Main Article Content
Correlation between faecal indicator bacteria in diarrheagenic stools and hospital wastewaters: Implication on public health
Abstract
Background: Hospital wastewaters contain blends of inorganic, natural constituents and contaminants that carry significant health risk when released directly into the environment. The aim of this study is to investigate the correlation between faecal indicator bacteria in diarrheagenic stools and wastewaters generated in University of Medical Sciences Teaching Hospital complex, Akure, Nigeria.
Methodology: Quantification of faecal indicator bacteria was carried out on diarrheagenic faecal samples collected from 55 hospitalized patients and 68 wastewater samples from the medical laboratory science and laundry units of the hospital over of period of 12 weeks. Standard membrane filtration technique was performed using membrane intestinal enterococcus (m-ENT), membrane faecal coliform (m-FC), membrane lauryl sulphate (MLSA), eosin methylene blue (EMB) and Salmonella-Shigella (SS) agar plates, which were incubated at 37ºC for 24 hours (MLSA, EMB and SSA), 44ºC for 24 hours (m-FC); and 37ºC for 48 hours (m-ENT). Bacterial colonies on agar plates were counted and expressed as colony forming units (CFU) per 100ml of diarrheagenic stool and wastewater. Pearson’s
correlation analysis was used to determine the relationship between the level of faecal indicator bacteria in diarrheagenic stools and wastewaters at p<0.05 level of significance (and 95% confidence interval).
Results: The faecal coliform counts (log 10 CFU/100ml) ranged from 1.18 to 1.54 in diarrheagenic stools, 1.32 to1.64 in laboratory wastewater and 1.08 to 2.19 in laundry wastewater. Escherichia coli count (log 10 CFU/100ml) ranged from 1.08 to 1.40 in diarrheagenic stools, 1.20 to 1.86 in laboratory wastewater and 0.30 to 1.81 in laundry wastewater. Intestinal enterococci count (log 10 CFU/100ml) ranged from 0 to 0.30 in diarrheagenic stools, 0.78 to 0.90 in laboratory wastewaters and 0.48 to 1.11 in laundry wastewaters. Pearson’s correlation co-efficient showed that all the faecal indicator bacteria count in diarrheagenic faecal samples exhibited positive correlation with those in laboratory wastewaters, but not with those from laundry wastewaters.
Conclusion: The findings suggest that diarrheagenic stools should be properly disinfected after the performance of laboratory tests to prevent transmission of potential pathogens, and wastewater generated from hospitals should be treated prior to discharge into the environment, to prevent possible infections in the community.
Keywords: Correlation, faecal indicator bacteria, public health, transmission, wastewater