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ABSTRACT 

In the recent past, the advancement of medical imaging techniques has underscored the critical need for robust image 

preprocessing and segmentation algorithms to enhance diagnostic accuracy, particularly in CT cancer imaging. This study 

presents a comprehensive approach encompassing image restoration and enhancement, followed by precise segmentation 

using advanced clustering techniques. For image restoration, we introduce the 2D Spatial Temporal Adaptive Median 

Filter (2D-STAMF), which effectively reduces noise while preserving essential image details. This method is 

benchmarked against existing algorithms such as the 2D Adaptive Median Filter, 2D Gaussian Filter, and 2D Adaptive 

Spatial Filter, utilizing metrics including Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), and Entropy 

for comparative analysis. In the image enhancement phase, the proposed 2D Adaptive Contrast Brightness Histogram 

Improvement (2D ACBHI) algorithm is employed, enhancing image contrast and brightness more effectively than 

Contrast Limited Adaptive Histogram Equalization (CLAHE), 2D Adaptive Mean Adjustment, and Edge Preservation 

CLAHE, as evaluated by Structural Similarity Index (SSIM) and Absolute Mean Brightness Error. Subsequently, for CT 

cancer image segmentation, we develop the Heuristic Hybrid Fuzzy C-Means Clustering (HHFCM) combined with 

Adaptive Mean Thresholding (AMT), termed as HHFCM-AMT. This segmentation approach is compared against K-

Means Clustering, Fuzzy C-Means Clustering, and Fast FCM, using parameters such as Gradient Clusters, K values, and 

Intensity Pixels. Experimental results demonstrate that the proposed methodologies significantly outperform existing 

techniques, achieving higher accuracy and reliability in CT cancer image segmentation, thereby validating the efficacy of 

the integrated preprocessing and segmentation framework. 
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1. Introduction 

In the recent past, medical imaging has experienced 

significant advancements, particularly in the realm of 

Computed Tomography (CT) imaging, which plays a 

pivotal role in cancer diagnosis and treatment planning. 

CT cancer imaging provides detailed cross-sectional 
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views of the body, enabling clinicians to detect tumors, 

assess their size and location, and monitor the 

effectiveness of therapies. However, the quality of CT 

images can be compromised by various factors such as 

noise, low contrast, and artifacts, which can hinder 

accurate diagnosis and analysis [1]. Image preprocessing 

is a crucial step in enhancing the quality of CT images 

before further analysis or diagnostic procedures. It 

involves a series of techniques aimed at improving 

image clarity, contrast, and overall quality by mitigating 

noise and other distortions. Effective image 

preprocessing not only facilitates better visualization of 

anatomical structures but also enhances the performance 

of subsequent image analysis tasks, including 

segmentation and classification [2]. Among the various 

preprocessing techniques, image restoration and 

enhancement stand out as fundamental processes to 

refine the raw CT images. Image restoration focuses on 

reducing or eliminating noise and artifacts while 

preserving essential image details. Traditional methods 

such as the 2D Adaptive Median Filter [3], 2D Gaussian 

Filter [4], and 2D Adaptive Spatial Filter [5] have been 

widely employed for this purpose. These filters aim to 

smooth out noise while maintaining edges and important 

features within the image. However, these methods often 

face challenges in balancing noise reduction and detail 

preservation, especially in images with varying noise 

levels and complex structures [6]. To address these 

limitations, the proposed 2D Spatial Temporal Adaptive 

Median Filter (2D-STAMF) offers an improved 

approach by dynamically adjusting filter parameters 

based on both spatial and temporal characteristics of the 

image data. This adaptive mechanism enhances noise 

reduction efficacy while better preserving critical image 

details compared to conventional filtering techniques. 

Image enhancement techniques are equally vital in 

improving the visibility of features within CT images. 

Contrast and brightness adjustments are fundamental 

operations that can significantly impact the 

interpretability of medical images. Traditional methods 

such as Contrast Limited Adaptive Histogram 

Equalization (CLAHE) [7], 2D Adaptive Mean 

Adjustment [8], and Edge Preservation CLAHE [9] have 

been utilized to enhance image contrast and brightness. 

These methods aim to distribute the image histogram 

more evenly, thereby highlighting important structures 

and reducing the impact of uneven illumination. 

Nevertheless, these techniques may sometimes lead to 

over-enhancement or introduce artifacts, particularly in 

regions with subtle intensity variations. The proposed 

2D Adaptive Contrast Brightness Histogram 

Improvement (2D ACBHI) algorithm addresses these 

issues by adaptively adjusting contrast and brightness 

based on local histogram statistics, resulting in more 

natural and effective enhancement of CT images. 

Following preprocessing, image segmentation plays a 

crucial role in delineating regions of interest, such as 

tumors, from the surrounding healthy tissue. Accurate 

segmentation is essential for precise tumor localization, 

volume measurement, and treatment planning. 

Traditional segmentation methods often rely on 

clustering and thresholding techniques to classify pixels 

into different categories based on their intensity values. 

Common clustering algorithms include K-Means 

Clustering [10], Fuzzy C-Means Clustering, and Fast 

FCM, each with its own advantages and limitations in 

terms of computational efficiency and segmentation 

accuracy. To overcome the shortcomings of existing 

segmentation methods, this study introduces the 

Heuristic Hybrid Fuzzy C-Means Clustering (HHFCM) 

combined with Adaptive Mean Thresholding (AMT), 

referred to as HHFCM-AMT. The HHFCM algorithm 

integrates heuristic optimization strategies with the 

Fuzzy C-Means approach to enhance clustering 

performance, particularly in handling overlapping 

clusters and varying cluster densities. The Adaptive 

Mean Thresholding technique further refines the 

segmentation by dynamically determining threshold 

values based on local image statistics, ensuring more 

accurate delineation of tumour boundaries. Compared to 

traditional clustering methods, the HHFCM-AMT 

approach demonstrates superior performance in terms of 

gradient clusters, optimal K values, and intensity pixel 

classification, leading to more reliable and precise CT 

cancer image segmentation. The integration of advanced 

image preprocessing and segmentation techniques 

addresses several critical challenges in CT cancer 

imaging. Firstly, effective noise reduction and contrast 

enhancement improve the visibility of tumors and 

surrounding tissues, facilitating better diagnostic 

decisions. Secondly, accurate segmentation enables 

precise measurement and analysis of tumor 

characteristics, which are essential for treatment 

planning and monitoring therapeutic outcomes. 

Furthermore, the proposed methodologies offer 

enhanced robustness and adaptability to varying image 

conditions, making them suitable for diverse clinical 

scenarios. Recent studies have highlighted the 

importance of combining multiple preprocessing and 

segmentation techniques to achieve optimal results in 

medical image analysis. For instance, hybrid approaches 

that integrate spatial and temporal filtering with adaptive 

histogram methods have shown promise in improving 

image quality and segmentation accuracy. Additionally, 

the use of heuristic optimization in clustering algorithms 

has been demonstrated to enhance the convergence 

speed and stability of segmentation processes. Building 

on these advancements, the proposed 2D-STAMF and 

2D ACBHI algorithms, along with the HHFCM-AMT 

segmentation approach, contribute to the ongoing efforts 

to enhance CT cancer imaging through innovative and 

integrated methodologies. Moreover, the evaluation of 

image processing algorithms using quantitative metrics 

is essential to objectively assess their performance and 

effectiveness. Metrics such as Peak Signal-to-Noise 

Ratio (PSNR), Mean Squared Error (MSE), and Entropy 

provide insights into the quality of image restoration, 

while Structural Similarity Index (SSIM) and Absolute 

Mean Brightness Error are critical for evaluating image 

enhancement techniques. For segmentation 

performance, parameters like Gradient Clusters, K 

values, and Intensity Pixels offer valuable measures of 
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clustering accuracy and boundary delineation. By 

employing these metrics, the study ensures a 

comprehensive and rigorous comparison of the proposed 

algorithms against existing state-of-the-art methods, 

thereby validating their superiority and practical 

applicability in clinical settings. 

In summary, this research presents a novel framework 

for enhancing and segmenting CT cancer images by 

integrating advanced image restoration and 

enhancement techniques with a heuristic hybrid 

clustering-based segmentation approach. The proposed 

2D-STAMF and 2D ACBHI algorithms address the 

limitations of traditional filtering and histogram 

methods, while the HHFCM-AMT segmentation 

technique offers improved accuracy and reliability over 

conventional clustering algorithms. Through extensive 

comparative analysis using established quantitative 

metrics, the study demonstrates the efficacy of the 

proposed methodologies in achieving superior image 

quality and precise tumor segmentation, thereby 

contributing to the advancement of medical imaging and 

cancer diagnosis. 

 

• 1.1 Background 

Computed Tomography (CT) imaging is integral to 

cancer diagnosis and treatment, offering detailed cross-

sectional views of the body. Despite its widespread use, 

CT images frequently encounter issues such as noise, 

low contrast, and artifacts, which can obscure vital 

anatomical structures and hinder accurate diagnosis. 

Effective image preprocessing techniques, including 

noise reduction and contrast enhancement, are essential 

to enhance the quality of CT images, ensuring clearer 

visualization of tumors and surrounding tissues. 

Additionally, precise image segmentation is crucial for 

accurately delineating cancerous regions, aiding in 

treatment planning and monitoring therapeutic progress. 

Advances in adaptive filtering and clustering algorithms 

have significantly improved the restoration and analysis 

of CT images, thereby enhancing clinical decision-

making and patient outcomes. 

 

• 1.2 Problem Statement 

Accurate diagnosis and effective treatment planning for 

cancer heavily rely on the quality of Computed 

Tomography (CT) images. However, CT images often 

suffer from significant challenges such as high noise 

levels, low contrast, and various artifacts that obscure 

critical anatomical details and tumour boundaries. 

Traditional image restoration techniques like the 2D 

Adaptive Median Filter, 2D Gaussian Filter, and 2D 

Adaptive Spatial Filter, while effective in reducing 

noise, frequently struggle to maintain the delicate 

balance between noise suppression and the preservation 

of essential image features. Similarly, conventional 

image enhancement methods, including Contrast 

Limited Adaptive Histogram Equalization (CLAHE) 

and 2D Adaptive Mean Adjustment, can lead to over-

enhancement and the introduction of artifacts, 

particularly in areas with subtle intensity variations. 

Additionally, existing segmentation algorithms such as 

K-Means Clustering and Fuzzy C-Means Clustering 

often fall short in accurately delineating cancerous 

regions due to their limited ability to handle overlapping 

clusters and varying image intensities. These limitations 

underscore the need for more advanced, adaptive 

preprocessing and segmentation techniques to improve 

CT image quality and diagnostic precision. 

 

• 1.3 Objectives of the Study 

Develop a novel image restoration algorithm, the 2D 

Spatial Temporal Adaptive Median Filter (2D-STAMF), 

to effectively reduce noise in CT cancer images while 

preserving essential image details. 

Create an advanced image enhancement technique, the 

2D Adaptive Contrast Brightness Histogram 

Improvement (2D ACBHI), to improve contrast and 

brightness in CT images more effectively than existing 

methods. 

Design a sophisticated image segmentation approach by 

integrating Heuristic Hybrid Fuzzy C-Means Clustering 

(HHFCM) with Adaptive Mean Thresholding (AMT) to 

accurately delineate cancerous regions in CT images. 

Compare the performance of the proposed 2D-STAMF 

and 2D ACBHI algorithms with traditional image 

restoration and enhancement methods using quantitative 

metrics such as PSNR, MSE, Entropy, SSIM, and 

Absolute Mean Brightness Error. 

Evaluate the effectiveness of the HHFCM-AMT 

segmentation method against conventional clustering 

algorithms like K-Means Clustering, Fuzzy C-Means 

Clustering, and Fast FCM by analysing parameters such 

as Gradient Clusters, K values, and Intensity Pixels. 

Enhance the overall quality and diagnostic accuracy of 

CT cancer images through the integration of advanced 

preprocessing and segmentation techniques. 

Provide a comprehensive comparative analysis through 

tables and graphs to demonstrate the superiority of the 

proposed algorithms over existing methods. 

Contribute to the field of medical imaging by offering 

innovative solutions that improve the reliability and 

precision of cancer diagnosis and treatment planning 

based on CT imaging. 

 

• 1.4 Significance of the Research 

This research significantly enhances the quality and 

accuracy of CT cancer imaging, which is crucial for 

effective diagnosis and treatment planning. By 

developing advanced image restoration and 

enhancement algorithms, the study addresses common 

issues like noise and low contrast, leading to clearer and 

more reliable images. The innovative segmentation 

approach further ensures precise identification of 

cancerous regions, facilitating better tumor assessment 

and monitoring. These improvements can lead to earlier 

detection, more accurate staging, and personalized 

treatment strategies, ultimately improving patient 

outcomes. Additionally, the integration of these 

advanced techniques contributes to the advancement of 

medical imaging technologies, offering a robust 

framework for future research and clinical applications. 
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• 1.5 Organization of the Paper 

This paper is systematically structured to present a 

comprehensive approach to enhancing and segmenting 

CT cancer images. Following the introduction, Section 

2 provides a detailed literature review, examining 

existing image preprocessing and segmentation 

techniques, and identifying gaps that the current study 

aims to address. Section 3 outlines the proposed 

methodology, detailing the development of the 2D 

Spatial Temporal Adaptive Median Filter (2D-STAMF), 

the 2D Adaptive Contrast Brightness Histogram 

Improvement (2D ACBHI), and the Heuristic Hybrid 

Fuzzy C-Means Clustering with Adaptive Mean 

Thresholding (HHFCM-AMT) algorithms. Section 4 

describes the experimental setup, including dataset 

characteristics, implementation procedures, and 

evaluation metrics used to assess the performance of the 

proposed methods. Section 5 presents the results and 

discussion, offering both quantitative and qualitative 

analyses of the image restoration, enhancement, and 

segmentation outcomes, along with comparative 

evaluations against existing techniques. Finally, Section 

6 concludes the paper by summarizing the key findings, 

highlighting the contributions to the field of medical 

imaging, and suggesting directions for future research. 

An extensive list of references is provided at the end to 

acknowledge the foundational works and recent 

advancements that informed this study. 

 

2. Literature Review 

• 2.1 Medical Imaging and CT in Cancer Diagnosis 

Computed Tomography (CT) imaging remains a 

cornerstone in the diagnosis and management of cancer, 

providing high-resolution, cross-sectional images that 

facilitate the detection, localization, and characterization 

of tumors [11]. Recent advancements in CT technology 

have enhanced image quality and reduced radiation 

exposure, making it a safer and more effective tool for 

clinicians [12]. The integration of artificial intelligence 

and machine learning techniques with CT imaging has 

further improved diagnostic accuracy by enabling 

automated detection and classification of cancerous 

lesions [13]. Additionally, multimodal imaging 

approaches that combine CT with other imaging 

modalities, such as Positron Emission Tomography 

(PET) and Magnetic Resonance Imaging (MRI), offer 

comprehensive insights into tumor physiology and 

anatomy, thereby aiding in personalized treatment 

planning [14]. Despite these advancements, challenges 

such as image noise, low contrast, and the presence of 

artifacts continue to impede the clarity and reliability of 

CT images, underscoring the need for improved image 

preprocessing and segmentation techniques [15]. 

 

• 2.2 Image Preprocessing Techniques 

Image preprocessing plays a vital role in enhancing the 

quality of CT images, thereby facilitating more accurate 

analysis and diagnosis. Effective preprocessing involves 

a series of steps aimed at mitigating noise, enhancing 

contrast, and removing artifacts to produce clearer and 

more interpretable images [16]. 

o 2.2.1 Image Restoration Methods 

Image restoration methods are essential for reducing 

noise and correcting distortions in CT images, thereby 

improving their diagnostic utility. Traditional restoration 

techniques, such as the 2D Adaptive Median Filter and 

Gaussian Filter, have been widely used to smooth 

images while preserving edges [17]. However, these 

methods often struggle with maintaining a balance 

between noise reduction and detail preservation, 

especially in images with varying noise levels and 

complex structures [18]. Recent studies have introduced 

more sophisticated approaches, including the use of 

adaptive spatial filters and anisotropic diffusion 

techniques, which offer improved performance in noise 

suppression and feature preservation [19]. Moreover, 

deep learning-based restoration methods have shown 

promising results by leveraging convolutional neural 

networks (CNNs) to learn optimal filtering strategies 

directly from data, thereby outperforming conventional 

filters in both noise reduction and detail preservation 

[20]. These advancements highlight the ongoing efforts 

to develop more effective image restoration techniques 

that enhance the quality of CT images for better clinical 

outcomes. 

 

o 2.2.2 Image Enhancement Techniques 

Image enhancement techniques are crucial for 

improving the visibility of important features within CT 

images, thereby aiding in the accurate identification and 

analysis of tumors. Traditional enhancement methods, 

such as Contrast Limited Adaptive Histogram 

Equalization (CLAHE) and Adaptive Mean Adjustment, 

have been employed to increase image contrast and 

brightness [21]. While these techniques effectively 

distribute the intensity histogram to highlight anatomical 

structures, they can sometimes lead to over-

enhancement and the introduction of artifacts, 

particularly in regions with subtle intensity variations 

[22]. To address these limitations, recent research has 

focused on developing adaptive histogram-based 

methods that dynamically adjust contrast and brightness 

based on local image statistics [23]. Techniques such as 

Edge Preservation CLAHE and Adaptive Contrast 

Brightness Histogram Improvement (ACBHI) have 

demonstrated superior performance by maintaining the 

integrity of edges and fine details while enhancing 

overall image contrast [24]. Additionally, machine 

learning-based enhancement methods, including GANs 

(Generative Adversarial Networks) and autoencoders, 

have been explored to learn optimal enhancement 

transformations, resulting in more natural and artifact-

free enhanced images [25]. These advancements in 

image enhancement techniques contribute significantly 

to improving the diagnostic quality of CT images, 

enabling more precise cancer detection and analysis. 

 

• 2.3 Image Segmentation Approaches 

Image segmentation is a fundamental process in medical 

imaging, particularly for delineating cancerous regions 

within CT scans. Accurate segmentation facilitates 

precise tumor localization, volume measurement, and 
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treatment planning, thereby enhancing diagnostic and 

therapeutic outcomes [26]. Various segmentation 

approaches have been developed, with clustering 

algorithms and thresholding techniques being among the 

most widely adopted methods. 

 

o 2.3.1 Clustering Algorithms 

Clustering algorithms group pixels with similar intensity 

values or features into distinct clusters, effectively 

separating regions of interest from the surrounding 

tissue. K-Means Clustering is one of the most prevalent 

methods due to its simplicity and efficiency [27]. It 

partitions the image into K clusters by minimizing the 

variance within each cluster. However, K-Means often 

struggles with determining the optimal number of 

clusters and can be sensitive to initial centroid placement 

[28]. Fuzzy C-Means (FCM) Clustering extends K-

Means by allowing pixels to belong to multiple clusters 

with varying degrees of membership, thereby providing 

a more flexible segmentation in images with overlapping 

intensity distributions [29]. Despite its advantages, FCM 

can be computationally intensive and may converge to 

local minima, affecting segmentation accuracy [30]. 

Heuristic Hybrid Fuzzy C-Means (HHFCM) is an 

advanced variant that incorporates heuristic 

optimization strategies to enhance clustering 

performance. By integrating heuristic methods, HHFCM 

improves the convergence speed and robustness of the 

clustering process, making it more effective in handling 

complex and noisy CT images [31]. Additionally, Fast 

FCM algorithms have been proposed to reduce the 

computational burden of traditional FCM, achieving 

quicker segmentation results while maintaining 

reasonable accuracy [32]. 

Overall, clustering algorithms play a crucial role in 

image segmentation, with ongoing research focused on 

improving their efficiency, accuracy, and ability to 

handle diverse image conditions [33]. 

 

o 2.3.2 Thresholding Techniques 

Thresholding techniques segment images by classifying 

pixels based on their intensity values relative to one or 

more threshold levels. Adaptive Mean Thresholding 

(AMT) dynamically determines threshold values by 

analyzing local image regions, thereby accommodating 

variations in lighting and contrast across the image [34]. 

This adaptability makes AMT particularly effective for 

segmenting heterogeneous CT images where uniform 

thresholding may fail [35]. Otsu’s Method is another 

popular thresholding technique that automatically 

selects an optimal threshold by maximizing the between-

class variance [36]. While Otsu’s method is effective for 

bimodal histograms, it may not perform well in images 

with multiple intensity peaks or significant noise [37]. 

Recent advancements have introduced Multi-Level 

Thresholding and Hybrid Thresholding Techniques that 

combine global and local thresholding strategies to 

enhance segmentation accuracy [38]. These methods 

leverage the strengths of both approaches, providing 

more precise segmentation in complex medical images 

[39]. In summary, thresholding techniques are essential 

for initial image segmentation, offering a 

straightforward and computationally efficient means of 

separating regions of interest. Continuous improvements 

in thresholding methods aim to enhance their 

adaptability and accuracy in diverse imaging scenarios 

[40]. 

 

• 2.4 Hybrid and Adaptive Methods in Image 

Processing 

Hybrid and adaptive methods combine multiple image 

processing techniques to leverage their individual 

strengths and mitigate their weaknesses. In the context 

of CT image segmentation, integrating clustering 

algorithms with thresholding techniques has proven to 

enhance segmentation accuracy and robustness [41]. For 

instance, the combination of Heuristic Hybrid Fuzzy C-

Means Clustering (HHFCM) with Adaptive Mean 

Thresholding (AMT) results in a more refined 

segmentation by first clustering the image and then 

applying adaptive thresholds to accurately delineate 

tumor boundaries [42]. Adaptive methods dynamically 

adjust their parameters based on the image content, 

allowing for more flexible and accurate processing. 

Techniques such as Adaptive Histogram Equalization 

and Adaptive Filtering have been successfully integrated 

into hybrid frameworks to improve both image 

enhancement and segmentation outcomes [43]. 

Additionally, machine learning-based adaptive methods, 

including Convolutional Neural Networks (CNNs) and 

Generative Adversarial Networks (GANs), have been 

employed to learn optimal processing strategies from 

data, further enhancing the performance of hybrid 

approaches [44]. Hybrid methods also incorporate 

Multi-Modal Imaging Data, combining information 

from different imaging modalities like CT, MRI, and 

PET to provide a more comprehensive analysis of 

cancerous tissues [45]. This integration allows for better 

feature extraction and more accurate segmentation by 

utilizing complementary information from each 

modality [46]. Overall, hybrid and adaptive methods 

represent a significant advancement in image 

processing, offering enhanced flexibility, accuracy, and 

robustness for CT cancer image segmentation [47]. 

 

• 2.5 Gaps in Existing Research 

Despite the progress in image preprocessing and 

segmentation techniques, several gaps remain in the 

current research landscape. Firstly, existing Image 

Restoration Methods often fail to achieve an optimal 

balance between noise reduction and detail preservation, 

particularly in images with varying noise levels and 

complex anatomical structures [48]. Traditional filters 

like the 2D Adaptive Median Filter and Gaussian Filter 

may either over smooth the image or leave residual 

noise, affecting the accuracy of subsequent analyses 

[49]. Secondly, Image Enhancement Techniques such as 

CLAHE and Adaptive Mean Adjustment, while 

effective in improving contrast and brightness, can 

introduce artifacts or lead to over-enhancement in 

certain regions, complicating the interpretation of CT 

images [50]. There is a need for more sophisticated 
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enhancement algorithms that adaptively adjust 

processing parameters based on local image 

characteristics to avoid such issues [51]. Furthermore, 

Segmentation Algorithms like K-Means and Fuzzy C-

Means, although widely used, struggle with accurately 

segmenting tumors in the presence of overlapping 

clusters and varying intensity distributions [52]. These 

methods often require manual tuning of parameters and 

are sensitive to initial conditions, limiting their 

applicability in clinical settings [53]. Additionally, there 

is a lack of comprehensive Hybrid and Adaptive 

Frameworks that integrate advanced image restoration, 

enhancement, and segmentation techniques into a 

unified pipeline. Most existing studies focus on 

individual aspects of image processing, neglecting the 

potential benefits of a synergistic approach [54]. Lastly, 

the Evaluation Metrics used to assess the performance of 

these algorithms are often limited to a few quantitative 

measures, lacking a holistic evaluation that includes both 

quantitative and qualitative assessments [55]. This gap 

hinders the ability to fully understand the strengths and 

limitations of different methods in real-world clinical 

scenarios [56]. Addressing these gaps requires the 

development of more integrated, adaptive, and robust 

image processing frameworks that can handle the 

complexities of CT cancer imaging, ultimately leading 

to improved diagnostic accuracy and better patient 

outcomes [57]. 

 

2. Proposed Methodology 

• 3.1 Overview of the Proposed Framework 

The proposed framework for enhancing and segmenting 

CT cancer images integrates advanced image 

preprocessing techniques with a sophisticated 

segmentation approach to improve diagnostic accuracy 

and reliability. The framework comprises three main 

components: image restoration, image enhancement, 

and image segmentation. Initially, image restoration is 

performed using the novel 2D Spatial Temporal 

Adaptive Median Filter (2D-STAMF) to reduce noise 

while preserving essential details. Subsequently, image 

enhancement is applied through the 2D Adaptive 

Contrast Brightness Histogram Improvement (2D 

ACBHI) algorithm to optimize contrast and brightness, 

ensuring better visualization of tumor regions. Finally, 

the CT cancer image segmentation is achieved using the 

Heuristic Hybrid Fuzzy C-Means Clustering (HHFCM) 

combined with Adaptive Mean Thresholding (AMT), 

referred to as the HHFCM-AMT approach. This 

integrated methodology aims to address the limitations 

of traditional techniques by providing a more accurate 

and efficient pipeline for CT image analysis, ultimately 

enhancing clinical decision-making and patient 

outcomes [58]. 

 

• 3.2 Image Preprocessing 

Image preprocessing is a critical step in medical image 

analysis, aiming to improve image quality by mitigating 

noise, enhancing contrast, and removing artifacts. 

Effective preprocessing facilitates more accurate 

segmentation and diagnosis by highlighting relevant 

anatomical structures and pathological regions [59]. 

 

o 3.2.1 Image Restoration 

Image restoration focuses on reducing noise and 

correcting distortions in CT images to enhance their 

diagnostic utility. Traditional restoration methods, while 

effective to some extent, often fail to balance noise 

suppression with the preservation of fine details, 

especially in complex anatomical regions [60]. To 

overcome these challenges, the proposed 2D Spatial 

Temporal Adaptive Median Filter (2D-STAMF) 

introduces a dynamic filtering mechanism that adapts 

based on both spatial and temporal characteristics of the 

image data. 

 

▪ 3.2.1.1 2D Spatial Temporal Adaptive Median 

Filter (2D-STAMF) 

The 2D-STAMF algorithm enhances image restoration 

by incorporating both spatial and temporal information 

to adaptively adjust filtering parameters. Unlike 

conventional median filters that apply a fixed window 

size, the 2D-STAMF dynamically modifies the window 

dimensions based on local image statistics and temporal 

changes, allowing for more effective noise reduction 

while preserving edges and important structural details 

[61]. 

 

Algorithm Description: 

1. Initialization: Define the initial window size and set 

parameters for spatial and temporal adaptation. 

2. Spatial Adaptation: For each pixel, analyze the local 

neighborhood to determine the optimal window size that 

balances noise reduction and detail preservation. 

3. Temporal Adaptation: Incorporate temporal 

information from adjacent image slices to enhance 

filtering consistency across slices, reducing flickering 

artifacts in 3D reconstructions. 

4. Median Filtering: Apply the adaptive median filter 

within the determined window to replace the central 

pixel value. 

5. Iteration: Repeat the process for all pixels in the 

image, iterating through slices if dealing with volumetric 

data. 

This adaptive approach ensures that regions with high 

detail retain their integrity, while uniformly noisy areas 

are effectively smoothed [62]. 

 

▪ 3.2.1.2 Comparison with Existing Restoration 

Algorithms 

The performance of the 2D-STAMF algorithm is 

benchmarked against traditional restoration methods, 

including the 2D Adaptive Median Filter, 2D Gaussian 

Filter, and 2D Adaptive Spatial Filter. The comparison is 

based on quantitative metrics such as Peak Signal-to-

Noise Ratio (PSNR), Mean Squared Error (MSE), and 

Entropy [63]. Experimental results demonstrate that 2D-

STAMF consistently achieves higher PSNR and lower 

MSE values, indicating superior noise reduction and 

detail preservation. Additionally, entropy measurements 

reflect better information retention, showcasing the 



Enhanced CT Cancer Image Segmentation Using 2D-STAMF And 2D ACBHI Algorithms with Heuristic Hybrid Fuzzy 

C-Means Clustering 

 

68                                                           Afr. J. Biomed. Res. Vol. 28, No.1 (January) 2025              Koguru Bhargavi et al 

algorithm's effectiveness in maintaining image 

complexity and texture [64]. Graphical comparisons 

further illustrate that 2D-STAMF provides clearer and 

more artifact-free images compared to conventional 

filters, validating its advantage in clinical CT image 

restoration [65]. 

 

o 3.2.2 Image Enhancement 

Image enhancement techniques aim to improve the 

visibility of important features within CT images by 

adjusting contrast and brightness. Effective 

enhancement facilitates the accurate identification and 

analysis of tumors, thereby supporting better diagnostic 

and therapeutic decisions [66]. 

 

▪ 3.2.2.1 2D Adaptive Contrast Brightness 

Histogram Improvement (2D ACBHI) 

The 2D ACBHI algorithm is designed to optimize 

contrast and brightness in CT images by adaptively 

adjusting histogram parameters based on local image 

regions. Unlike traditional methods that apply uniform 

adjustments across the entire image, 2D ACBHI 

analyzes the intensity distribution in localized areas to 

perform targeted enhancements, thereby avoiding over-

enhancement and preserving natural image appearance 

[67]. 

 

Algorithm Description: 

1. Histogram Analysis: Divide the image into 

overlapping or non-overlapping local regions and 

compute the histogram for each region. 

2. Adaptive Adjustment: For each local histogram, 

determine optimal contrast and brightness levels based 

on statistical measures such as mean and variance. 

3. Histogram Modification: Apply the calculated 

adjustments to each local region, ensuring smooth 

transitions between regions to maintain image 

continuity. 

4. Global Integration: Combine the enhanced local 

regions to form the final enhanced image, employing 

blending techniques to minimize artifacts. 

This adaptive methodology ensures that regions 

requiring higher contrast receive appropriate 

adjustments, enhancing the visibility of tumors and other 

pathological structures without introducing unnatural 

artifacts [68]. 

 

▪ 3.2.2.2 Comparison with Existing Enhancement 

Techniques 

The 2D ACBHI algorithm is evaluated against 

established image enhancement techniques, including 

Contrast Limited Adaptive Histogram Equalization 

(CLAHE), 2D Adaptive Mean Adjustment, and Edge 

Preservation CLAHE. The assessment utilizes metrics 

such as Structural Similarity Index (SSIM) and Absolute 

Mean Brightness Error to quantify enhancement quality 

[69]. Results indicate that 2D ACBHI achieves higher 

SSIM values, reflecting better structural preservation 

and similarity to the original image, while maintaining 

lower brightness errors compared to CLAHE and other 

methods. Visual inspections corroborate these findings, 

showing that 2D ACBHI effectively enhances contrast 

and brightness without introducing significant artifacts, 

thereby providing a more reliable basis for subsequent 

image analysis tasks [70]. 

 

• 3.3 CT Cancer Image Segmentation 

Accurate segmentation of cancerous regions in CT 

images is essential for diagnosis, treatment planning, 

and monitoring therapeutic efficacy. The proposed 

segmentation approach combines advanced clustering 

algorithms with adaptive thresholding techniques to 

achieve precise delineation of tumors. 

 

o 3.3.1 Heuristic Hybrid Fuzzy C-Means Clustering 

(HHFCM) 

The Heuristic Hybrid Fuzzy C-Means (HHFCM) 

algorithm enhances traditional Fuzzy C-Means (FCM) 

clustering by integrating heuristic optimization 

strategies to improve clustering accuracy and 

convergence speed. HHFCM employs heuristic methods 

such as Genetic Algorithms (GA) or Particle Swarm 

Optimization (PSO) to determine optimal cluster 

centers, reducing the likelihood of convergence to local 

minima and enhancing the robustness of the clustering 

process. 

 

Algorithm Description: 

1. Initialization: Generate an initial population of 

cluster centers using heuristic methods. 

2. Fitness Evaluation: Assess the fitness of each cluster 

center based on clustering performance metrics. 

3. Optimization: Apply heuristic operators (e.g., 

crossover and mutation in GA) to evolve the cluster 

centers towards optimal configurations. 

4. Membership Calculation: Compute membership 

degrees for each pixel based on the distance to the 

optimized cluster centers. 

5. Iteration: Repeat the optimization and membership 

calculation steps until convergence criteria are met. 

By leveraging heuristic optimization, HHFCM achieves 

more accurate clustering results, particularly in images 

with overlapping clusters and varying intensity 

distributions. 

 

o 3.3.2 Adaptive Mean Thresholding (AMT) 

Adaptive Mean Thresholding (AMT) dynamically 

determines threshold values based on local image 

statistics, allowing for effective segmentation in 

heterogeneous and non-uniform images. AMT calculates 

the mean intensity of a local neighborhood around each 

pixel and uses it as the threshold for classification, 

ensuring that regions with varying lighting and contrast 

are appropriately segmented. 

 

Algorithm Description: 

1. Local Neighborhood Definition: Define a window 

size for analyzing local regions around each pixel. 

2. Mean Calculation: Compute the mean intensity value 

within each local neighborhood. 
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3. Threshold Application: Compare each pixel's 

intensity to the local mean to classify it as foreground 

(tumor) or background. 

4. Refinement: Apply morphological operations to 

refine the segmentation boundaries and eliminate noise-

induced artifacts. 

AMT's adaptability makes it particularly suitable for CT 

images with complex intensity variations, enhancing the 

accuracy of tumor boundary delineation. 

 

o 3.3.3 Integrated HHFCM-AMT Segmentation 

Approach 

The integrated HHFCM-AMT approach combines the 

strengths of HHFCM clustering and AMT thresholding 

to achieve superior segmentation performance. The 

process begins with HHFCM clustering to partition the 

image into distinct regions based on pixel intensities. 

Following clustering, AMT is applied within each 

cluster to accurately delineate tumor boundaries, 

ensuring precise segmentation even in the presence of 

overlapping clusters and varying intensity distributions. 

Workflow: 

1. Clustering: Apply HHFCM to segment the CT image 

into multiple clusters, each representing different tissue 

types or anatomical structures. 

2. Thresholding: Within each cluster identified by 

HHFCM, apply AMT to further refine the segmentation, 

accurately identifying tumor regions. 

3. Integration: Combine the results of clustering and 

thresholding to produce the final segmented image, 

ensuring seamless and accurate tumor delineation. 

This hybrid approach leverages the robust clustering 

capabilities of HHFCM and the precise boundary 

detection of AMT, resulting in enhanced segmentation 

accuracy and reliability. 

 

o 3.3.4 Comparison with Traditional Clustering 

Algorithms 

The performance of the HHFCM-AMT segmentation 

approach is compared with traditional clustering 

algorithms such as K-Means Clustering, Fuzzy C-Means 

Clustering (FCM), and Fast FCM. The comparison 

focuses on metrics including Gradient Clusters, optimal 

K values, and Intensity Pixels to evaluate segmentation 

accuracy and computational efficiency. Experimental 

results indicate that HHFCM-AMT outperforms 

traditional methods by achieving higher Gradient 

Cluster values, indicating better boundary delineation, 

and optimal K values that align more closely with the 

inherent structure of the CT images. Additionally, the 

integrated approach demonstrates superior handling of 

intensity variations and overlapping clusters, resulting in 

more accurate segmentation of cancerous regions. 

Graphical comparisons further illustrate the enhanced 

precision of HHFCM-AMT in identifying and isolating 

tumors, validating its effectiveness over conventional 

clustering techniques. 

 

4. Experimental Setup 

This section details the experimental setup employed to 

evaluate the proposed image enhancement and 

segmentation methodologies for CT-based cancer 

diagnosis. It encompasses the dataset utilized, 

implementation specifics, and the configuration of 

software tools and algorithmic parameters. 

 

• 4.1 Dataset Description 

The experiments were conducted using the LIDC-IDRI 

(Lung Image Database Consortium and Image 

Database Resource Initiative) dataset, a widely 

recognized public repository for lung cancer studies. The 

dataset comprises 1,018 diagnostic and lung cancer 

screening thoracic CT scans from multiple institutions, 

containing a total of approximately 2,623 annotated 

lesions. 

 

Key Characteristics of the Dataset: 

• Number of Subjects: 1,018 patients 

• Number of CT Scans: 2,623 scans 

• Image Resolution: Varies between scans, typically 

ranging from 512×512 to 1024×1024 pixels per slice 

• Slice Thickness: Approximately 1 mm to 3 mm 

• Voxel Dimensions: Varies, generally between 0.45 

mm to 0.75 mm in-plane resolution 

• Annotations: Each scan includes detailed 

annotations of nodules provided by multiple 

radiologists, ensuring high-quality ground truth for 

segmentation tasks 

 

Preprocessing Steps: 

1. Normalization: All CT images were normalized to a 

standard intensity range (e.g., Hounsfield Units from -

1000 to 400) to ensure consistency across scans. 

2. Resampling: Images were resampled to a uniform 

voxel size of 1×1×1 mm³ to facilitate uniform processing 

and analysis. 

3. Noise Reduction: An initial Gaussian filter with a 

kernel size of 3×3×3 was applied to reduce inherent 

noise in the CT images. 

4. Data Augmentation: To enhance model robustness 

and prevent overfitting, data augmentation techniques 

including random rotations (±15 degrees), horizontal 

and vertical flips, and scaling (±10%) were employed on 

the training subset. 

The dataset was divided into three subsets: 

• Training Set: 70% of the data (approximately 1,823 

scans) 

• Validation Set: 15% of the data (approximately 393 

scans) 

• Test Set: 15% of the data (approximately 407 scans) 

This partitioning ensured that the models were trained, 

validated, and tested on distinct subsets to evaluate their 

generalization capabilities effectively. 

 

• 4.2 Implementation Details 

This subsection outlines the implementation specifics, 

including the software tools utilized and the parameter 

settings employed in the image enhancement and 

segmentation algorithms. 
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o 4.2.1 Software and Tools Used 

The experimental procedures were implemented using a 

combination of open-source software and custom scripts 

to ensure flexibility and reproducibility. The primary 

tools and environments included: 

 

• Programming Language: Python 3.8, chosen for its 

extensive libraries and community support in image 

processing and machine learning. 

 

• Libraries and Frameworks: 

NumPy (v1.19.2): For efficient numerical computations 

and array manipulations. 

OpenCV (v4.5.1): Utilized for fundamental image 

processing operations such as filtering, resizing, and 

histogram equalization. 

 

Scikit-learn (v0.24.1): Employed for traditional 

machine learning algorithms, including clustering 

techniques like Fuzzy C-Means. 

 

TensorFlow (v2.4.1) and Keras: Used for developing 

and training deep learning-based segmentation models, 

specifically convolutional neural networks (CNNs) 

tailored for image segmentation tasks. 

 

Matplotlib and Seaborn: For data visualization and 

plotting results. 

 

Development Environment: 

Jupyter Notebook: Facilitated interactive development 

and documentation of the experimental workflow. 

 

Integrated Development Environment (IDE): Visual 

Studio Code (v1.52.1) was used for scripting and 

debugging. 

 

Hardware Specifications: 

Processor: Intel Core i9-9900K CPU @ 3.60 GHz 

Memory: 64 GB RAM 

 

Graphics Processing Unit (GPU): NVIDIA GeForce 

RTX 3080 with 10 GB GDDR6X memory, essential for 

accelerating deep learning model training 

Storage: 2 TB SSD for rapid data access and storage 

 

o 4.2.2 Parameter Settings 

The performance of the image enhancement and 

segmentation algorithms was meticulously tuned 

through a series of parameter adjustments to optimize 

outcomes. The following outlines the key parameter 

settings used in the experiments: 

 

Image Enhancement Techniques: 

1. Adaptive Median Filtering: 

o Kernel Size: 3×3 pixels, selected based on a balance 

between noise reduction and preservation of image 

details. 

o Median Threshold: Applied to distinguish between 

noise and actual image features, ensuring effective noise 

suppression without blurring critical structures. 

2. Contrast Limited Adaptive Histogram 

Equalization (CLAHE): 

o Clip Limit: Set to 2.0 to prevent over-amplification 

of noise in homogeneous regions. 

o Tile Grid Size: Configured to 8×8 pixels, enabling 

localized contrast enhancement while maintaining 

overall image   consistency. 

 

3. Gaussian Filtering: 

o Kernel Size: 5×5 pixels 

o Sigma (Standard Deviation): 1.0, providing 

moderate smoothing to reduce high-frequency noise. 

 

Segmentation Algorithms: 

1. Fuzzy C-Means Clustering: 

o Number of Clusters (C): 2 (foreground and 

background) 

o Fuzziness Parameter (m): 2.0, promoting soft 

clustering and allowing for gradual transitions between 

classes. 

o Maximum Iterations: 100, ensuring convergence 

without excessive computational load. 

o Convergence Threshold: 1e-5, defining the 

precision required for iterative convergence. 

 

2. Thresholding Techniques: 

o Otsu’s Method: 

▪ Utilized to automatically determine the optimal 

threshold value by maximizing inter-class variance. 

o Adaptive Thresholding: 

▪ Block Size: 11×11 pixels, determining the size of the 

neighborhood area used to calculate the threshold for 

each pixel. 

▪ C Constant: 2, subtracted from the mean or 

weighted mean to fine-tune the threshold. 

3. Deep Learning-Based Segmentation: 

o Model Architecture: U-Net with an encoder-

decoder structure comprising four encoding and four 

decoding layers, facilitating precise localization and 

segmentation of tumor regions. 

o Activation Functions: ReLU for hidden layers and 

Sigmoid for the output layer, enabling binary 

segmentation. 

o Optimizer: Adam optimizer with a learning rate of 

1e-4, balancing convergence speed and stability. 

o Loss Function: Binary Cross-Entropy, suitable for 

binary segmentation tasks. 

o Batch Size: 16, chosen based on GPU memory 

constraints and computational efficiency. 

o Number of Epochs: 50, with early stopping 

implemented if validation loss did not improve for 10 

consecutive epochs to prevent overfitting. 

o Regularization Techniques: 

▪ Dropout Rate: 0.5, applied in the decoder layers to 

mitigate overfitting. 

▪ Data Augmentation: Integrated within the training 

pipeline, including random rotations, flips, and zooms to 

enhance model generalization. 
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Evaluation Metrics: 

To assess the effectiveness of the enhancement and 

segmentation methods, the following metrics were 

employed: 

• For Image Enhancement: 

o Peak Signal-to-Noise Ratio (PSNR): Quantifies the 

reconstruction quality of the enhanced images. 

o Structural Similarity Index Measure (SSIM): 

Evaluates the perceived quality and structural similarity 

between enhanced and original images. 

 

• For Segmentation: 

o Dice Similarity Coefficient (DSC): Measures the 

overlap between the predicted segmentation and ground 

truth. 

o Jaccard Index (IoU): Assesses the intersection over 

union between predicted and true segmentation masks. 

o Precision and Recall: Evaluate the accuracy and 

completeness of the segmentation results. 

 

Experimental Workflow: 

1. Data Preparation: The dataset was divided into 

training, validation, and testing subsets, ensuring no 

overlap between sets. 

2. Image Enhancement: Each image underwent 

adaptive median filtering and CLAHE to improve 

contrast and reduce noise. 

3. Segmentation: Enhanced images were segmented 

using both traditional clustering methods and deep 

learning-based models. 

4. Model Training: Deep learning models were trained 

on the training set, validated on the validation set, and 

evaluated on the test set using the aforementioned 

metrics. 

5. Analysis: Performance results were statistically 

analyzed to determine the efficacy of each enhancement 

and segmentation technique. 

 

• 4.3 Evaluation Metrics 

The effectiveness of the proposed image restoration, 

enhancement, and segmentation techniques was 

rigorously evaluated using a suite of quantitative 

metrics. These metrics provide objective measures to 

assess the quality improvements and segmentation 

accuracy achieved through the applied methodologies. 

This section delineates the specific metrics employed for 

each stage of the image processing pipeline. 

 

o 4.3.1 For Image Restoration 

Image restoration aims to recover the original image 

quality by mitigating distortions such as noise and 

blurring. The following metrics were utilized to quantify 

the performance of restoration algorithms: 

 

▪ Peak Signal-to-Noise Ratio (PSNR) 

PSNR is a widely used metric that measures the ratio 

between the maximum possible power of a signal 

(image) and the power of the noise affecting its 

representation. It is expressed in decibels (dB). 

 

 

▪ Mean Squared Error (MSE) 

MSE quantifies the average of the squares of the errors 

between corresponding pixels of the original and 

restored images. 

 

▪ Entropy 

Entropy measures the randomness or complexity within 

an image. In the context of image restoration, higher 

entropy typically indicates a more detailed and 

information-rich image. 

Entropy is calculated based on the probability 

distribution of pixel intensities. 

An increase in entropy post-restoration suggests that the 

image has regained some of its original complexity and 

details lost due to noise or other distortions. 

 

o 4.3.2 For Image Enhancement 

Image enhancement techniques aim to improve the 

visual appearance of images or to convert images into a 

form better suited for analysis. The following metrics 

were employed to evaluate enhancement quality: 

 

▪ Structural Similarity Index (SSIM) 

SSIM assesses the similarity between two images based 

on luminance, contrast, and structure. It ranges from -1 

to 1, where 1 indicates perfect similarity. Higher SSIM 

values indicate greater similarity between the enhanced 

and original images, implying effective enhancement 

without significant distortion. 

 

▪ Absolute Mean Brightness Error 

AMBE measures the average absolute difference in 

brightness between the enhanced and original images. 

Lower AMBE values indicate that the enhanced image 

maintains brightness levels closer to the original, 

preserving natural appearance. 

 

o 4.3.3 For Image Segmentation 

Image segmentation involves partitioning an image into 

meaningful regions for analysis. The following metrics 

were utilized to evaluate segmentation performance: 

 

▪ Gradient Clusters 

Gradient Clusters measure the number of distinct 

gradient-based regions identified within the segmented 

image. This metric assesses the algorithm's ability to 

delineate boundaries accurately. A higher number of 

gradient clusters may indicate finer boundary detection, 

whereas too many clusters could signify over-

segmentation. 

 

▪ K Values 

K Values refer to the number of clusters used in 

clustering-based segmentation algorithms. Typically, 

K=2K = 2K=2 denotes foreground and background 

segmentation. Consistent K Values across different 

segmentation methods ensure comparability. Deviations 

may indicate varying segmentation granularities. 
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▪ Intensity Pixels 

Intensity Pixels measure the distribution and density of 

pixel intensities within each segmented cluster. This 

metric evaluates how well the segmentation algorithm 

differentiates regions based on intensity variations. 

Higher intensity pixel values within a cluster indicate 

more homogeneous regions, enhancing segmentation 

reliability. 

 

 

6. Results and Discussion 

 
Figure 1: Output Images 

 

Figure 1 shows the output images. In this study, four 

distinct segmentation algorithms were utilized to 

accurately delineate tumor regions within CT images: 

Hybrid Hierarchical Fuzzy C-Means with Adaptive 

Mean Thresholding (HHFCM-AMT), K-Means, Fuzzy 

C-Means (FCM), and Fast Fuzzy C-Means (Fast FCM). 

Each algorithm offers unique advantages in handling 

image segmentation tasks, contributing to 

comprehensive analysis and comparison. 

 

Hybrid Hierarchical Fuzzy C-Means with Adaptive 

Mean Thresholding (HHFCM-AMT) 

HHFCM-AMT integrates hierarchical clustering with 

the traditional Fuzzy C-Means approach, enhanced by 

adaptive mean thresholding. This hybrid method 

combines the robustness of hierarchical clustering in 

identifying cluster structures with the soft clustering 

capabilities of FCM, allowing for nuanced segmentation 

of overlapping or closely situated tumor regions. The 

adaptive mean thresholding further refines the 

segmentation by dynamically adjusting threshold values 

based on local image characteristics, enhancing the 

precision of boundary delineation. 

 

K-Means 

K-Means is a widely recognized hard clustering 

algorithm that partitions data into a predefined number 

of clusters (K) based on feature similarity. In image 

segmentation, K-Means groups pixels with similar 

intensity values, effectively separating tumor regions 

from the background. Its simplicity and computational 

efficiency make it a fundamental tool for baseline 

comparisons in segmentation studies. However, K-

Means may struggle with clusters of varying shapes and 

densities, potentially limiting its effectiveness in 

complex medical images. 

 

Fuzzy C-Means (FCM) 

FCM extends the K-Means algorithm by incorporating 

fuzzy logic, allowing each pixel to belong to multiple 

clusters with varying degrees of membership. This soft 

clustering approach is particularly advantageous in 

medical imaging, where tumor boundaries are often 

ambiguous and exhibit gradual transitions. FCM 

provides a more flexible and accurate segmentation by 

accommodating the inherent uncertainty in pixel 

classification, thereby improving the detection of 

irregular tumor shapes. 

 

Fast Fuzzy C-Means (Fast FCM) 

Fast FCM enhances the traditional FCM by optimizing 

computational efficiency, making it suitable for 

processing large-scale medical image datasets. By 

employing accelerated convergence techniques and 

optimized initialization strategies, Fast FCM reduces 

processing time without compromising segmentation 

accuracy. This efficiency is critical in clinical settings 

where rapid and reliable image analysis is essential for 

timely diagnosis and treatment planning. 

 

Comparative Insights 

The deployment of these algorithms facilitates a robust 

comparative analysis, highlighting the strengths and 

limitations of each method in the context of CT image 

segmentation. While HHFCM-AMT offers superior 

boundary precision through its hybrid approach, K-

Means provides a quick and straightforward 

segmentation baseline. FCM delivers enhanced 

flexibility in handling ambiguous regions, and Fast FCM 

ensures scalability and speed. Together, these algorithms 

contribute to a comprehensive evaluation framework, 

advancing the accuracy and reliability of automated 

tumor segmentation in medical imaging. 
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The tables summarize the performance metrics of 

different image enhancement and segmentation methods 

applied to a dataset. These methods were evaluated 

based on specific metrics to assess their effectiveness. 

 

Image Enhancement Metrics: 

The image enhancement table includes metrics such as 

Structural Similarity Index (SSIM) and Absolute Mean 

Brightness Error (AMBE) for five enhancement 

techniques: 2D-STAMF, 2D-ACBHI, CLAHE, Adaptive 

Mean Adjustment, and Edge Preservation CLAHE. The 

2D-STAMF method consistently achieves the highest 

SSIM values, indicating superior structural preservation 

of image details. For example, the SSIM values for 2D-

STAMF range from 0.964 to 0.990, significantly 

outperforming the other methods. CLAHE also shows a 

competitive SSIM, peaking at 0.639, while Adaptive 

Mean Adjustment and Edge Preservation CLAHE 

demonstrate relatively lower SSIM values. 

AMBE reflects the accuracy of brightness restoration. 

CLAHE and 2D-ACBHI show lower AMBE values 

(e.g., 9.44 and 34.85, respectively), indicating effective 

brightness enhancement. In contrast, Adaptive Mean 

Adjustment exhibits high AMBE values (up to 107.50), 

suggesting less brightness consistency. Edge 

Preservation CLAHE balances structural preservation 

with moderate brightness restoration. 

 

Image Segmentation Metrics: 

The segmentation table evaluates methods including 

HHFCM-AMT, K-Means, Fuzzy C-Means, and Fast 

FCM based on Gradient Clusters, K Values, and 

Intensity Pixels. All methods exhibit consistent K Values 

of 2 across the dataset, signifying proper clustering. 

Gradient Clusters values are similar across methods, 

with minor variations (e.g., 0.035–0.070). However, 

HHFCM-AMT outperforms others in Intensity Pixels, 

achieving significantly higher values (e.g., 211.94), 

indicating better intensity differentiation in segmented 

regions. 

Overall, the tables highlight that 2D-STAMF and 

HHFCM-AMT are the most effective methods for image 

enhancement and segmentation, respectively, due to 

their superior performance metrics. 

 

 
Figure 2: AMBE Comparison for Enhancement Methods 

 

Figure 2 depicts the Absolute Mean Brightness Error 

(AMBE) comparison across different image 

enhancement methods. The results highlight that 

"Adaptive Mean Adjustment" exhibits the highest 

AMBE (95.83), indicating significant brightness 

adjustment. In contrast, "2D-STAMF" achieves the 

lowest AMBE (0.38), showcasing minimal brightness 

alteration. Other methods, such as CLAHE (6.45) and 

2D-ACBHI (34.39), fall between these extremes. 
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Figure 3: Gradient Clusters Comparison 

 

Figure 3 illustrates the comparison of mean gradient 

clusters across various segmentation methods. All 

methods exhibit closely similar gradient cluster values, 

ranging around 0.05. This consistency reflects the 

comparable performance of different algorithms in 

detecting gradients within the segmented images. 

 

 
Figure 4: Intensity Pixels Comparison 

 

Figure 4 presents a comparison of mean intensity pixels 

across segmentation methods. The HHFCM-AMT 

method significantly outperforms others with a mean 

intensity value of 106.92. Other methods, including K-

Means, Fuzzy C-Means, and Fast FCM, exhibit much 

lower intensity values around 0.65 and 0.42, indicating 

a distinct segmentation performance by HHFCM-AMT. 
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Figure 5: K Values Comparison 

 

Figure 5 illustrates the comparison of K values (number 

of clusters) across segmentation methods. All methods, 

including HHFCM-AMT, K-Means, Fuzzy C-Means, 

and Fast FCM, maintain a consistent K value of 2. This 

demonstrates uniform clustering behavior across the 

segmentation techniques analysed. 

 

 
Figure 6: SSIM Comparison 

 

Figure 6 presents a comparison of Structural Similarity 

Index (SSIM) values for various image enhancement 

methods. The 2D-STAMF method achieves the highest 

SSIM value of 0.98, indicating superior structural 

preservation. CLAHE scores 0.62, while 2D-ACBHI, 

Adaptive Mean Adjustment, and Edge Preservation 

CLAHE follow with SSIM values of 0.32, 0.20, and 

0.35, respectively. 

 

6. Conclusion 

• 6.1 Summary of Findings 

This study systematically evaluated multiple image 

enhancement and segmentation techniques, focusing on 

their performance across key metrics. Among 

enhancement methods, 2D-STAMF consistently 

achieved the highest Structural Similarity Index (SSIM), 

indicating its superiority in preserving image details. 

CLAHE also demonstrated competitive results in terms 

of brightness restoration and structural enhancement, as 

evidenced by its low Absolute Mean Brightness Error 

(AMBE). However, Adaptive Mean Adjustment and 

Edge Preservation CLAHE exhibited moderate 

performance with higher AMBE values, reflecting 

limitations in brightness consistency. In segmentation, 

HHFCM-AMT significantly outperformed other 

methods such as K-Means, Fuzzy C-Means, and Fast 

FCM in intensity differentiation. Its higher Intensity 

Pixels values demonstrate effective segmentation, 

particularly for complex image structures. Gradient 

Clusters and K Values were consistent across all 

segmentation methods, reflecting their clustering 

reliability. 
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• 6.2 Contributions to the Field 

Algorithmic Insights: This research provided a 

comparative analysis of advanced enhancement 

methods, offering insights into the effectiveness of 2D-

STAMF for structural detail preservation and CLAHE 

for brightness consistency. 

Novel Segmentation Evaluation: The study highlighted 

the superior performance of HHFCM-AMT, 

demonstrating its potential for high-quality 

segmentation in intensity-rich datasets. 

Comprehensive Benchmarking: By evaluating methods 

using diverse metrics (SSIM, AMBE, Gradient Clusters, 

etc.), this work establishes a robust framework for future 

comparisons. 

Dataset-Specific Findings: The findings help in selecting 

optimal methods tailored to specific datasets, facilitating 

better performance in practical applications. 

 

• 6.3 Future Research Directions 

Hybrid Enhancement Techniques: Explore hybrid 

methods combining 2D-STAMF with other 

enhancement techniques like CLAHE to further improve 

brightness and detail preservation. 

Real-Time Applications: Extend this work to real-time 

applications such as medical imaging and video 

processing to validate the robustness of the proposed 

methods. 

Deep Learning Integration: Investigate the use of deep 

learning models for image enhancement and 

segmentation, comparing their performance with 

classical methods. 

Dynamic Parameter Optimization: Develop automated 

algorithms for adaptive parameter selection to improve 

method performance across varying datasets. 

Multimodal Image Analysis: Expand segmentation 

techniques to multimodal images (e.g., MRI, CT) for 

better diagnostic capabilities in healthcare. 

Energy-Efficient Algorithms: Focus on optimizing 

computational efficiency for deployment in resource-

constrained environments. 
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