adopters. We observe that even with relatively balanced samples, the 

groups remain robustly similar (see appendix 2) which supports the accuracy of our randomization. 
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Table 3: Variable names, variable descriptions and expected signs 

Variable Variable description Expected influence 

Age_household head Age of household head in complete years. - 

 

household_size 

 

Average number of people in a household 

 

+/- 

 

Distance market 

 

Distance to the market from a household in kilometers 

 

-/+ 

 

Income_household 

 

Average monthly income of the household measured in Uganda shillings 

 

+ 

 

Landsize 

 

Number of acres under crop production. 

 

+ 

 

Hired_labor 

 

1 = household uses hired labour on crop production, 0 otherwise 

 

+ 

 

Synthetic_fertilizer 

 

1= household uses synthetic fertilizers, 0 otherwise 

 

- 

 

Compost_manure 

 

1= household uses homemade compost manure, 0 otherwise 

 

- 

 

Hybrid_seeds 

 

1= household uses hybrid seeds in the last 12 months, 0 otherwise 

 

+ 

 

Government_support 

 

1= household received government support in the last 12 months, 0 otherwise 

 

+ 

 

Credit_access 

 

1= household accessed a loan in the last 12 months, 0 otherwise 

 

+ 

 

Education_household head 

 

1= household head attended at least a level of formal education, 0 otherwise 

 

+ 

 

Leadership 

 

1= household head has at least a leadership role in the community, 0 otherwise 

 

+ 

 

Group member 

 

1= household head is a member of at least a farmers’ group/cooperative 

 

+ 

 

Irrigation 

 

1= household irrigates crops regularly, 0 otherwise 

 

+ 
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3.3 Estimation Strategy 

Before estimating the effect of sludge manure on farm production, we need to be thoughtful 

about the potential problems that can affect our results. Our study uses data collected from 

adopters of sludge manure for which the choice to adopt is not exogenous. The adoption of 

sludge manure can be influenced by a number of factors, e.g., access to information about the 

manure, the cost of collecting the manure from the LSTP to the farm, and farm size. By 

implication, the choice to adopt sludge manure is nonrandom and thus causes a threat of 

endogeneity arising from selection bias. 

 

To address this threat, we use the propensity score matching (PSM) method to generate 

counterfactual estimates. This method has been used in a number of studies to control for 

endogeneity even when only one data wave is available (see Ntakyo & van den Berg, 2019; 

Melesse & Bulte, 2015; Melesse et al., 2018). Ravallion (2007) emphasized that propensity 

score matching does not necessitate a parametric model relating the result to the treatment and 

enables the calculation of mean impacts without making arbitrary assumptions about functional 

forms and error distribution. This increases the precision of causal estimations (DiPrete & 

Gang, 2004). 

 

The propensity score (p) is the conditional probability (p(X)) of households adopting sludge 

manure given observable characteristics (X), and the propensity of observations is assigned to 

the treated group using a logit model. In the model, only variables that simultaneously influence 

adoption and outcomes are included (Heckman et al., 1997). Therefore, in the logit estimation, 

we include a dummy variable (𝐷𝑖)  that takes the value of 1 if a household adopted sludge 

manure and 0 otherwise, as well as a vector of controls defined from the socio demographics 

of the respondents and geographical characteristics. 

 

 Suppose that the impact of sludge manure on farm production is given by 𝑌𝑖(𝐷𝑖) for farm 

household 𝑖, where 𝑖 = 1, 2….. N6; then, we estimate the average treatment effect on the treated 

as: 

 

𝐴𝑇𝑇 = 𝐸(𝐴𝑇𝑇|𝐷 = 1) = 𝐸[(𝑌(1)|𝐷 = 1)] − [𝐸(𝑌(0)|𝐷 = 1)]                                             (1) 

 

where 𝐴𝑇𝑇 is the average treatment effect on the treated, 𝐸[(𝑌(1)|𝐷 = 1)] is the expected 

level of farm production for sludge manure adopters, and 𝐸[(𝑌(0)|𝐷 = 1)] is the expected 

level of farm production if sludge manure had not been adopted. Since 𝐸[(𝑌(0)|𝐷 = 1)] is not 

observed, PSM uses data from nonadopters with similar characteristics to estimate the 

counterfactuals. Matching helps in the construction of the counterfactual group from 

nonadopters while controlling for selection bias caused by observable covariates (Heckman et 

al., 1997). The comparison group needs to be statistically equal to the treated group, and all 

observable factors must be matched. 

 

Using PSM involves the imposition of two critical identifying assumptions (Heckman et al., 

1997)7 The first is the conditional independence assumption (CIA), which asserts that treatment 

selection should be based entirely on a set of observable characteristics that determine both the 

chance of adoption and the outcome of interest. Rosenbaum and Rubin (1983) propose 

matching on the propensity score, p(X), which is the chance of receiving treatment conditional 

on all relevant factors, X, to avoid dimensionality issues. The second condition is the common 

                                                             
6 N is the total number of farm households. 
7 Also see Caliendo and Kopeinig, 2008; Melesse & Bulte, 2015. 
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support condition, which ensures that households with identical observable characteristics have 

a good chance of being in both the treatment and comparison groups. If the CIA and common 

support assumptions are met, the PSM estimator for the ATT follows: 

 

𝐴𝑇𝑇 = 𝐸(𝑝(𝑋)|𝐷 = 1)〈𝐸[(𝑌(1)|𝐷 = 1), 𝑝(𝑋)] − [𝐸(𝑌(0)|𝐷 = 0), 𝑝(𝑋)]〉                         (2) 

 

To estimate 𝐴𝑇𝑇 with PSM, many matching techniques have been developed. Nearest-

neighbor matching and kernel-based matching are the most widely used algorithms. Using the 

nearest-neighbor matching method, each adopter is paired with a nonadopter who has the 

attributes closest to those of the adopters. It can be used in control units with or without 

replacement. In the kernel-based method, a weighted average of all nonadopters is matched 

with each adopter. In this paper, we report the results from the nearest neighbor estimation and 

the results from the kernel matching algorithm as a robustness check8. 

 

The selection of covariates was based on the literature on agricultural technology adoption and 

crop yield (Kassie et al., 2015; Kassie et al., 2020; Manda et al., 2019). The covariates include 

age of the household head, education level attained by the household head, household size, and 

social networks via membership in farmers’ groups, access to credit, wealth indicators (such 

as land size) and production input costs (e.g., manure and fertilizers, labour, irrigation, and 

hybrid seeds) to control for the observed heterogeneity between adopters and nonadopters. We 

hypothesize that household characteristics and input costs affect farmers’ crop production 

levels. 

                                                             
8 Also results from radius calliper matching algorithms are presented in appendices 1, 1.2 and 1.3 
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4.0 Results and discussion 

4.1 Propensity Score Matching Results 

Table 4: Adoption selection model (logit) for specific crops 

Variables odds ratios Summary of findings 

 Bananas 

(bunches) 

Maize 

(sacks) 

Beans 

(sacks) 

Swt potato 

(sacks) 

Coffee 

(kgs) 

Cassava 

(sacks) 

Positive, Significant Negative, 

Significant 

Age_household head 0.006 

(0.009) 

-0.004 

(0.009) 

0.023** 

(0.008) 

0.026** 

(0.009) 

0.039*** 

(0.009) 

0.017* 

(0.009) 

Beans, Swt potatoes, 

coffee, cassava 

N/A 

household_size 0.104** 

(0.039) 

0.017 

(0.038) 

-0.013 

(0.033) 

0.078* 

(0.035) 

0.094** 

(0.036) 

0.088* 

(0.034) 

Bananas, Swt potatoes, 

coffee,  cassava 

N/A 

Distance market -0.036* 

(0.016) 

-0.050** 

(0.018) 

0.036* 

(0.017) 

0.084*** 

(0.021) 

-0.019 

(0.015) 

0.006 

(0.016) 

Beans, Swt potatoes Bananas, 

maize 

Income_household -0.000* 

(0.000) 

-0.000 

(0.000) 

-0.000** 

(0.000) 

-0.00*** 

(0,000) 

-0.000 

(0.000) 

-0.000 

(0.000) 

N/A Bananas, 

beans, Swt 

potatoes 

Landsize 0.198*** 

(0.039) 

0.079* 

(0.032) 

0.009 

(0.016) 

0.006 

(0.017) 

0.0381 

(0.024) 

0.017 

(0.016) 

Bananas, maize N/A 

Hired_labor -0.132 

(0.224) 

-0.239 

(0.234) 

0.022 

(0.202) 

-0.001 

(0.218) 

-0.174 

(0.209) 

-0.245 

(0.215) 

N/A N/A 

Synthetic_fertilizer -0.094 

(0.223) 

0.421* 

(0.235) 

0.462* 

(0.202) 

0.328 

(0.217) 

1.04*** 

(0.210) 

0.154 

(0.213) 

Maize, beans, coffee N/A 

Compost_manure 0.783** 

(0.275) 

0.287 

(0.277) 

0.608** 

(0.228) 

0.586* 

(0.240) 

0.385 

(0.236) 

1.08*** 

(0.231) 

Bananas, beans, Swt 

potatoes, cassava 

N/A 

Hybrid_seeds 0.222 

(0.227) 

1.83*** 

(0.248) 

0.69*** 

(0.209) 

0.560* 

(0.227) 

-0.255 

(0.214) 

0.483* 

(0.222) 

Maize, beans, Swt 

potatoes, cassava 

N/A 

Government_support 0.522 

(0.360) 

0.396 

(0.371) 

0.126 

(0.297) 

0.071 

(0.315) 

0.301 

(0.313) 

0.250 

(0.305) 

N/A N/A 

Credit_access 0.345 

(0.229) 

0.258 

(0.238) 

0.531* 

(0.208) 

0.670** 

(0.229) 

0.734*** 

(0.214) 

0.635** 

(0.221) 

Beans Swt potatoes, coffee, 

cassava 

N/A 

Education_household 

head 

-0.333 

(0.384) 

-0.633 

(0.403) 

0.271 

(0.340) 

0.311 

(0.372) 

0.450 

(0.346) 

0.212 

(0.366) 

N/A N/A 

        N/A 
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Leadership -0.151 

(0.281) 

0.045 

(0.293) 

-0.044 

(0.255) 

0.048 

(0.273) 

0.264 

(0.258) 

-0.166 

(0.267) 

N/A 

Group member -0.622* 

(0.294) 

-0.581* 

(0.312) 

-0.206 

(0.265) 

-0.693* 

(0.296) 

0.108 

(0.270) 

-0.541* 

(0.287) 

N/A Bananas, 

maize, Swt 

potatoes, 

cassava 

Irrigation -0.711* 

(0.281) 

-1.09*** 

(0.283) 

-0.88*** 

(0.274) 

-0.080 

(0.281) 

0.031 

(0.267) 

-0.247 

(0.276) 

N/A Bananas, 

maize, beans 

Constant -0.278 

(0.623) 

0.739 

(0.637) 

-2.202 

(0.580) 

-3.345 

(0.655) 

-3.60 

(0.617) 

-2.988 

(0.625) 

N/A N/A 

Pseudo-R2 0.1507 0.1853 0.1162 0.1492 0.1626 0.1165 N/A N/A 

Prob>chi2 0.000 0.000 0.000 0.000 0.000 0.000 N/A N/A 

Obs 522 522 522 522 522 522 N/A N/A 

Notes: Values in parentheses are standard errors. *Significant at 10%; ** significant at 5%; *** significant at 1%. 
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The conditional probability of any intervention (in our case, sludge manure adoption) can be 

estimated using a standard logit model to predict the propensity score of adopters and 

nonadopters in the sample (Awotide et al., 2016; Danso-Abbeam &Baiyegunhi, 2019; Diiro et 

al., 2015; Melesse, 2015). From Table 4, several key conclusions can be drawn. First, the 

likelihood of adopting sludge manure by households that grow sweet potatoes, beans, coffee 

and cassava increases with the age of the household head. Second, as the number of people 

living in a particular household increases, the likelihood of adopting sludge manure to grow 

bananas, maize and cassava also increases. This is attributed to a household having more labor 

force to help in the distribution of manure. This result is supported by Ajewole, (2010); Ayenew 

et al., (2020), Endale, (2011) and Mebrate et al. (2022) which demonstrate a positive 

association between family size and fertilizer adoption.  

 

Turning to land size, the logistic regression results indicate a high likelihood of adopting sludge 

manure when a household uses a large piece of land for growing bananas, maize and cassava. 

Bananas and cassava varieties are key staple foods in central Uganda. By implication, the result 

of a positive association between land size and bananas and cassava growing is not surprising. 

Pan et al. (2021) finds land to be a key constraint for the adoption of sustainable manure 

management technologies by large-scale farmers, which was also supported by Djibo and 

Maman., (2019). 

 

Additionally, farmers who use composite manure have a greater likelihood of adopting sludge 

manure for growing bananas, maize and cassava. This can be attributed to farmers’ past 

experience with the use of organic manure. Experience in the use of specific manure matters 

greatly for farm production. Hou et al. (2018) finds farmers with experience in the separating 

manure to easily make decisions or even assist in making decisions for technological adoption. 

Nevertheless, the results reveal a lower likelihood of adopting sludge manure when the distance 

to the market is long. However, farmers who live closer to the market are more likely to have 

access to agricultural information via various channels that aid adoption of modern 

technologies. This is more likely for growers of beans and sweet potatoes. This finding supports 

Iresso and Abebe, (2024) which finds adopters of inorganic manure to be closer to the market.  

However, the results also suggest a less likelihood of adopting sludge manure by banana 

growers.  

 

Furthermore, households that irrigate maize and bananas have a lower likelihood of adopting 

sludge manure. The possible explanation for this result, is that our study focused on rural based 

farmers who are characterised by low incomes to finance adoption of multiple technologies. 

However, our results contradict the findings of Datar and Del Carpio (2009), which suggests 

that the use of irrigation practices is an important breakthrough in the adoption of manure and 

production of high-yielding and profitable crops. 

 

Furthermore, bananas, beans and sweet potatoes growers are less likely to adopt sludge manure 

when they have a higher household monthly income. These results are in line with Saliem et 

al. (2020), which reports that higher household income may decrease farmers’ dependence on 

agriculture. However, these results contradict Langyintuo and Mungoma, (2008) which finds 

household income to have a negative correlation with adoption. Langyintuo and Mungoma 

attribute that result to households spending on other inputs which constrains their ability to 

deploy manure. 

 

Finally, if a household head is a member of at least a farmers’ group, there is a lower chance 

of adopting sludge manure. This result supports Mwaura (2014), which demonstrates that being 
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a member of a farmer’s group has a negative relationship with inorganic fertilizer adoption in 

Uganda.  

 

4.1.1 Effect of Sludge Manure Adoption on Crop Yields 

Table 5: Average Treatment Effect using the Nearest Neighbor Algorithm9 

Matched Crops Adopters 

 

Nonadopters 

 

ATT 

Banana (bunches) 154.372 35.038 119.334 

(14.492)*** 

Maize (sacks) 16.978 8.741 8.236 

(4.018)*** 

Beans/soya (sacks) 2.113 1.678 0.435 

(1.153) 

Swtpotato (sacks) 2.560 1.968 0.592 

(1.210) 

Coffee (kgs) 513.281 152.572 360.708 

(151.418)*** 

Cassava (sacks) 2.875 1.115 1.76 

(0.547)*** 

Source: Author’s computation using survey data 

 

The estimates of the impact of sludge manure adoption on farm yields are shown in Table 5. 

First, compared to nonadopters, bananas growers harvest 119 more bunches. This difference is 

statistically significant at the 1% level. Furthermore, comparing nonadopters and adopters, 

growers of coffee and cassava also significantly harvested more output when they used sludge 

manure. Specifically, coffee and cassava growers harvested an extra 361 kg and 1.76 sacks, 

respectively, when they used sludge manure compared to nonadopters. Additionally, the results 

in Table 5 reveal 8.2 sacks in the form of an extra harvest for maize. This result is in line with 

those of Andersson (2011) and Guzha (2005), who reported a positive effect on maize 

production after using faecal sludge in Zimbabwe and South Africa, respectively. However, as 

reported by Andersson (2015), maize yields increased by up to 120% among smallholder 

farmers in the Tororo district in eastern Uganda after the application of urine collected from 

their households. 

 

For beans, the adopters harvested an extra 0.435 sacks, and this finding is in line with (Moya 

Diaz-Aguado et al., 2017), who reported an increase in farm yields after farmers adopted 

sewage sludge, while Yanggen et al. (1998) documented an average increase in cereal 

production as a result of using human excreta. However, an extra 0.592 sacks for sweet potatoes 

were produced by adopters compared to nonadopters, but this difference is statistically equal 

to zero. Therefore, the key finding of this study is the contribution of sludge manure to the 

yield of banana, cassava and coffee crops. These crops have not been studied before in relation 

to sludge manure. A crucial diagnostic marker of the effectiveness of matching power is the 

number of adopters used in estimating the ATT after matching, which is 185 (out of 199 

adopters). Since only 14 adopters have left the support region, the information loss is rather 

small. Although the estimated results support the notion that the adoption or application of 

sludge manure to various crops affects yields for adopting households, our results reveal that 

the effect is not always significant across crops. 

                                                             
9 Results from radius calliper Algorithms are presented in appendix 2. 
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Generally, the influence of the adoption to sludge manure on farm production can be explained 

by a number of factors, including enhancing farm yields, environmental protection and 

mitigation of health hazards. In the previous discussions, we demonstrated how sludge manure 

positively impacts the yields of banana, maize, coffee and cassava. In regard to environmental 

protection, Burducea et al., (2022); Li et al. (2017) and Khalid et al. (2017) confirm that organic 

manure revitalizes the health of the soil and improves its physical properties. According to 

Agbede et al., (2019) and Sarka & Siegh, (2003) organic manure increases soil bulk density, 

organic matter, and critical soil elements such as nitrogen and phosphorus. In contrast, the use 

of inorganic manure is associated with environmental destruction (Carvalho, 2006; Rahman & 

Zhang, 2018; Walsh et al., 2012) and contamination of water sources (Deknock et al., 2019). 

Furthermore, various researchers have proven that the excessive use of chemical fertilizers 

causes various diseases in farming systems (Boone, et al. 2019; Jayakumar, et al., 2023). 

Comparing synthetic fertilizers and organic manure, the concentrations of dangerous or 

contaminating compounds such as heavy metals and pesticide residues are often lower in 

organic manure (Jönsson, et al., 2004).  

 

In regard to health, because humans are greatly dependent on soil and water for survival, they 

are exposed to health risks if synthetic fertilizers are applied on crop. This mostly occurs 

through the food chain. Consuming contaminated groundwater can result into human health 

issues, including hormone disruption, reproductive abnormalities, and cancer (Hossain et al., 

2022). However, application of treated manure can lessen threats to human health via the food 

chain and drinking water (Goss et al., 2013). In conclusion, in this study, we examined the 

effect of well-treated sludge manure on crop yields, and the results reveal a positive effect on 

the production of bananas, maize, coffee, and cassava. This finding, implies that sludge manure 

has provide an excellent potential to reduce the overdependence on inorganic fertilizers, which 

are environmentally unfavourable and hazardous to humans.  

 

4.2 Assessing Matching Quality 

4.2.1 Conditional Independence Assumption 

To validate the efficacy of PSM in terms of removing discrepancies in observables between 

adopters and nonadopters, the matching quality needs to be assessed. PSM credibility is 

founded on two distinguishing assumptions: the conditional independence assumption (CIA) 

and the common support condition. We explore whether the propensity score appropriately 

balances the distribution of key variables in the matched adopter and nonadopter groups for 

CIA. We use a two-sample t test to compare the means of adopters and nonadopters on each 

observable before and after matching, and a chi-square test is used to compare the joint 

significance of all variables in the logit model before and after the match. Tables 5 and 6 contain 

the outcomes of the tests. According to Rosenbaum and Robin (1983), a balancing test should 

involve balancing across the inferior bounds and running mean equality tests across the 

covariates. The results of the balancing tests of mean equality across covariates are presented 

in Table 6. The results reveal that the number of farm households adopting sludge manure and 

the corresponding nonadopting farm households are equivalent since there is no significant 

difference in their mean variables after matching. With the exception of hybrid seed usage, the 

two groups are identical across all other variables. 
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Table 6: T tests for the equality of means for each variable before and after the match 

Variable Sample Mean 

(Adoption) 

Mean 

(Nonadoption) 

%reduction 

|bias| 

T test 

p>|t| 

Age_household head U 44.412 46.861   

 M 44.946 44.824 95.0 0.917 

household_size U 6.432 6.210   

 M 6.367 6.784 -88.3 0.184 

Distance market U 3.378 4.031   

 M 3.477 4.286 -24.0 0.290 

Income _household U 3.2e+05 4.1e+05   

 M 3.3e+05 3.3e+05 96.6 0.939 

Hired_labor U 0.623 0.412   

 M 0.594 0.599 98.0 0.933 

Synthetic_fertilizer U 0.100 0.613   

 M 0.108 0.121 97.5 0.696 

Compost_manure U 0.155 0.359   

 M 0.167 0.155 94.2 0.757 

Hybrid_seeds U 0.492 0.613   

 M 0.502 0.635 -10.3 0.010 

Government_support U 0.155 0.148   

 M 0.140 0.149 -20.6 0.814 

Credit_access U 0.402 0.498   

 M 0.416 0.352 33.9 0.208 

Education_household head U 0.889 0.916   

 M 0.891 0.869 15.8 0.502 

leadership U 0.201 0.269   

 M 0.210 0.215 93.7 0.919 

Grp_member U 0.201 0.247   

 M 0.2 0.145 -15.8 0.170 

irrigation U 0.125 0.247   

 M 0.135 0.138 97.3 0.928 

landsize U 5.015 4.381   

 M 5.054 4.440 3.1 0.416 

Source: Author’s computation using survey data (U= unmatched M= matched) 

 

Key results from table 6 are summarised in table 7 below. 

Table 7: Chi-square test for joint significance of all variables before and after the match 

Sample Pseudo R2 p> chi2 

Unmatched 0.322 0.000 

Matched 0.029 0.452 

 

The results are presented in Table 7 show that the chi-square test of all the variables in the logit 

model are not jointly significant after matching (prob > ᵪ2 = 0.452). In contrast, the same test 

is rejected before the match (prob > ᵪ2 = 0.000). This is supported by the pseudo R2 values of 

the model before and after matching. There were no systematic differences in the distribution 

of covariates between adopters and nonadopters after matching. Second, the pseudo R2 is fairly 

low compared to its value before matching which satisfies the post estimation requirement. 
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4.2.2 Common Support Assumption 

Table 8: Number of Farmed Hospitals with Nearest Neighbor Matching in Terms of 

Common Support 

 On Support Off Support Total 

Sludge manure nonadopters 323 0 323 

Sludge manure adopters 185 14 199 

Total 508 14 522 

 

The matching quality tests in Table 8 show that sludge manure adopters and nonadopters are 

equivalent. The matching process produced samples of nonadopters that are sufficiently similar 

to adopters, which allows for the building of counterfactuals for the ATT estimates. 

Furthermore, Figure 2 depicts the density distribution of the propensity score for adopters and 

nonadopters, demonstrating that there is significant overlap in the distribution for both users 

and nonusers of sludge manure. By implication, this indicates that the common support 

requirement has been met. The upper and lower sections of the histogram represent the 

adopters' and nonadopters' propensity score distributions, respectively. 

 

Figure 1: Histogram distribution of propensity score distributions and common support 

for adopters and nonadopters using nearest neighbouring matching 

 
Notes: “Treated: on support” indicates that sludge manure adopters constitute a suitable 

comparison group to nonadopters. “Treated: off support” represents the sludge manure 

adopters that did not have a suitable comparison group (nonadopters) 

 

4.3 Sensitivity of ATT estimates to alternative algorithms 

4.3.1 Estimates from the Kernel Algorithm 

One of the significant shortfalls in PSM methodology is that selection into treatment is based 

on observed variables. Caliendo and Kopeinig (2008) noted that matching estimators are not 

robust to hidden bias due to unobserved variables. This study, therefore, checks the robustness 

of the estimates obtained from the nearest neighbor algorithm. First, the kernel algorithm 

results are used, and second, the Rosenbaum bounds sensitivity test is used. In the kernel 

algorithms, every treated subject is matched with the weighted average of the control subjects. 

The weights are inversely proportional to the distance between the propensity scores of the 

treated and control groups. 

0 .2 .4 .6 .8 1
Propensity Score

Untreated Treated: On support

Treated: Off support
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Table 9: Average Treatment Effects using Kernel Algorithms10 

Matched Crops Adopters 

 

Nonadopters 

 

ATT 

Banana (bunches) 153.909 32.807 121.101 

(14.908)*** 

Maize (sacks) 17.479 9.710 7.769 

(3.355)*** 

Beans (sacks) 2.113 1.584 0.529 

(0.913) 

Swtpotato (sacks) 2.560 2.030 0.529 

(2.212) 

Coffee (kgs) 508.093 187.635 320.458 

(145.752)*** 

Cassava (sacks) 2.762 0.900 1.861 

(0.594)*** 

Notes: Values in parentheses are standard errors. ** Significant at 5%; *** significant at 1%. 

 

The results in Table 9 estimated using kernel algorithms remain robustly similar to those 

estimated using the nearest neighbor algorithm estimates in Table 5. For example, the results 

show that adopters experience an increase in bananas harvested by 121 bunches compared with 

nonadopters, 7.76 sacks of maize, 320 kgs of coffee and approximately 1.86 sacks of cassava. 

The robust resemblances of the kernel estimates to the nearest neighbor estimates also remain 

consistent with the kernel weight matching on common support and the score distributions and 

common support for adopters and nonadopters (see Table 10 and Figure 3). 

 

Table 10: Farm Households with Kernel (Biweight) Matching on Common Support 

 On Support Off Support Total 

Faecal sludge nonadopters 323 0 323 

Faecal sludge adopters 198 1 199 

Total 521 1 522 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             
10 The results from adoption selection model for all crops remain robustly similar to those of Nearest Neighbor 

algorithms. 
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Figure 2: Histogram distribution of propensity score distributions and common support 

for adopters and nonadopters (kernel matching) 

 
 

4.3.2 Sensitivity Analysis Using Rosenbaum Bounds 

From the analysis, the rbounds “r” are greater than 3 (gamma > 3), which implies that the 

results are insensitive to hidden bias that would double (gamma = 2) ̶ the odds of participation 

(self-selection) in the adoption of sludge manure but sensitive to bias that would triple the odds 

(gamma = 3). This is the magnitude of hidden bias that would make our findings of positive 

and significant effects of sludge manure adoption on farm production of the studied crops 

questionable. Hence, we conclude that the strength of the hidden bias should be sufficiently 

high to undermine our conclusion based on both nearest neighbor and kernel matching analysis. 

 

5. Conclusion and recommendations 

With increased soil salinity and reduced soil fertility in many agro-based countries, enhancing 

farm production requires the application of agricultural supplements. Both organic and 

inorganic supplements have been used by farmers over time, but some evidence related to the 

use of inorganic supplements has pointed to detrimental effects on the environment (Rahman 

& Zhang, 2018; Walsh et al., 2012), which puts organic supplements such as sludge manure at 

limelight. However, promoting the use of organic supplements requires a deeper understanding 

of their potential impacts on farm production. 

 

In this paper, we examine the impact of sludge manure adoption on farm production, focusing 

on bananas, maize, beans, sweet potatoes, coffee and cassava. We studied sludge manure in 

the context of a formal arrangement under which the Lubigi Sewerage Treatment Plant (a 

government-managed facility affiliated with the National Water and Sewerage Corporation 

(NWSC)) collects faecal sludge (human waste) and processes it to sludge manure that it 

supplies to interested farmers. 

 

Our main results indicated a positive and significant impact of sludge manure on bananas, 

maize, coffee and cassava. These results remain robustly similar when subjected to different 

estimation algorithms of propensity score matching. From a policy perspective, our results 

0 .2 .4 .6 .8 1
Propensity Score

Untreated Treated: On support

Treated: Off support
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suggest that the design of agricultural productivity enhancing programmes, especially for farm 

households, requires leveraging organic technologies to promote agricultural production. 

 

6. Limitations of the study and areas for future research 

For logistical reasons, this study excluded urban farmers, yet information obtained from the 

LSTP indicates that sludge manure is also used by urban farmers to support urban farming, 

which is more intensive. Moreover, the study does not disaggregate the impact of sludge 

manure on farm production along the various dimensions of gender, e.g., education, marital 

status, etc. We only considered one gender dimension of whether the household head is male 

or female. 

  

Furthermore, this study focused on the central region (Lake Victoria Crescent agro-ecological 

zone), but Uganda is characterized by seven agro-ecological zones, i.e., South-Western Grass 

Farmlands (SWGF), Western Medium-High Farmlands (WMHF), Western Mid-Altitude 

Farmlands and the Kyoga Flats (WMFKF), Lake Victoria Crescent and Mbale Farmlands 

(LVCMF), and North-Western Farmland Wooded Savannah (NWFWS). Therefore, our results 

may not be generalizable across all the agro-ecological zones of Uganda. As such, further 

studies that are inclusive of all agro-ecological zones are needed. Still, a gender-based study is 

important for providing more evidence on how sludge manure impacts farm production along 

various gender dimensions. This is important for enhancing women’s empowerment. 

 

Acknowledgements: The authors acknowledge the support provided by the management of 
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Appendices: 

Appendix 1: Average Treatment Effects of Radius Callipers (0.1)11 

Matched Crops Adopters 

(treated) 

Nonadopters 

(control) 

MDE 

Banana_bunches 153.909 38.392 115.517 

(14.016)*** 

Maize_sacks 17.479 9.618 7.861 

(3.012)*** 

Beans_sacks 2.113 1.670 0.443 

(0.811) 

Swtpotato_sacks 2.560 1.985 0.574 

(1.950) 

Coffee_kgs 508.093 179.185 328.908 

(133.085)*** 

Cassava_sacks 2.762 0.960 1.802 

(0.563)*** 

 

Appendix 1.2: Matching of Farm Households with Radius Callipers (0.1) for Common 

Support 

 On Support Off Support Total 

Faecal sludge nonadopters 323 0 323 

Faecal sludge adopters 198 1 199 

Total 521 1 522 

 

Appendix 1.3: Histogram distribution of propensity score distributions and common 

support for adopters and nonadopters (radius calliper matching) 

 
 

 

 

 

 

 

 

 

 

 

 

                                                             
11 Estimating the adoption selection model for ATT using Radius Calliper gives robustly similar results like the 

Nearest Neighbour and Kernel algorithms. 
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Appendix 2: T test for adopters and nonadopters of sludge manure (N=399) 

 

 

 

Appendix 3: Processing of sludge manure at LSTP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                             Faecal sludge                                                       Sludge manure 

 

 

 

Variables Adopters 

(N=199) 

Nonadopters 

(N=200) 

Mean 

Difference 

P Value 

Age_household head 44.261 47.06 2.798 0.011 

household_size 6.432 6.265 -0.167 0.712 

Distance market 3.440 3.502 0.124 0.406 

Income_household 319598 393675 74077 0.061 

Hired_labor 0.623 0.42 -0.203 1.000 

Synthetic_fertilizer 0.155 0.36 0.204 0.000 

Compost manure 0.100 0.585 0.484 0.000 

Hybrid_seeds 0.492 0.57 0.077 0.060 

Government_support 0.155 0.155 -0.000 0.508 

Credit_access 0.402 0.555 0.152 0.001 

Education_household head 0.889 0.935 0.045 0.054 

Leadership 0.201 0.245 0.043 0.146 

Group member 0.201 0.25 0.048 0.121 

Irrigation 0.125 0.265 0.139 0.000 

Landsize 5.270 3.780 -1.489 0.999 
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