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Abstract

Whenever the state of a system must be estimated from noisy information, a state estimator is
employed to fuse the data with the model to produce an accurate estimate of the state. When
the system dynamics and observation models are linear, the Kalman Filter which is optimal, is used.
However, in most applications of interest the system dynamics and observations equations are not-
linear and suitable extensions of the Kalman Filter have been developed; for example, the Extended
Kalman Filter(EKF). The Extended Kalman Filter is based on linearization by the Taylor series
expansion about the mean of the state. This filtering process is however computationally expensive
especially in high dimensional data. The cause for this is the high cost of integrating the equation of
evolution of covariances. Due to this complexity in integration, new methods were sought known as
the particle filters. It replaces linearization of non-linearities with Monte Carlo methods. The particle
filter formed a basis for Ensemble Kalman Filter (EnKF) an extension of Kalman filter to non-linear
filtering. The EnKF reduced the computational cost but its innovation process does not capture
information sufficiently hence there is need to improve its performance. This study has developed
a new filter, Second order Extended Ensemble Filter (SoEEF).We derived it from stochastic state
models by expansion of expected values to the second order by use of Taylor series together with
Monte Carlo method and Matlab. We used Lorenz 63 system of ordinary equations and differential
Matlab to test the performance of the new filter. Then we compared its performance with four other
filters like Bootstrap Particle Filter (BPF),First order Kalman Bucy Filter (FoEKBF),Second order
Kalman Bucy Filter (SoKBF) and First order Extended Ensemble Filter (FoEEF). SoEEKF performs
much better than the other four filters.
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1 Introduction

1.1 Non-linear filtering

The goal of non-linear filtering is to find an estimate of the current state of a given system characterised by stochastic

process X. This process is called the signal process [6] [2] [11]. The signal process is measured via a process Y called
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Measurement process. These processes can be represented by stochastic differential equations [9]. Non-linear filtering

has made extensive use of stochastic calculus, hence we shall start off by reviewing stochastic calculus in time continuous.

Consider stochatic differential equation of the form

dxt = f(xt, t)dt+ g(xt, t)βt; t0 ≤ t (1)

where xt is n × 1 state vector at time t, f(x, t) is the drift function of dimension n × 1, the uncertainties are captured

by g(xt, t) called diffusion function of dimension n×m then βt, t ≤ t0 is the Brownian motion process [1]. The solution

of (1) can be obtained by integrating both sides as follows;

xt = xt0 +

∫ t

t0

f(xt, τ)dτ +

∫ t

t0

g(xτ , τ)dβτ (2)

where
∫ t

t0
f(xt, τ)dτ is the Riemann integral. Now the second integral

I(t) =

∫ t

t0

g(xτ , τ)dβτ (3)

is riddled with technicalities which arise from the fact that Brownian motion process is nowhere differentiable. Such

integral needs special treatment, due to stochasticity, which is why they are known as stochastic integrals. This stochastic

integral can be defined as L2 -limit of Riemann sum approximation. We set

wk = (1− λ)tk + λtk+1. (4)

We have two choices where λ = 0 we obtain the Itô stochastic integral∫ b

a

g(xτ , τ)dβτ = lim
δt→0

n∑
k=1

g(xtk , tk)(βxk+1 − βtk ). (5)

Where δt = tk+1 − tk and the terms to be summed are evaluated at discretised times a = t0 < t1 < ... < tk < tk+1 <

... < tn = b, l.i.m is limit in the mean convergence. The second choice is λ = 1
2
that leads us to Stratonovich stochastic

integral ∫ b

a

g(xτ , τ)dβτ = lim

n∑
k=1

g{
xtk + xtk+1

2
, tk}(βtk+1 − βtk ). (6)

When the Itô integral is independent of λ then the Itô and Stratonovich integrals coincide [12] , that is∫ b

a

g(xt, t)
′dβτ =

∫ b

a

g(xt, t)dβτ +
1

2

∫ b

a

∂x[g(xτ , τ)]dτ. (7)

1.2 Filtering Problem

The filtering problem is to find the best estimate of the state X given the measurement Y . To best solve this problem,

the conditional density πt(x|y) of x is considered [2] [11] given the measurement y. The continuous time solution to

this problem in special case is given by Fokker-Planck equation while in general case is given by Kushner-Stratonovich

equation. We consider the Fokker-Planck equation . Given the density function

πt(x) = π(x, t|Y, τ) (8)

and its probability distribution function, πt|τ (x|y) the Fokker Plank equation is therefore,

∂πt|τ (x|y)
∂t

= −
∂(πt|τ (x|y))f(x, t)

∂x
+

1

2

∂2(πt|τ )(x|z)g2(x, t)
∂x2

. (9)

This equation describes the evolution of the density function πx.
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1.2.1 Kushner-Stratonovich eqaution

The solution to the problem of non-linear filtering in continuous time is given by the Kushner-Stratonovich equation

[20]. The equation estimates x̂t at time t by combining noisy dynamics with noisy measurement and is given as follows.

πt(x/zt) = πt0(x) +

∫ t

t0

ℓ(πt(x/zt))dη +

∫ t

t0

πη(x/zτ )(h− ĥτ )
TR−1(η)(dzη − ĥηdη). (10)

In differential form we have

dπt(x/zt) = ℓ(πt(x/zt))dη + πη(x/zη)(h− ĥη)
TR−1(η)(dzη − ĥηdη) (11)

where

ℓ = f ∂
∂x

+ 1
2
g2 ∂2

∂x2

and

ĥt =
∫
h(x, t)πt(x/zt)dx .

The weak form of Kushner-Stratanovich equation is

dπt[ϕ] = πt[ℓϕ]dt+ (πt[ϕ(x)h]−mϕ̂ĥt)
TR−1(t)(dzt − ĥtdt)]. (12)

We now consider the equation of evolution of the mean and covariance. For a function of x given ϕ(x) and conditional

density πt(x/zt) the mean is

πt[ϕ(x)] =

∫
ϕ(x)πt(x/zt)dx (13)

using the weak form of Kushner-Stratonovich equation(1.12) and taking πt[ϕ(x)] = ϕ̂t(x) we get

dϕ̂t(x) = πt[f
δϕ

δx
]dt+

1

2
πt[g

2 δ
2x

δx2
]dt+ (πt[ϕh]− ϕ̂tĥt)(R)−1(t)(dzt − ĥtdt). (14)

When we substitute ϕ(x) with x, our equation becomes

dx̂t = f̂tdt+ (πt[xh]− x̂x̂t)R
−1(t)(dzt − ĥtdt). (15)

This is the equation for evolution of the mean.

The conditional variance is derived from

pt = E[(x− x̂t)]
2|zt

= πt[x
2]− x̂2

t

hence

dpt = dπ[x2]− dx̂t. (16)

It is now appropriate that we compute an expression dπt[x
2] and dx̂2

t .

Substituting ϕ(x) for x2 in the weak Kushner-Stratonovich equation, we get

dπt[x
2] = 2πt[xf ]dt+ πt[g

2]dt+ (πt[x
2h]− πt[x

2]ĥt)R
−1(t)(dzt − ĥtdt). (17)

Applying Itô formula of measurements
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dh = δt[h]dt+∇[h]T dxt +
1
2
tr[g(xt, t)g

T (xt, t)]∇[h]dt

the equation becomes

dx̂2
t = 2x̂tdx̂t + (π[xh]− x̂tĥt)

2R−1(t)dt. (18)

Substituting from (16), we get

dx̂2
t = 2x̂t + (2x̂tπt[xh]− 2x̂2ĥt)R

−1(t)(dyt − ĥtdt) + (πt[xh]− x̂tĥt)
2R−1(t)dt. (19)

The evolution of covariance is developed from(7), substituting(17) and (19) in equation 16 we have

dpt = (2πt[xf ]− 2x̂tf̂t)dt+ πt(g
2dt− (πt[xh]− x̂tĥt))

2R−1(t)dt

+(πt[x
2h]− 2x̂t[xh]− πt[x

2]ĥt + 2x̂2
t ĥt)R

−1(t)(dyt − ĥtdt).
(20)

2 Existing filters

We shall look at continuous time filters where there is no predictor- corrector formulation [15]. We begin by looking at

evolution of the mean and covariance in linear case then proceed to non-linear filters. Consider the linear model equation

:

Signal : dxt = F (t)xtdt+G(t)dβt; xt0 , t0 ≤ t (21)

Measurement : dyt = H(t)xtdt+R
1
2 (t)dηt, t0 ≤ t (22)

where F (t)xt is a n × n continuous time matrix and G(t) is an n × m continuous time matrix ,βt, t0 ≤ t is an m

Brownian motion. H(t)xt is r × n continuous time matrix,R(t) is an r × r matrix ,ηt, to ≤ t is r dimensional Brownian

motion vector. The Kushner-Stratonovich equation (11) can be used to derive the Kalman Bucy filter. Multipying

equation(11) by x with and integrating over it we obtain x̂

dx̂ = F (t)x̂tdt+ PtH
T (t)(dyt −H(t)x̂tdt). (23)

In the same manner the covariance equation is as follows.

dPt = F (t)Ptdt+ PtF
T (t)dt+G(t)GT (t)dt− PtH

T (t)R−1(t)H(t)Ptdt. (24)

Equation (3) and (4) are the continuous time linear filtering equations known as Kalman Bucy Filter (KBF)[14]. It gives

an optimal estimate of (x) given Y . The Prediction step is given by: The mean estimate dx̂t = F (t)x̂tdt

and Covariance estimator, dPt = F (t)Ptdt+ PtF
T (t)dt+G(t)GT (t)dt.

The Additive term Summarises the new measurement in the predicted estimate.

PtH
T (t)(dyt −H(t)x̂tdt the analysis step is made up of the Kalman gain kt = PtH

T (t)R−1(t)

and the Innovation dyt −H(t)x̂tdt. Through these equations one can compute an estimate of x [3].

The Kalman Bucy Filter is optimal for linear systems [1], but it is not optimal in non -linear systems. Hence

extensions of KBF to non-linear systems have been sought for example EnKF and Extended Kalman Bucy Filter.

2.1 Bootstrap Particle Filter

Particle filters solve filtering problem by using Monte-Carlo methods to numerically approximate estimates of the mean

and covariance. Particle Filter approximates the posterior distribution p(xt|y1:t),with a set of particles Nt =
(
Xi

t , w
i
t

)
,

i = 1, ..., N [17] where xi
t is the dynamic state. wi

t is the weight of the particle in time t y1:t measurement

P̂ (xt|y1:t) =
N∑
i=1

wi
tδ(xt − xi

t). (25)
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The most applied Particle filter is the Bootstrap particle filter[8]. This is due to their simplicity. It is an applied filtering

algorithm which approximate the filtering probability density p(xk|yo...., yk) by a weighted set of M sample (wi
k, x

i
k)

iϵ1, .....,M . The importance weights wi
k are approximations to the relative probabilities. The Bootstrap Particle filter

algorithm can be summarised as follows.

2.2 Ensemble Kalman-Bucy Filter

The Ensemble Kalman Bucy Filter is based on particle filters. EnKBF is designed for time continuous models. Estimates

the covariance using Monte Carlo techniques. It draws M ensembles members
(
xi
t0

)M
i=1

which are used to approximate the

conditional density [10] . The xi is propagated according to the equation of evolution of the mean in KBF as follows[1]

dxi
t = F (t)xi

tdt+G(t)dβi
t + PM

t HT (t)R−1(t)(dyt +R
1
2 (t)ηi

t −H(t)xi
tdt). (26)

The ensemble mean is given by

x̂t =
1

M

M∑
i=1

xi
t. (27)

The covariance is estimated as

PM
t =

1

M − 1

M∑
i=1

(xi
t − x̂t)(x

i
t − x̂t)

T . (28)

2.3 First Order Extended Kalman Bucy Filter (FoEKBF)

The scalar form of 1 and 2 gives us

Signal : dxt = f(xt)dt+ g(t)(t)dβt; xt0 , t0 ≤ t (29)

Measurement : dyt = h(xt)dt+R
1
2 (t)dηt, t0 ≤ t (30)
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By substituting g(x, t) with g(t) with corresponding derivatives. The first order approximations of equations 16 and 20

in Taylor series expansion about the mean [13] yields,

dx̂t = f(x̂t)dt+ Pt∇[h](x̂t)R
−1(t)(dyt − h(x̂t)dt) (31)

dPt = Pt∇[f ]T (x̂tdt+∇[f ](x̂t)Ptdt+ g(t)gT (t)dt− Pt∇[h]T (x̂)R−1∇[h](x̂t)Ptdt. (32)

Where ∇[f ] = δfi
δxj

∇[h] = δhi
δxj

2.4 Second Order Extended Kalman Bucy Filter(SoEKBF)

In similar manner of finding FoEEKF we apply Taylor series expansion of the mean estimate to second order[13] . This

gives us SoEKBF,

dx̂t = f(x̂tdt+
1

2
△[f ](x̂tPtdt+ Pt∇[h]T (x̂t)R

−1(t)(dyt − (h(x̂t) +
1

2
△[h](x̂tPt)dt) (33)

dPt = Pt∇[f ]T (x̂t)dt+∇[f ](x̂t)Ptdt+ g(t)gT (t)dt+−Pt∇[h]T (x̂)R−1∇[h](x̂t)Ptdt

+
1

2
Pt△[h]T (x̂t)R

−1(t)
(
dyt − (h(x̂t) +

1

2
△[h](x̂tPt)dt

)
Pt

(34)

where △[f ] = δ2f
δxiδxj

and △[h] = δ2h
δxi

δxj

3 Derivation of the filter

We shall make a few assumptions as we develop our filter. We strict ourselves to linear and non-linear models with an

assumption that probability densities and conditional probability densities are Gaussian. We shall make approximations

based on Taylor series expansion and Monte-Carlo methods. Approximations are necessary due to the nature of high

dimensional data [18]. We therefore review the derivation of the second and first order direct approximations to the

equation of evolution of the mean and covariance using Taylor series expansion about the mean [[13];[4]]. What is more,

we derive sequential Monte-Carlo approximation to the solution to the non-linear filtering problem. The imperfection of

the models can be dealt with by quantifying the uncertainty. The uncertainties in the model are mostly represented as

random variables, and are referred to as noise in the model. The setting is that of stochastic differential equations.

Suppose it is required of us to obtain an estimate of the state, xt, given the measurements history, Yt; t ≤ t0. This calls

for the use of conditional density functions. Happily, these functions have been established,together with their evolution

of the first and second moments.

Consider the following continuous state space models that can be expressed, in Itô form, as follows.

Signal : dxt = f(xt, θ)dt+G(xt)Q
1
2 (t)dβt; xt0 = x(0), t0 ≤ t (35)

Measurement : dyt = h(xt)dt+R
1
2 (t)dηt, t0 ≤ t (36)

where: .

The state vector xt, at a given time t, evolves in time according to a function f , of the state vector t. The uncertainties

and imperfections of the model are as much as possible captured in additive term, G(xt)Q
1
2 (t)dβt, where βt, t ≤ t0 is

Brownian motion process. The model equation (3.1) is an expression of a non-linear continuous state space model. Given
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Term Name Dimension

xt State vector n× 1

f(xt, θ) drift term n× 1

θ vector of parameters d× 1

G(xt) matrix function n×m

Q(t) time - function matrix m×m

β, t > t0 Brownian motion process m× 1

yt output vector r× 1

h(xt) measurement function r× 1

R(t) time- function matrix r× r

ηt, t > t0 Brownian motion process r× 1

the initial value of the state xt0, the subsequent states in the model can be obtained by formal integration. This involves

solving the model each time. The state at a given time depends on the state at the previous time and nothing else about

the past states, this model is hence known as the Markov model.

The model is said to be deterministic if it does not include randomness in any of it’s terms;otherwise it is said to be

Stochastic.

3.1 The mean and covariance

Mean and covariance correspond to the first and second moments, respectively [13]. A moment, by definition, is the

expectation of a function, say, φ(x), with respect to a given probability density. For the system (35) to (36), the mean,

x̂t, and the covariance, Pt satisfy the following equations.

dx̂t = f̂dt+ (x̂thT − x̂tĥ
T )R−1(t)(dyt − ĥdt), x̂t0 = x(0), (37)

(dPt)ij = (x̂ifi − x̂if̂i)dt+ (f̂ixj − f̂ix̂j)dt+ (ĜQGT )ijdt− (x̂ih− x̂iĥ)
TR−1(ĥxj − ĥx̂j)dt

+(x̂ixjh− x̂ixj ĥ− x̂ix̂jh− x̂j x̂ih+ 2x̂ix̂j ĥ)
TR−1(t)(dyt − ĥdt), Pt0 = P (0)

(38)

The equations 37 and 38 are the exact equations of the evolution of the mean and covariance[13] .

For clarity of exposition, we use the scalar case of the system (3.1) - (3.2) - which we now write as follows.

Signal : dxt = f(xt,θ)dt+ g(xt)q
1
2 dβt;xt0 = x(0), t0 ≤ t, (39)

Measurement : dyt = h(xt)dt+ r
1
2 dηt, t0 ≤ t. (40)

The corresponding equations for evolution of the conditional mean and variance, for the scalar case, are :

dx̂t = f̂dt+ (x̂th− x̂tĥ)r
−1(t)(dyt − ĥdt), x̂to = x(0), (41)

(dpt) = 2(x̂f − x̂f̂)dt+ (q̂g2dt− (x̂h− x̂ĥ)2r−1 + (x̂2h− x̂2ĥ− 2x̂x̂h+ 2x̂2ĥ)r−1(dyt − ĥdt), 5.5cmdp0 = p(0), (42)
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where f̂ =
∫
f(x)ρ(x|Yt)dx.

Solving the system (39) - (40) gives an exact filter. The solution,however,involves calculating conditional expected

values, which can be forbiddingly infeasible, seeing that they involve integration over non-linear functions. Which is

why we resort to approximation of expected values. In the following, a second order approximation of the exact filter is

formulated by negating terms of third- and higher- order.

3.2 Second-order approximate filter

. We summarise the result below and proceed to show how we arrived at it.

Theorem 1. (Second - order approximate filter). Suppose f(x) and h(x) are continuous functions, whose first and

second order derivatives, fx, fxx, hx, hxx, respectively, exist. Then the second-order approximation equations for the

exact filter equations, (40) - (41), neglecting the third- and higher- order derivatives and moments, are:

dx̂t = f(x̂)dt+
1

2
ptfxx(x̂dt+ phx(x̂)r

−1(t)(dyt − (hx̂) +
1

2
pthxx(x̂)), (43)

dpt = 2pfx(x̂)dt+ (q(t)g2(x̂) + pd(t)g2x(x̂))dt− (pthx(x̂))
2r−1

+
1

2
p2thxx(x̂)r

−1(t)(dyt − (h(x̂) +
1

2
pthxx(x̂))dt).

(44)

proof. By Taylor expansion about x̂, we have

f(x) ≈ f(x̂) + (x− x̂)fx(x̂) +
1

2
(x− x̂)2fxx(x̂), (45)

h(x) ≈ h(x̂) + (x− x̂)hx +
1

2
(x− x̂)2hxx(x̂), (46)

q(t)g2(x) ≈ q(t)(g(x̂) + (x− x̂)gx(x̂+
1

2
(x− x̂)2gxx(x̂))

2 (47)

xf(x) ≈ xf(x̂) + x(x− x̂)fx(x̂) +
1

2
x(x− x̂)2fxx(x̂). (48)

Taking expectations and noticing that p = (x̂− x̂)2 = x(x̂− x̂), and that (x− x̂) = 0 leads to

f̂ ≈ f(x̂) +
1

2
pfxx(x̂) (49)

,

ĥ ≈ h(x̂) +
1

2
phxx(x̂), (50)

q̂(t)g2 ≈ q(t)g2(x̂), (51)

x̂f − x̂f̂ ≈ x̂f(x̂) + pfx(x̂) +
1

2
x̂pfxx(x̂)− x̂f(x̂− 1

2
pfxx(x̂) = pfx(x̂). (52)

It now remains to obtain the approximation of the term x̂2h− x̂2h− 2x̂x̂h+ 2x̂2ĥ. By Taylor expansion

x̂2 ≈ x̂2 + (x− x̂)2. (53)

Using (3.12) and (3.19)

x̂2h ≈ [(x̂2 + (x− x̂)2x̂+ (x− x̂)2)(h(x̂+ (x− x̂hx(x̂) +
1

2
(x− x̂)2hxx(x̂))]

,

= x̂2h(x̂) +
1

2
x̂2phxx(x̂) + 2x̂phx(x̂+ ph(x̂)

(54)
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Similarly

x̂2h ≈ [(x̂2 + (x− x̂)2].̂[(h(x̂) + (x− x̂)hx(x̂) +
1

2
(x− x̂)2hxx(x̂)]̂,

= (x̂2 + P )(h(x̂) + (x− x̂) +
1

2
(x− x̂)2hxx(x̂)),

= x̂2h(x̂) +
1

2
x̂2phxx(x̂) + ph(x̂) +

1

2
p2hxx(x̂).

(55)

The remaining term, −2x̂x̂h + 2x̂2ĥ, can be written in the form (3.18) , with h replacing f , which simplifies it a great

deal. That is,

−2x̂x̂h+ 2x̂2ĥ = −2x̂(x̂h− x̂ĥ),

≈ −2x̂phx(x̂).
(56)

Now collecting like terms together, we get:

x̂2h− x̂2x̂− 2x̂x̂h+ 2x̂2ĥ =
1

2
p2hxx(x̂). (57)

The approximate filter for the exact filter (41) - (42) is obtained by replacing the expected values of the terms with

their approximations, which have been developed above. Second-order approximate filter for the vector case have been

developed in[[4],[13]]

3.3 First-order approximate filter

The equations for the first-order approximation of the exact filter are summarised in the following Theorem.

Theorem 2. (First-order approximate filter). Suppose f(x) and h(x) are continuous functions whose first order

derivatives, fx and hx, respectively, exist. Then the first-order approximation equations for the exact filter equations,

(3.7)-(3.8), omitting the second and higher central moments, are:

dx̂t = f(x̂)dt+ phx(x̂)r
−1(t)(dyt − h(x̂)dt, (58)

dpt = 2pfx(x̂)dt+ (q(t)g2(x̂) + pq(t)g2x(x̂))dt− (pthx(x̂))
2r−1. (59)

Proof. Set to zero the second order derivatives of f(x) and h(x) in the equations for second-order approximate filter

above.

3.4 Second-order ensemble filter

Drawing inspiration from the formulation of ensemble Kalman Bucy Filter [[5],[7]], we devise an ensemble filter for

non-linear models based on the second-order approximate equations developed above. In fact, it is possible to come up

with a first-order and higher-order ensemble filters corresponding to the relevant approximate filter equations. The idea

behind ensemble filters is to have, say M , hypotheses of the state, which we denote as Xt := xi
t
M
i=1 at a given time,t. In

the prediction step,the hypotheses are propagated according to the model signal. An update is achieved using a relevant

minimum variance equation-or its approximation. The empirical mean x̂t and covariance pt, are respectively, obtained

as follows.

x̂t =
1

M

M∑
i=1

xi
t; t0 ≤ t, (60)
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pt =
1

M − 1

m∑
i=1

(xi
t − x̂t)

2; t0 ≤ t. (61)

The propagation of each particle xi
t,in the second-order ensemble filter formulation for scalar model system, (3.5) - (3.6),

is given by,

dxi
t = f(xi

t, θ)dt+ g(xi
t)q

1/2(t)dβi
t + phx(x

i
t)r

−1(t)(dyt − (h(xi
t) +

1

2
pthxx(x

i
t))dt); t0 ≤ t. (62)

This is the Second order Extended Ensemble Filter (SoEEF), our new filter.

4 SoEEF Performance

The performance of the new filter SoEEF was tested using Lorenz 63 system of differential equations. Lorenz 63 is one of

the most well-known chaotic systems, and it was originally derived by Edward Lorenz [20] [16] . The stochastic Lorenz

63 model,is given by

dx

dt
= σ(x2 − x1)

dy

dt
= x1(ρ− x3)− x2

dz

dt
= x1x2 − bx3

(63)

with σ = 10, r = 8
3
and b = 28 these constants determine the behaviour of the system. The three variables (x1, x2, x3)

evolve overtime and are sensitive to initial conditions leading to chaotic behaviour. This chaotic behaviour is similar to

noise. Lorenz 63 are used to test data assimilation methods due to their sensitivity to the initial conditions. This means

that a slight change in initial conditions of the variables leads to a significant change in the outcome. This was repeated

with four other filters namely;Bootstrap Particle Filter (BPF),First order Extended Ensemble Filter (FoEEKF),First

order Extended Kalman Bucy Filter (FoKBF),Second order Extended Kalman Bucy Filter (SoEKBF).

4.1 The Results

Fig. 1 represents the plot of RMSE (y-axis) against the reciprocal of ensemble of size M (x-axis). The figure has four

different types of filters, the Bootstrap Particle Filter (BPF) represented by blue line, First order Extended Ensemble

Filter (FoEEF) represented by green line, First order Extended Kalman Bucy Filter (FoEKBF) represented by orange

line and the Second order Extended Kalman Bucy Filter (SoEKBF) represented by purple line.

The aim of the fig 1. is to compare the performance of the SoEEF against the other four filters. We can observe that

as the number of ensemble size increases, the RMSE of BPF increases while that of FoEKBF,SoEKBF, FoEEF and the

SoEEF decreases. However, SoEEF has the lowest RMSE as the ensemble size increases. This indicates that our filter,

the SoEEF, performs better as it has a low RMSE.

The sizes of the ensemble used are 10, 15, 22, 26, 29, 34, 41, 46, 49. Other settings are as follows: dt = 0.001, R = 0.17,

and g = 0.2
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Figure 1: Root mean square error for the reciprocal of Ensemble.

Figure 2: Filter estimate and filter error for x(1) in Lorenz 63 model
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Fig. 2 has two plots. The first plot is the comparison of the trajectory of true state generated from x1 the first

variable of Lorenz 63 and the trajectories of evolution of new SoEEF (light blue) with the trajectories of FoEEF(green)

SoEKBF(purple),FoEKBF(orange),BPF(red).The paths are analysed on filter estimates using nine ensemble number

that are measured between times T = 0 and T = 30, with a time step of 0.001. The second graph is a measure of filter

error against times T = 0 and T = 30 for SoEEF(blue) model, FoEEF(green) model, SoEKBF (purple) model, FoEKBF

( orange) model, BPF (red) model in the first variable.

In Fig. 2, we observe that the filter estimate illustrates that there is no noticeable deviations in trajectory of evolution

between SoEEF and the trajectory of the true state generated from Lorenz 63 model . It can also be seen that the four

other models, that is FoEEF SoEKBF, FoEKBF and BPF , also shows unvaried trajectories of evolution with both the

true state trajectory and SoEKBF model trajectory.

Figure 3: Filter estimate and filter error for x(2) in Lorenz 63 model
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From Fig. 3, we observe that there is no significant deviation that occurs between the output of SoEEF model and

the output from other FOUR models as displayed in fig 3. SoEEF performs better than the other four filters.

Fig. 4 has two graphical displays with the first graph comparing the trajectories of evolution of new SoEEnKF,FoEEF,

SoEKBF, FoEKBFn, BPF and the trajectory of true state for the third variable in Lorenz-63 model. The trajectories are

conducted for Filter Estimates using nine ensemble number which are measured between times T = 0 and T = 30. The

second graph measures the output from filter error against times T = [0, 30] for SoEEF,FoEEnKF, SoEKBF, FoEKBF,

BPF.

Figure 4: Filter estimate and filter error for x(3) in lorenz63 model 94

5 Conclusion

The experiment of SoEEF, FoEEF, FoEKBF and SoEKBF conducted on a three dimensional Stochastic Lorenz 63 has

shown that the performance of SoEEF, as also shown in RMSE plot, does not vary much from that of FoEEF,FoEKBF

and SoEKBF. The graphical trajectories of SoEEF in the same three dimensional Lorenz 63 also show resemblance

with trajectories of FoEEF, FoEKBF and SoEKBF for the three variables, x1, x2 and x3. As it is known that, as the

dimensions increases, solutions to filtering problems become computationally expensive since it requires integration of

the equation of evolution of covariances. This cost is reduced in SoEEF, which registers a remarkable performance even

at low ensemble sizes (fig.1). In SoEEF, instead of integrating the equation of evolution of covariances, an empirically

estimate of covariances is preferred. This greatly reduces the computational cost as compared to FoKBF and SoKBF,

where integration of an equation of evolution of covariances is involved. SoEEF is favourable for parallel computing as

it does not need re-sampling as in particle filters.
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