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Abstract: 
 
Different techniques have been proposed for RNA extraction, many of which have found extensive use in biological 
research. The introduction of these methods has greatly improved molecular diagnostics, drug discovery, and 
numerous other research and clinical endeavors. In this review, the working principles of the most commonly 
used RNA extraction methods for research and clinical applications are discussed. Current automation efforts and 
the quest for more efficient and cost-effective methods are highlighted. 
 
Keywords: RNA, extraction, RNases, mini-review 

Received Sept 1, 2023; Revised Oct 8, 2023; Accepted Oct 9, 2023 
 

Copyright 2023 AJCEM Open Access. This article is licensed and distributed under the terms of the Creative Commons Attrition 4.0 International License 

<a rel="license" href="http://creativecommons.org/licenses/by/4.0/", which permits unrestricted use, distribution and reproduction in any medium, 

provided credit is given to the original author(s) and the source. Editor-in-Chief: Prof. S. S. Taiwo 

 

Extraction de l'acide ribonucléique: une mini-revue des 
méthodes standards 

 

Afolabi, Oluwadamilare I. 
 

 Recherche et développement, ARL Bio Limited, Lagos, Nigeria                             
Correspondance à : dare.afolabi@outlook.com; +234 (816) 976-9839 

 

Résumé: 
 
Différentes techniques ont été proposées pour l’extraction de l’ARN, dont beaucoup ont été largement utilisées 
dans la recherche biologique. L'introduction de ces méthodes a considérablement amélioré le diagnostic 
moléculaire, la découverte de médicaments et de nombreux autres efforts de recherche et cliniques. Dans cette 
revue, les principes de fonctionnement des méthodes d’extraction d’ARN les plus couramment utilisées pour la 
recherche et les applications cliniques sont discutés. Les efforts d'automatisation actuels et la recherche de 
méthodes plus efficaces et plus rentables sont mis en évidence. 
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Introduction: 
 

 Initially, RNA was simply viewed as a 

short-lived genetic intermediate between DNA 
and proteins (1). Messenger RNAs (mRNAs) 
indeed perform this function. However, other 
types of RNA were, soon after, characterized 
as components of the cellular protein synthe- 
sis machinery. Ribosomal RNAs (rRNAs) are 

structural and functional components of ribos- 

omes, while transfer RNAs (tRNAs) are adap- 
ters for amino acid delivery to ribosomes. 
Thomas Cech’s group (2) was the first to obs- 
erve RNA catalysis in the protein-independent 
splicing of Tetrahymena 26S rRNA. Numerous 
ribozymes, notably group I and II introns and 

ribonuclease P, have since been identified. 

 Many other functional classes of non- 
coding RNAs (ncRNAs) have been discovered. 
Small noncoding RNAs (sncRNAs) such as mic- 
roRNAs (miRNAs), small interfering RNAs (si 

RNAs), small nucleolar RNAs (snoRNAs), small 
nuclear RNAs (snRNAs), Piwi-interacting RNAs 
(piRNAs), tRNA-derived fragments (tRFs), tRNA 
halves (tiRNAs), and small rDNA-derived RNAs 
(srRNAs), perform a host of regulatory func- 

tions, including RNA silencing, DNA methyla- 
tion, histone modification, posttranscriptional 

RNA modification, and posttranscriptional sil- 
encing of repeat-derived transcripts (3,4). 
Long noncoding RNAs (lncRNAs) are distingui- 
shed from sncRNAs by their length (> 200 
nucleotides) and function in chromatin remod- 
eling, transcriptional regulation, and RNA mo- 
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dification and degradation (5).  
 There has been extensive research into 
RNA biogenesis, structure, function, interac- 
tions, posttranscriptional modification, locali-
zation, trafficking, turnover, pathogenesis, 

and prophylaxes, with many consequential 
discoveries. Most of the methods in molecular 
biology that enable these investigations req- 
uire an initial extraction of RNA from tissues, 
cells, and other biological materials. RNA ext- 
raction typically involves obtaining a crude 
mixture of RNA and other biomolecules from 

biological samples, removing unwanted macro- 
molecules and chemical contaminants, and 

concentrating so as to obtain high-quality RNA 
in concentrations suitable for various down- 
stream applications.   
 When trying to capture the state of the 

transcriptome at the time of sample collection, 
the integrity of RNA molecules is of utmost 
importance. The success of gene expression 
analyses, including RT-qPCR and RNA-Seq, is 
greatly affected by RNA quality (6,7). Other 
RNA-centric assays are similarly affected (8, 
9). Many methods have been proposed for 

assessing RNA yield, purity, and integrity (10-
13). Given the importance of RNA quality, 
researchers usually adopt RNA quality thres- 

holds for different sample types and workflows 
on the basis of previous performance studies 
and optimizations.   
 RNA extraction is complicated by the 

molecule’s short half-life and susceptibility to 
ribonuclease (RNase) degradation. Unlike DNA, 
RNA nucleosides contain a ribose sugar with 
the typical 2′-hydroxyl group, making RNA 
more susceptible to spontaneous hydrolysis. 
RNases are a considerable problem in RNA ex- 

traction and manipulation. In vivo, RNases con- 
tribute to RNA biogenesis and homeostasis 
and serve as the body’s first line of defense 
against non-self RNA, including RNA viruses 

(14). However, once released from cells and 
protection of accessory proteins, RNA is expo- 
sed to RNases simultaneously released from 

the sample. Additionally, due to their high sta- 
bility, RNases accumulate in the environment 
and are readily introduced into in vitro prepa- 
rations, contributing to RNA degradation.
 There are multiple proven strategies 
for minimizing RNA degradation. Lowering the 
temperature slows down self-hydrolysis and 

RNase activity, reducing RNA degradation. 
Stable low temperatures are maintained by 
flash-freezing biological samples in liquid nit- 
rogen immediately after harvesting, prechill- 

ing extraction buffers, conducting extraction 
and downstream manipulations on ice, and 

using refrigerated centrifuges where applica- 
ble. RNA in biological samples stored at -80°C 
remains stable for extended periods (15,16). 
 Additionally, following extraction, RNA 
samples are aliquoted before freezing at -80°C 

to avoid freeze-thawing. As an alternative to 
flash-freezing, biological samples are homoge- 
nized in chaotropic-based cell lysis solutions or 
permeated with RNA stabilization solutions be- 
fore storage. RNA degradation is further pre- 

vented by: maintaining an RNase-free work- 
space using RNase-free filter pipette tips, tub- 
es and reagents; using RNase-decontamina- 
ted equipment; and wearing appropriate per- 
sonal protective equipment (PPE) to avoid int- 
roducing RNases from skin and saliva. 

Methods of RNA extraction: 

Phenol-chloroform extraction 

 Ingle and Burns (17) reported the eff- 
ectiveness of phenol:chloroform:isoamyl alco- 
hol (PCI; 25:24:1; v/v) extraction of total nuc- 
leic acids from aqueous lysed biological sam- 

ples. When an emulsion is formed by mixing 
an aqueous biological lysate with phenol and 
chloroform (both organic solvents) and allo- 
wed to settle, proteins contained in the lysate 
are permanently denatured and preferentially 
displaced from the aqueous lysate into the 

organic solvents, leaving polar nucleic acids in 
the aqueous phase. When centrifuged, the 

heavier organic phase containing proteins sep- 
arates to the bottom of the tube, displacing 
the aqueous phase containing nucleic acids to 
the top, where it can easily be aspirated for 
subsequent alcohol precipitation. 

 Chomczynski and Sacchi’s (18) modi- 
fied method that uses an acid-guanidinium 
thiocyanate-phenol-chloroform mixture, has 
become widely used for isolating total RNA 
from biological samples of different sources 
(19-21). The increased acidity causes DNA to 
separate into the lower organic phase and 

interphase, leaving RNA in the aqueous phase. 
The DNA can be separately recovered from the 

organic phase by precipitation with ethanol or 
isopropanol. Additionally, guanidinium isothio- 
cyanate, a chaotropic salt, lyses cells and inac- 
tivates RNases, removing the need for prior 

lysis. The method provides a pure preparation 
of undegraded total RNA in high yield and can 
be completed within 4 hours.  
 Great care is required when aspirating 
the aqueous phase, as disturbing the inter- 
phase or organic phase will result in organic 
and DNA contamination. In addition to careful 

aspiration, different strategies have been pro- 
posed to reduce contamination. For example, 
phase lock gels eliminate interphase protein 

and DNA contamination, ensuring faster res- 
ults with improved aqueous phase recoveries 
(22). More commonly, methods employ addi- 
tional chloroform extractions of the aqueous 

phase and additional ethanol washes of the 
alcohol precipitate (23,24). 
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Column-based extraction: 

 Chaotropic agents disrupt the hydro- 
gen bonding network between water molecu- 

les, interfering with the noncovalent forces 
required for macromolecular structure and sup- 
ramolecular assembly. Through this means, 
chaotropes permanently denature proteins, 
dissolve lipids, and lyse cells. Conversely, cha- 
otropic agents destroy the native hydration 

shells that maintain the solubility of nucleic 
acids, making them less soluble in water. 
Eliminating hydration shells permits positively 
charged ions to form salt bridges between the 

negatively charged phosphate backbone of 
nucleic acids and negatively charged hydroxyl 
groups on the surface of solid matrices such 

as silica and cellulose.   
 Vogelstein and Gillespie (25) first rep- 
orted the near-quantitative binding of DNA to 
flint and borosilicate glass particles and silica 
powder under chaotropic salt concentrations 
and efficient DNA recovery in any convenient 
buffer. Silica binding and recovery of nucleic 

acids have since been incorporated into many 
centrifugation column-based workflows as one 
of the most common methods for nucleic acid 
extraction. Plant-derived cellulose binding ma- 

terials have also been described for nucleic 
acid extraction (26,27). Solid-phase RNA extr- 

action is especially appealing because it avoids 
the dangerous organic solvents used in liquid-
liquid methods.    
 Spin-column workflows typically start 
with a lysis step in which suitable detergents, 
lytic enzymes and chaotropes lyse biological 
samples. Next, using centrifugation or vacuum 

suction, the lysate is passed through the bind- 
ing material under chaotropic conditions. The 
bound nucleic acids are washed to remove un- 
wanted biomolecules and chemical contami- 
nants. For pure RNA, a single DNase treatment 

can be performed between multiple washes. 
Additionally, pH, ionic strength, and alcohol-

to-sample ratios are adjusted to retain or ex- 
clude different types and sizes of nucleic acids 
(28-30). Finally, purified RNA is eluted from 
the binding material using low-ionic buffers. 

Magnetic beads extraction: 

 Professor John Ugelstad of the Norwe- 
gian Institute of Technology revolutionized the 
separation of biological materials when he 
succeeded in producing monosized monodisp- 

ersed magnetizable microspheres under labo- 

ratory conditions (31-34). Magnetic beads, 
usually magnetite (Fe3O4) particles coated ac- 
cording to the application, exhibit super para- 
magnetism, which means that they are stron- 
gly reversibly magnetized in the presence of 

an external magnetic field. This allows magne- 
tic beads to be separated in suspension, along  

with any molecules that are bound to their 
coating. Since the magnetism is completely 
reversible, once the magnetic field is removed, 
magnetic beads can be easily resuspended in 
binding, wash, or elusion buffers. 

 A wide range of surface coatings are 
available for magnetic beads to suit different 
applications. Negatively charged carboxyl and 
silica coatings, both of which reversibly bind 
nucleic acids, are widely used for nonspecific 
nucleic acid purification (35-37). However, sil- 
ica-coated magnetic beads are favored when 

sample amounts are low. By varying pH, ionic 
strength, alcohol concentration, and other buf- 

fer conditions, magnetic beads can be made to 
preferentially retain or exclude different types 
and sizes of nucleic acids. To obtain pure RNA, 
a single DNase treatment is often performed 

between washes. Along with their use in sam- 
ple lysis and RNA binding, detergents, chaotr- 
opes, and RNase inhibitors prevent RNA deg- 
radation during extraction. 
 Oligo(dT) coating covalently hybridi- 
zes with the poly(A) tail present in most euk- 
aryotic mRNA, enabling mRNA isolation from 

biological samples (38,39). RNA containing 
known sequences are also enriched or deple- 
ted from RNA pools in this way (40,41). Alter- 

natively, streptavidin- and other avidin-coated 
beads form a very strong, highly specific, rev- 
ersible bond with biotin, enabling the isolation 
of biotin-labeled targets, including RNA and 

RNA-DNA hybrids (40,42,43). 

Conclusion: 

 Since the first organic isolation of total 
nucleic acid by Ingle and Burns (17) and the 
subsequent total RNA extraction by Chomc- 
zynski and Sacchi (18), many techniques for 
RNA purification have been developed. From 

column-based extraction of total RNA, small 

RNA, and RNA clean-up to bead-based meth- 
ods, RNA extraction has played a fundamental 
role in various scientific and medical applica- 
tions. Most biological endeavors, including 
gene expression analyses, transcriptomics, 

drug development, functional genomics, mole- 
cular diagnostics, cancer research, develop- 
mental biology, environmental monitoring, 
and forensics, are predicated on our ability to 
obtain good-quality RNA from different sour- 
ces.     
 Not much can be done to remedy deg- 

raded RNA. However, low-yield and contami- 
nated samples can be concentrated and clea- 

ned up with the same methods used for extr- 
acting RNA from crude samples. Furthermore, 
automated RNA extraction systems have been 
developed due to modern advancements in 
engineering. Automation is appealing because 

it can increase throughput, reproducibility, 
quality, safety, and labor savings. Solid-phase 
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reversible immobilization (SPRI) bead-based 
RNA extraction is ideal for automation due to 
its yield, reproducibility, and ease of manipu- 
lation with magnetic fields. However, nume- 
rous organic and column-based liquid handling 

platforms for RNA extraction are also availa- 
ble. Existing technologies are constantly being 
improved, but additional discoveries may be 
required to further lower costs, improve throu- 
ghput, enable single-cell extraction, and much 
more. 
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