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ABSTRACT 

Opioids with different degrees of inhibitory activity were investigated by means of a 

chemometric experiment designed for the various levels of Chemistry Education. The 

crystallographic structure of mitragynine taken from the literature was completely optimized with 

different theories (methods)/basis sets and, through the chemometric techniques of exploratory data 

analysis - Principal Component Analysis and Hierarchical Cluster Analysis - the most appropriate 

theory/basis set for the development of the experiment was defined (B3LYP/6-31G**). The 

optimized mitragynine, in the most stable conformation, led to the construction of 3D structures of 

the other opioids, which were also subjected to complete optimizations and calculations of molecular 

properties in the lowest energy conformations. The referred properties (molecular descriptors) 

through Exploratory Data Analysis - Principal Component Analysis (PCA) and Hierarchical Cluster 

Analysis (HCA) - allowed the separation of ten (10) opioids (training set) into two classes: the most 

active opioid class (MAO), compounds 1, 2, 5, 6, 9, and 10, and the least active opioid class (LAO), 

compounds 3, 4, 7, and 8. The application of the classification methods: K-nearest neighbor method 

(KNN method) and Stepwise Discriminant Analysis (SDA) to the training set ratified its separation 

into the MAO class and LAO class. The insights obtained in the chemometric treatment and chemical 

intuition led to the proposition of nine (9) new opioids (validation set), whose scrutiny of the 

constructed models - PCA model, HCA model, KNN model and SDA model - indicated six (6) new 

opioids derived from mitragynine with analgesic potential for synthesis and biological tests. [African 

Journal of Chemical Education—AJCE 15(1), January 2025] 
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1.  INTRODUCTION  

 The word pain comes from the Greek word poine, meaning penalty. Physiologists distinguish 

pain from nociception. Nociception refers to signals arriving in the central nervous system resulting 

from the activation of specialized sensory receptors called nociceptors, which provide information 

about tissue damage. Pain is the unpleasant emotional experience that usually accompanies 

nociception [1]. 

 The term opioids was proposed by Acheson to designate drugs with an action similar to that 

of morphine, but with a different chemical structure. However, the concept of opioids has evolved 

and now includes all natural, semi-synthetic or synthetic substances that react with opioid receptors, 

either as agonists or antagonists [2]. 

 Morphine and mitragynine are opioids with analgesic properties [3, 4]. Morphine is a 

substance extracted from the green seed pods of the opium poppy [5]. Mitragynine is extracted from 

Mitragyna speciosa [3]. Figure 1 shows the 2D-structures of morphine (a) and mitragynine (b). As 

can be seen in this figure, mitragynine has structural aspects similar to morphine, both have three 

functional groups, extremely important in analgesic activity, namely: the anionic site, the phenolic 

site and the hydrophobic region. 
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Figure 1. 2D structure of mitragynine and morphine with highlighting, color yellow, to the functional 

groups: anionic site, phenolic site, and hydrophobic region, respectively, important in analgesic activity. 

 

The discipline of Chemometrics combines mathematical, statistical, information theory and 

computer science knowledge to handle complex chemical data; its techniques were introduced in 

chemistry in the first half of the 1970s to unravel various types of spectroscopic data, and since then 

they have been excellent tools to aid in the interpretation of chemical data and obtain relevant 

information in different areas of application of chemical science. These techniques are especially 

useful for classifying objects into discrete classes based on their experimentally measured 

characteristics. A set of features of an object is considered an abstract pattern that contains 

information about a non-directly measured property of the object. For a detailed examination of this 

matter see references [6 - 10]. 
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Figure 2. Schematic representation of the chemometric experiment 

In this work, a chemometric experiment, Figure 2, involving opioids (mitragynine and 

derivatives) with different activities [3, 4] is reported. Exploratory data analysis techniques 

(Principal Component Analysis [10-13] and Hierarchical Cluster Analysis [10 - 13]) and 

classification methods (K-Nearest Neighbor Method [10 - 13] and Stepwise Discriminant Analysis 

[10 - 13]) were used as tools to develop the referred experiment, which can be reproduced at all 

levels of Chemistry Education, serving as a stimulating and motivating element for the appropriation 

of relevant techniques in the treatment of various aspects of systems of chemical interest. 

 

2. EXPERIMENTAL PROCEDURES 

2.1 Opioid Structures/Training Set/Theory/Basis Set 

             According to the experiment scheme, Figure 2, anchored in Table 1 [10-13], the 3D-structure 

of mitragynine, Figure 1a, was taken from the Cambridge Structure Database (CSD), Code 

REFCODE:BOTYUF [14], and completely optimized with different Theories/Basis Sets to establish 

the most suitable theory/basis set for the development of the experiment: semiempirical theories: 

AM1 [15] and PM3 [16]; Hartree-Fock (HF) theory: HF/3-21G (HF321G); HF/6-31G (HF631G); 

HF-6-31G* (HF631G1); HF/6-31G** (HF631G2) [17, 18]; HF CEP-31G (HFCEP31G) [17, 19]; 

and HF/STO-3G (HFSTO3G) [17, 18]; density functional theory (DFT): BLYP/STO-3G 

(BLYPSTO3G); BLYP/3-21G (BLYP321G); BLYP/6-31G (BLYP631G); BLYP/631G* 



AJCE, 2025, 15(1)                                                                                   ISSN 2227-5835                                                                                                                                               

20 

 

(BLYP631G1); BLYP/6-31G** (BLYP631G2); BLYP/CEP-31G (BLYPCEP31G) [19-21]; 

B3LYP/STO-3G (B3LYPSTO3G); B3LYP/3-21G (B3LYP321G); B3LYP/6-31G  

(B3LYP631G); B3LYP/6-31G* (B3LYP/6-31G1); B3LYP/6-31G** (B3LYP631G2) [18, 20, 21]; 

and B3LYP CEP-31G (B3LYPCEP31G) [19-21]. 

Table 1. Topic and Subtopics anchoring the Chemometric experiment planned to serve Chemistry 

Education students 

Topics Subtopics 

Introduction to Chemometrics [10-13]  Data Preparation for Analysis: Organization; 

Visualization; Pretreatment: Variable 

Selection; Normatization; Standardization. 

Exploratory Analysis: Principal Components 

Analysis (PCA) and Hierarchical Cluster 

Analysis (HCA); Classification Methods: K-

nearest neighbor (KNN) Method; Stepwise 

Discriminant Analysis (SDA) Method 

             The calculated and experimental structural parameters, bond lengths, bond angles and 

dihedral angles of mitragynine in the most stable conformation were used in the construction of a 

data matrix of dimension 66 x 21 (66 rows corresponding to the structural parameters and 21 columns 

constructed with the twenty (20) theories and the Experimental (EXP). The resulting matrix was 

subjected to scrutiny with Exploratory Analysis [10-13]: Principal Components Analysis (PCA) and 

Hierarchical Cluster Analysis (HCA). The use of these techniques allows to simultaneously analyze 

data in a multidimensional space instead of point-by-point comparison. The result of this procedure 

indicated the theory/basis set HF/6-31G** (HF631G2) as the most suitable to develop the 
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experiment (see Section 3.1 Selection of Theory/Basis Set used in the Experiment, in 3. Results and 

Discussion). 

             The 3D-structure of mitragynine obtained with HF/6-31G** (HF631G2) in the most stable 

conformation allowed the construction of the training set of ten (10) opioids (Figure 3), whose 

structures were subjected to full optimization, to provide the lowest energy conformations, to be 

used in the next stage of the experiment. The numbering used in the opioids is shown in this figure, 

mitragynine (1). 

             The structure optimization calculations were developed with the Gaussian 98 software 

package [22]. The construction and visualization of the training set structures were performed with 

the HyperChem 8.06 [23] and Molden 6.3 [24] programs, respectively. The data matrix was explored 

with the Pirouette 3.10 program [25]. 

2.2 Molecular Descriptors 

             To provide information on the influence of steric, electronic, hydrophobic, and hydrophilic 

characteristics on opioid analgesia, several molecular properties were calculated and computed as 

molecular descriptors: steric properties (bond lengths, bond angles, and torsion angles); electronic 

properties (total energy (ET), HOMO energy, HOMO-1 energy, HOMO-2 energy, HOMO-3 energy, 

LUMO energy, LUMO+1 energy, LUMO+2 energy, LUMO+3 energy, Mulliken’s electronegativity 

(c = [HOMO energy – LUMO energy]/2), molecular hardness (h = I – AE/2), where I is ionization 

potential and AE electron affinity, molecular softness (1/h), defined as de inverse of molecular 

hardness; dipole moment (m), GAP energy = HOMO energy – LUMO energy), and atomic charge 

on an Nth atom (qN)); and physicochemical properties (molecular polarizability (POL), molecular 

refractivity (MR), hydration energy (HE), octanol-water partition coefficient (log P), molecular mass 

(MM), total surface area (TSA), and molecular volume (VOL)). In addition, holistic properties were 
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calculated and computed as descriptors to represent different sources of chemical information about 

size, symmetry, and distribution of atoms in the molecule. 

             The molecular properties sources of the descriptors were calculated with the programs 

Gaussian 98 [22]/HF/6-31G** (HF631G2) [17, 18], HyperChem 8.06 [23], Dragon [26-28]. 

2.3 Data Preparation 

             In data preparation, the Pirouette 3.10 [28] and Minitab 16 [29] programs were used as 

follows: Pirouette [28] program (Organization and Visualization; and Pre-Treatment) Minitab [29] 

program (Variable Selection); Pirouette [28] program (Normalization and Standardization). In this 

procedure, the starting point was the construction of a data matrix with 10 rows (compounds) versus 

216 columns (molecular descriptors) and the selection of variables was performed considering the 

Person coefficient r. Thus, when two descriptors presented a Person correlation coefficient r < 6 and, 

consequently, a lower correlation between them, one of them was excluded from the data matrix at 

random, considering that theoretically both describe the same property, and this formation produced 

a compression of the data. 

2.4 Chemometrics 

            The compressed data were subjected to chemometric scrutiny as follows: 

2.4.1 Exploratory Data Analysis 

2.4.1. 1 Principal Components Analysis (PCA) 

            The PCA [10–13, 30] is widely used to simplify large data sets in a way that patterns and 

relationships can be readily recognized and understood. The underlying purpose of the technique is 

the dimension reduction. 

The method generates a new set of variables called principal components, PCs, as linear combination 

of all the initial variables so that the first new variable, PC1, describes the largest variance in the 
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data set, the second new variable, PC2, must be chosen orthogonally (uncorrelated) to the first one 

and in the direction to describe as much variance left as possible and so on. 

The initial data matrix, represented by X, is decomposed into two matrices, T and P where 

                                                          𝐗 = 𝐓𝐏𝐓                                                                                   (1) 

and T, known as “scores” matrix, represents the position of the samples in the new coordinate 

system. The second matrix, P, is the “loadings” matrix and describes how the new axis, i.e. the PCs, 

are built from the original variables. The samples are mapped through scores and the variables by 

the loadings in the new low dimensional vector space defined by the principal components. 

2.4.1.2 Hierarchical Cluster Analysis (HCA) 

 The HCA [10-13, 30] has become, together with principal components, another important 

tool in exploratory data analysis. Its primary purpose is to display the data in such a way as to 

emphasize its natural clusters and patterns in a two-dimensional space. The results are presented in 

the form of dendograms. In the HCA, the distances between samples or variables are calculated and 

compared through the similarity index which ranges from zero, i.e. no similarity and large distance 

among samples, to one for identical samples. 

2.4.2 Data Classification Method 

2.4.2.1 The K-Nearest Neighbor (KNN) Method 

             The KNN method [10-13,30] classifies the objects based on distance comparison among 

them. The multivariate Euclidean distances between every pair of samples with known class 

membership is calculated. The closest K samples are used to build the model. The optimal K is 

determined by cross validation applied to the training set samples. The classification of a test samples 

is determined based on the multivariate distance of this sample with respect to the K samples in the 

training set.  

2.4.2.3. Stepwise Discriminant Analysis (SDA) 
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             The SDA is also a classification method that tries to maximize the probability of correct 

allocation [7, 10-13, 31]. This method has two main goals, which are to separate objects from distinct 

populations and to allocate new objects into previously defined populations. A stepwise procedure 

is used in this method that is, at each step, the most powerful variable is an input into the discriminant 

function. The criterion function for selecting the next variable depends on the number of specified 

groups. The SDA is an approximation based on the F test for significance of variables. At each stage, 

a variable is selected based on its significance and, after several stages, the most significant variables 

are extracted from the entire set subject to analysis [7, 10-13, 31]. 

3. RESULTS AND DISCUSSION 

3.1 Selection of Theory/Basis Set used in the Experiment 

             Table 2 shows the geometric parameters used in the selection of the theory/basis set used in 

the experiment and the correlation matrix between them. These parameters, according to the 

numbering used for the opioids, mitragynine (1), Figure 3, are the dihedral angles C2N1C13C8, 

N2C3C2N1, C7C7C3N2, and N1C13C8C7, respectively. As one can see, the correlation between 

these parameters is less than 0.556. The separation was made in PC1, with three (3) principal 

components: PC1, PC2, and PC3 and explains 97% of the total information. Table 3 shows the 

contribution of the geometric parameters to the 3 PCs; and the corresponding variances are PC1 = 

54.5, PC2 = 29.2, and PC3 = 13.5%, respectively. 

Figure 4 shows the scores plot (PC1 versus PC2) for the theoretical and experimental 

methods used in the selection of the theory/basis set. According to this figure, the separation between 

semiempirical methods on the right of the graph and other methods on the left of the same graph is 

made in PC1, with HF/6-31G* (HF631G1) and HF/6-31G** (HF631G2) being closer to the 

experimental value, therefore proving to be more adequate in reproducing the experimental data. 
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 Figure 5 shows the dendrogram obtained with the HCA for the theoretical and experimental 

methods used in the selection of the theory/basis set. In this figure, it is possible to notice the presence 

of two clusters, one formed by the semi-empirical methods and the other constituted by the other 

methods, confirming the separation by the PCA. However, as can be seen by one, the HF/6-31G** 

method (HF631G2) presents greater similarity to the experimental data, which distinguishes it in 

relation to the HF/6-31G* method (HF631G1), leading to its selection to be used in the experiment. 

Table 2. Geometric parameters responsible for selecting the theory/basis set used in the experiment 

and correlation matrix between them 

 

Theory/Basis set Geometric parameters1 

C2N1C13C8 N2C3C2N1 C7C2C3N2 N1C13C8C7 

HF/STO-3G -1.4777 -0.24636 0.12623 0.74278 

HF/3-21G -1.4777 -0.24636 0.12623 0.74278 

HF/6-31G -0.0035 -0.26731 0.27170 0.60413 

HF/6-31G*   1.7656 -0.25684 0.40100      -0.59752 

HF/6-31G**   0.9547 -0.25422 0.06157      -1.2446 

HF/CEP-31G -0.0772 -0.20185 0.54648 -0.68996 

BLYP/STO-3G -0.0772 -0.20185 0.54648 -0.68996 

BLYP/3-21G -0.0772 -0.20185 0.40100 -0.68996 

BLYP/6-31G  1.7656 -0.25946 0.04542 -0.59752 

BLYP/6-31G*   0.21762 -0.58150 -0.05157 -0.89793 

BLYP/6-31G** -0.0035 -0.25160  0.74044 -0.99037 

BLYP/CEP-31G -0.0772 -0.19923  0.28786 -0.68996 

B3LYP/STO-3G -0.8881 -0.20447 0.28786 -0.43576 

B3LYP/3-21G -0.8881 -0.20447 0.20705 -0.43576 

B3LYP/6-31G  0.8810 -0.25946  0.20705 -0.34333 

B3LYP/6-31G*  0.0702 0.05473     -3.8661 2.6608 

B3LYP/6-31G** 1.6919 4.3303     -1.5548 2.0137 

B3LYPCEP-31G       -1.4777 -0.22804  0.06157   0.85831 

AM1 -1.4777 -0.24636  0.12623   0.74278 

PM3 -1.4777 -0.24636  0.12623   0.74278 

Geometric 

parameter 

    

C2N1C13C8      0.096    0.415      0.555 

N2C3C2N1      0.072      0.016 

C7C2C3N2         0.000 

1degree. 
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3.2 Applying Exploratory Analysis to Training Set Data 

3.2.1 PCA 

After data compression, the PCA was employed and the opioids were separated, with the 

help of three (03) variables, into two classes, according to their analgesia: MAO class (1, 2, 5, 6, 9, 

and 10) and LAO class (3, 4, 7, and 8). Table 4 shows the variables: LUMO+1 energy, CENT 

(Centralization), and EPS0 (Measure of electronegativity ETA) responsible for the separation of the 

opioids from the training set and the correlation matrix between these variables. As one can see in 

this table, the correlation between the variables is less than 0.603. The separation was made into 

PC1, with three (03) principal components, PC1, PC2, and PC3, and explains 100% of the total 

information, with PC1 and PC2 retaining 78.6 and 21.0%, respectively, of this information. 

According to Table 4, in general, MAO class opioids exhibit high LUMO+1 energy values combined 

with low CENT and EPS0 values. 

 

Figure 3. Opioids studied (training set), mitragynine (1) reports the atomic numbering used in the 

experiment 
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Table 3. Contribution of geometric parameters in the three (3) Principal Components 

Variable PC1 PC2 PC3 

C2N1C13C8 0.184 0.850     0.343 

N2C3C2N1 0.519 0.310        -0.734 

C7C2C3N2       -0.590 0.144        -0.585 

N1C13C8C7        0.590      -0.400        -0.050 

Variance (%)      54.5     29.2                 13.5 

Cumulative (%)      54.5     83.7       97.2 

 

Figure 6 shows the scores plot obtained with the PCA for the opioids in the training set. In this figure, 

the MAO class opioids are located on the left side due to the displacement in that direction produced 

by the LUMO+1 energy property (Figure 7), while the LAO class opioids are located on the right 

side of the same figure due to the action of the CENT and EPS0 properties, Figure 7. 

 

Figure 4. Score plot (PC1 versus PC2) for the theoretical and experimental methods used in theory/basis set 

selection 
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Figure 5. Dendrogram obtained with HCA for the theoretical and experimental methods used in the 

selection of the theory/basis set 

  

Table 5 shows the contribution of the variables to the three (3) principal components: PC1, PC2, and 

PC3, with the respective variances, PC1 = 78.6, PC2 = 21.0, and PC3 = 0.40%. From this table, one 

can extract the following equation for PC1: 

              PC1 = -0.463 (LUMO+1 energy) + 0.627 (CENT) + 0.627 (EPS0)                        (2) 

 

 

Figure 6. Score plot (PC1 versus PC2) for the separation of the opioids into two classes: MAO class and 

LAO class 
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Table 4. Variables responsible for separating of the opioids into two classes: most active opioids 

(MAO) and less active opioids (LAO), relative inhibitory activity (morphine) in % (RIA), and 

correlation matrix between descriptors 

 

Opioid 

LUMO+1 energy 

(kcal/mol) 

CENT EPS0 RIAa, b, c, d Activity 

label 

1+(mitragynine)    97.295 1230 20.1 95a, b MAO 

2+ 97.40 1100 19.2 57a, b MAO 

3- 88.77 1510 21.1 38a, b LAO 

4- 96.58 1540 21.5 Inc LAO 

5+ 87.89 1230 20.1 99a, b   MAO 

6+ 88.97 1230 20.1 70a, b   MAO 

7- 89.13 1600 22.1 26a, b  LAO 

8- 88.28 1740 22.4 15a, b  LAO 

9+ 97.74 1230 20.1 101a    MAO 

10+ 97.78 1230 20.1 85a    MAO 

morphine    100d  

Descriptor  

EPS0           -0.501    -0.602    

CENT           -0.502     

a[3]. b[4]. cInactive. dRef. RIA  38 (MAO) and RIA  38 (LAO). 
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Table 5. Contribution of variables in the three (3) Principal Components 

Variable PC1 PC2 PC3 

LUMO+1 energy     -0.463      0.886     0.0013 

CENT      0.627      0.326     0.707 

EPS0      0.627      0.328    -0.707 

Variance (%)    78.6    21.0     0.40 

Cumulative (%)    78.6    99.6 100.0 

 

Equation (2) confirms the information previously extracted from Table 4, that is, new opioids 

derived from mitragynine can be classified as MAO by combining high energy values of LUMO+1 

with low values of CENT and EPS0, respectively. 

 

Figure 7. Loadings plot (PC1 versus PC2) for the variables responsible for separating of the opioids into 

two classes: MAO class and LAO class 

3.2.2 HCA 

 Figure 8 shows the dendrogram obtained with the the HCA, incremental method, for the 

opioids of the training set. The variables in the HCA were the same as those selected in the PCA 

exploration, namely: LUMO+1 energy, CENT, and EPS0. One can see in this figure that the ten (10) 
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opioids in the training set are also distributed into two classes, according to their analgesia: MAO 

class and LAO class. The MAO class consists of two clusters containing opioids 1, 2, 5, 6, 9, and 

10; and the LAO class presents a cluster formed by opioids 3, 4, 7, and 8. For better interpretation 

of the dendrogram, the structures of the MAO and LAO classes will be detailed separately. 

 

Figure 8. Dendrogram obtained by the HCA method for separating opioids into two classes: MAO class and 

LAO class 

  

3.2.2.1 MAO class 

             Clusters A and B appear in this class. Figure 8a shows Cluster A. This cluster groups 

compounds 1, 2, 9, and 10. Opioids 1, 9, and 10 present the methoxyl radical           (-OCH3) at C9; 

the difference between opioids 1 (mitragynine) and opioids 9 and 10 lies in the following aspect: 

opioid 1 (mitragynine) presents the H atom at C3 and the methyl radical (-CH3) at C20 behind and 

in front of the planes containing C3 and C20, respectively, whereas in opioid 9 the methyl radical (-

CH3) is oriented behind the plane of C20. In opioid 10, the H atom at C3, unlike in opioid 1 

(mitragynine), is oriented behind the plane containing C3.  Opioid 2 differs from mitragynine (1) by 

the replacement of the methoxyl radical (-OCH3) by the hydroxyl (-OH) at C9. 
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Figure 8a. Cluster A 

  

Cluster B (Figure 8b) consists of opioids 5 and 6. These opioids differ from mitragynine (1) by the 

presence of hydroxyl (-OH) and methoxyl radical (-OCH3) at the C7 position, respectively. 

 

Figure 8b. Cluster B 

3.2.2.2 LAO class 

 Cluster C is shown in Figure 8c and consists of opioids 3, 4, 7, and 8. When compared to 

mitragynine (1), opioids 3 and 4 have –OCOCH3 and –OCH2OCH3 radicals at the C9 position, 

respectively, whereas opioids 7 and 8 have the loss of the H atom at N1 and the introduction of –

OCH2CH3 and –OCOCH3 radicals at the C7 position, respectively. 
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Figure 8c. Cluster C 

              As can be seen from the detailed class structures: MAO class and LAO class, the HCA 

investigation confirms the PCA for opioids. 

3.3 Applying Classification Methods to Training Set Data 

3.3.1 KNN Method 

             The selected variables are the same as those evidenced in the exploratory analysis of the 

opioid data from the training set, i.e.: LUMO+1 energy, CENT, and EPS0. Table 6 shows the results 

of the classification by the KNN method, with 100% correct information for 1KNN, 2KNN, and 

4KNN, i.e.: all opioids were correctly classified into the predicted classes, indicating that under these 

conditions the classification obtained with the variables for the 4KNN model [10] provides good 

predictive capacity; therefore, the model was considered with four nearest neighbors. 

3.3.2 SDA 

             By classifying the opioids in the training set with SDA, the discriminant functions generated 

with the variables LUMO+1 energy, CENT, and EPS0 are given by Equations (2a) and (2b) below: 

MAO class = −0.461 (LUMO+1 energy) – 15.4 (CENT) + 7.71 (EPS0) – 2.85          (2a) 

LAO class = 0.691 (LUMO+1 energy) + 23.1 (CENT) – 11.6 (EPS0) – 6.40             (2b) 
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             Table 7 shows the classification matrix for the opioids in the training set obtained with the 

discriminant functions (2a) and (2b) with the correct percentage of information in the MAO and 

LAO classes of 100%. 

Table 6. Classification of mitragynine and derivatives in MAO class and LAO class obtained by 

the KNN method 

Class Number of 

opioids 

  Incorrectly 

classified opioids 

  

1KNN 2KNN 3KNN 4KNN 5KNN 

MAO 6 0 0 0 0 0 

LAO 

Total 

4 

10 

0 

0 

0 

0 

1 

1 

0 

0 

1 

1 

% Correct information 100 100 90 100 90 

 

Table 7. Mitargynine and derivatives classification matrix in MAO class and LAO class obtained 

by the SDA method 

 

Class Number of opioids Correct classification 

MAO class LAO class 

MAO 6 6 0 

LAO 4 0 4 

TOTAL 10 6 4 

% Correct information 100 100 

 

             The reliability of the SDA was assessed through the leave-one-out cross-validation test, 

which consist of omitting an opioid from de date set   and constructing the discriminant functions 

with the other samples. Then, this omitted opioid was classified with the generated discriminant 
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functions, and the procedure was repeat until the last opioid in the training set was omitted. Table 8 

shows the SDA classification matrix using the cross-validation procedure.  

Table 8. Matrix of classification of opioids in MAO class and LAO class obtained by the SDA 

method with cross validation 

Class Number of opioids Correct classification 

MAO class LAO class 

MAO 6 6 0 

LAO 4 0 4 

TOTAL 10 6 4 

% Correct information 100 100 

 

 With the model SDA constructed, the allocation rule for news opioids derivatives of 

mitragynine MOA e LAO investigated was established: (a) initially calculate, for the new opioids, 

the values of properties used in the construction of the model, (b) consider the auto scaled values of 

the properties in the discriminant functions, Equations (2a) e (2b), and (c) verify which discriminant 

function has the highest value. The new opioid derivative of mitragynine will be classified as MAO 

if the highest value obtained corresponds to the MAO class and vice-versa. 

             The chemometric experiment with the opioids from the training set showed that LUMO+1 

energy, CENT, and EPS0 are the most important properties to describe their analgesic activities. For 

this reason, it becomes relevant to reflect on the behavior of MAO class opioids in a biological 

process: 

(a) Molecular orbital energies are particularly useful descriptors when an ionic charge or charge 

transfer reaction is part of the ligand-receptor interaction [32]. Table 4 shows that MAO class opioids 

generally have higher values for the LUMO+1 energy property, while for LAO class opioids this 
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value is generally lower. This may indicate that biological processes occur that allow electronic 

interaction between MAO class opioids and the biological receptor MOR [33], producing an increase 

in analgesic activity. For the hypothesis of ligand-MOR complex formation, one can verify a reaction 

with electron transfer from the highest occupied molecular orbital of the MOR protein to the 

LUMO+1 of MAO class opioids. 

(b) the CENT property (centralization) is a tropological descriptor that derives from the hydrogen-

depleted molecular graph and summarizes in matrix form the tropological distance between all pairs 

of different hydrogen atoms in a molecule [32]. Furthermore, the CENT property quantifies the 

degree of molecular compaction to distinguish between molecular structures organized differently 

in relation to the centers. In Table 4, the opioids with lower values for the CENT property belong to 

the MAO class, when compared to the opioids of the LAO class. This may indicate that biological 

processes occur through the topological interaction between the opioids of the MAO class and the 

biological receptor - MOR, producing an increase in analgesic activity. 

(c) the EPS0 property belongs to the class of descriptors called ETA electronegativity measures. 

According to Todeschin and Consonni [32], the ETA indices (Extended Topochemical Atom 

indices) are local and invariant vertices of graphs, defined in the theory of the mobile environment 

of valence electrons, in which the hydrogen-depleted molecular graph is considered to be composed 

of a nucleus and an electron valence environment. In Table 4, the MAO class opioids have lower 

EPS0 values than those of the LAO class. This may indicate that biological processes occur through 

the interaction between the MAO class opioids and the biological receptor-MOR with a decrease in 

the electronegativity of the opioids (ability to receive electrons from the MOR protein) and an 

increase in the analgesic activity. 
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3.4 Application of the Chemometric Models Obtained in Opioids from the Prediction Set 

             The insights gained from the chemometric experiment and chemical intuition allowed us to 

propose nine (9) new opioids derived from mitragynine (prediction set), which were evaluated to 

test the performance of the obtained models. Figure 9 shows the 2D structures of the opioids in the 

prediction set, and Table 9 shows the results of applying the PCA, HCA, KNN, and SDA models to 

this set. In this table, as one can see, the new opioids 13, 15-19 are classified by the four (4) models 

as MAO, while opioid 11 is classified as MAO by the PCA, HCA, and KNN models and LAO by 

the SDA model. Opioid 12 is classified as MAO by the HCA and KNN models and LAO by the 

PCA and SDA models, while opioid 14 is classified as LAO by all models. According to Table 9, 

new opioids derived from mitragynine with analgesic potential can be proposed for synthesis and 

biological testing 13, 15-19. Table 10 shows the LUMO+1 energy, CENT and EPS0 variables for 

the opioids in the prediction set. 

Table 9. Results of applying the PCA, HCA, KNN, and SDA models to the opioids of the prediction 

set 

Opioids PCA model HCA model KNN model SDA model 

11 MAO MAO MAO LAO 

12 LAO MAO MAO LAO 

13 MAO MAO MAO MAO 

14 LAO LAO LAO LAO 

15 MAO MAO MAO MAO 

16 MAO MAO MAO MAO 

17 MAO MAO MAO MAO 

18 MAO MAO MAO MAO 

19 MAO MAO MAO MAO 

              Most active opioids (MAO) and less active opioids (LAO). 
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Table 10. Variables for the opioids of the prediction set 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. 2D structures for the opioids in the prediction set 

 

 

 

Opioids 

LUMO+1 energy 

(kcal/mol) 

CENT EPS0 

11 82.71 1104.0 19.25 

12 98.68 1104.0 19.25 

13 87.02 1332.0 20.51 

14 87.85 1202.0 19.64 

15 86.10 1202.0 19.64 

16 

17 

18 

19 

74.24 

92.11 

85.96 

80.92 

1202.0 

1378.0 

1104.0 

1233.0 

19.64 

20.83 

19.25 

20.12 
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4 CONCLUDING REMARKS 

The chemometric experiment involving opioids with analgesic potential enabled the 

construction of models – PCA, HCA, KNN, and SDA – to explore and classify them into MAO and 

LAO classes, according to their analgesia. The properties LUMO+1 energy, CENT, and EPS0 are 

responsible for the exploration and classification, respectively, of the investigated opioids into the 

MAO and LAO classes. 

It is interesting to note that these properties represent two distinct classes of interaction 

between mitragynine and derivatives and the biological receptor-MOR: electronic (LUMO+1 energy 

and EPS0) and topological (CENT). In addition, the insights accumulated in the chemometric 

experiment and chemical intuition allowed us to propose nine (9) new opioids derived from 

mitragynine; and the application of the models to these opioids suggested six (6) of them with 

analgesic potential for synthesis and biological testing. 

Finally, the experiment can be reproduced at any level of Chemistry Education. 
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