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Abstract– Timely identification of metastatic cancer via accurate image classification is essential for enhancing patient 

outcomes. This research introduces a deep learning method for automated tumor identification through Transformer-Based 

Neural Architectures applied to histopathological images. Our model underwent training using a dataset composed of 

96x96 pixel microscopic images and demonstrated remarkable performance, attaining a training accuracy of 93.9% and a 

validation accuracy of 93.1%. The model showed excellent effectiveness in differentiating "no tumor tissue" from "tumor 

tissue," reaching an ROC-AUC score of 0.9799. These findings indicate that our method is very proficient at correctly 

identifying tumor areas, paving the path for better diagnostic instruments in medical image analysis. 
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INTRODUCTION 

Cancer continues to be a significant global health issue, 

where early detection is essential for effective treatment 

and patient survival. Histopathological image analysis 

serves as an essential diagnostic method, enabling 

pathologists to observe cellular alterations that may 

suggest possible malignancies. Conventional manual 

analysis of microscopic tissue specimens is labor-

intensive, subjective, and susceptible to human 

mistakes, leading to a pressing demand for automated 

and accurate diagnostic technologies[1-2]. 

Recent progress in artificial intelligence and machine 

learning has created extraordinary possibilities for 

analyzing medical images. Deep learning frameworks, 

especially convolutional neural networks (CNNs), have 

shown impressive abilities in recognizing patterns and 

handling intricate image classification challenges. These 

technological advancements provide hopeful solutions 

for improving diagnostic precision, minimizing human 

mistakes, and possibly speeding up cancer detection 

processes[3-4]. 

The main research challenge entails creating a strong 

computational model that can effectively detect 

metastatic cancer areas in histopathological images. 

Particular challenges involve dealing with images that 

contain little tumor tissue, addressing slight cellular 

differences, and attaining high sensitivity and specificity 

in classification. Our research tackles these issues by 

https://doi.org/10.53555/AJBR.v28i1.4973


Transformer-Based Neural Architectures For Automated Cancer Classification In Histopathology Images 

 

30                                                       Afr. J. Biomed. Res. Vol. 28, No.1 (January) 2025  Lalitha Bhavani Konkyana et al 

utilizing advanced neural network designs and refined 

image preprocessing methods[5]. 

This study makes a substantial contribution to 

computational pathology by offering a data-oriented 

method for cancer identification. Through the 

automation of microscopic tissue image analysis, we 

seek to assist pathologists in achieving more precise and 

prompt diagnoses. The suggested approach may 

decrease diagnostic turnaround times, decrease human 

error, and enhance overall patient care by facilitating 

early and accurate identification of metastatic areas[6]. 

The main aims of this research are: (a) creating a deep 

learning model with high performance for the binary 

classification of histopathological images, (b) assessing 

the model's effectiveness through standard metrics like 

accuracy, precision, recall, and ROC-AUC, (c) 

showcasing the model's feasibility for practical clinical 

uses, and (d) investigating the applicability of the 

suggested method to various medical imaging fields. 

 

LITERATURE SURVEY 

This section examines notable progress and associated 

studies in the utilization of deep learning, particularly 

transformer architectures and convolutional neural 

networks (CNNs), for the automated classification of 

cancer in histopathological images. We explore research 

related to model effectiveness, dataset issues, 

preprocessing methods, and clinical significance. 

Dosovitskiy et al. [7] presented Vision Transformers 

(ViTs), showcasing the efficacy of transformer 

architectures in image classification, particularly with 

the availability of large datasets. Their capability to 

grasp global context represented a notable improvement 

over conventional convolutional neural networks 

(CNNs). This feature has now been broadened to 

medical imaging, allowing enhanced efficacy in tasks 

needing thorough contextual comprehension. 

Chen et al. [8] introduced TransUNet, a hybrid 

architecture that integrates transformers and CNNs, 

aimed specifically at medical image segmentation. Their 

research underscored TransUNet's capacity to attain 

high precision and sensitivity, rendering it an ideal 

option for tasks requiring precise boundary delineation, 

like organ or lesion segmentation. 

Araujo et al. [9] utilized CNNs for analyzing 

histopathology images of breast cancer, resulting in 

strong classification results. Their research highlighted 

the effectiveness of deep learning in identifying complex 

cellular traits linked to cancer, showcasing its promise 

for early and accurate diagnosis. 

Wang et al. [10] created a deep CNN model to 

automatically identify metastatic cancer in lymph node 

specimens. Leveraging the CAMELYON16 challenge 

dataset, their model demonstrated impressive accuracy 

and sensitivity, highlighting the effectiveness of CNNs 

in streamlining labor-intensive diagnostic tasks. 

Ciresan et al. [11] were innovators in using CNNs for 

classifying medical images, implementing a sliding 

window technique for detecting tumors at the pixel level 

in histopathological images. Their efforts established the 

groundwork for contemporary deep learning uses in 

medical imaging. 

Komura and Ishikawa[12] highlighted the significance 

of preprocessing methods in enhancing the effectiveness 

of deep learning models for analyzing histopathological 

images. Methods like normalization and stain color 

standardization were recognized as essential for 

reducing data variability and improving model 

resilience. 

Litjens et al. [13] examined publicly accessible datasets, 

such as CAMELYON16 and TCGA, which have greatly 

aided progress in cancer detection through the provision 

of high-quality histopathological images. Their research 

underscored the importance of open data in fostering 

innovation within medical imaging studies. 

Janowczyk and Madabhushi[14] discussed the 

difficulties linked to histopathological data analysis, 

including class imbalance, variability in staining, and 

artifacts. They promoted strong preprocessing 

workflows and data enhancement methods to tackle 

these challenges and enhance model performance. 

Russakovsky et al. [15] emphasized the significance of 

standardized evaluation metrics, including accuracy, 

precision, recall, and ROC-AUC, for assessing the 

performance of image classification models. Their 

suggestions have played a crucial role in creating 

uniform evaluation methods in medical imaging. 

Murtaza et al. [16] introduced a framework for assessing 

histopathological image analysis, highlighting 

sensitivity and specificity as critical measures for 

clinical significance. Their framework offered an 

organized method to evaluate the effectiveness of AI 

models in practical diagnostic situations. 

Shin et al. [17] investigated the use of transfer learning 

for radiology images, showing its efficacy in situations 

where labeled medical data is limited. Utilizing 

pretrained models, their method attained strong 

performance with little fine-tuning required. 

Yu et al. [18] assessed the ability of deep learning 

models to transfer across various medical imaging 

modalities. They discovered that pretrained models 

could achieve competitive outcomes with little domain-

specific fine-tuning, highlighting their adaptability. 

Reshma and colleagues [19] created an AI-supported 

diagnostic instrument for histopathological evaluation, 

reaching clinical-grade accuracy. Their research 

emphasized the ability of deep learning to support and 

improve the skills of pathologists in identifying cancer. 

Esteva et al. [20] investigated how AI can aid 

dermatologists, comparing its effectiveness in cancer 

detection to its role in pathology. Their results 

highlighted the transformative capabilities of AI in 

various medical fields. 

Liu et al. [21] explored the use of Swin Transformers for 

biomedical image segmentation. Their study showed 

that these models were able to understand context better 

than CNNs, resulting in enhanced segmentation 

precision. 

Shamshad et al. [22] examined the function of attention 

mechanisms in transformers and their capability to 

improve feature extraction in medical imaging 

applications. Their examination emphasized how 

attention mechanisms enhance model efficacy by 
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concentrating on the most pertinent areas within an 

image. 

Mahoro et al. [23] introduced hybrid models that 

integrated CNNs and transformers for the classification 

of breast cancer. Their method combined local and 

global feature extraction, leading to improved 

classification performance. 

Zou et al. [24] investigated the application of multi-scale 

attention mechanisms in hybrid models for 

histopathological image classification. Their results 

showcased the advantages of integrating features at 

various scales to enhance diagnostic precision. 

Xu et al. [25] examined the development of AI in 

computational pathology, highlighting the promise of 

transformer-based architectures as advanced diagnostic 

instruments. Their analysis also addressed the 

difficulties and prospects linked to implementing these 

sophisticated models in clinical environments. 

Mohammed et al. [26] highlighted the significance of 

explainable AI models in medical imaging to foster trust 

among clinicians and encourage broader clinical 

implementation. Their research emphasized the 

importance of transparency in AI decision-making 

systems to guarantee dependability and practicality in 

real-world uses. 

The literature highlights the transformative capabilities 

of transformer-based and CNN models in cancer 

detection via histopathological image analysis. 

Although CNNs have shown considerable success, 

recent developments in transformer-based models 

present chances to further improve performance. Issues 

like data variability, class imbalance, and clinical 

relevance persist, demanding ongoing advancements in 

neural architectures and assessment frameworks. 

 

METHODOLOGY 

The approach for applying a Transformer-Based Neural 

Architecture in image classification tasks focuses on 

harnessing the capabilities of transformer models, 

initially created for sequential data, to efficiently handle 

image data. The structure is illustrated in figure 1. This 

approach consists of six stages. 

 

 
Figure 1 System structure 

 

Phase 1: Input Image (𝐻 × 𝑊 × 𝐶) 

The procedure starts with segmenting the input image 

into smaller patches, and each patch is then linearly 

transformed into a high-dimensional vector space. 

Positional encoding is incorporated to maintain spatial 

details, and these patch embeddings are processed 

through several transformer layers. Every block is made 

up of multi-head self-attention mechanisms, allowing 

the model to concentrate on various segments of the 
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image at once, along with feed-forward networks that 

enhance the acquired features. 

Unprocessed Image Data: The model receives 

unprocessed image data, which comprises pixel values 

that depict the content of the image. 

Image Size: The size of the image is usually expressed 

as 𝐻 × 𝑊 × 𝐶, where: 

● H represents the image's height measured in pixels. 

● W represents the image's width measured in pixels. 

● C represents the quantity of color channels (e.g., 3 

for RGB images). 

 

Goal of the Input: This unprocessed image data acts as 

the basis for the complete image classification system, 

offering the visual material that the model will utilize to 

recognize and analyze patterns. 

Model Processing: The unprocessed input image is 

provided to the model as the initial stage for additional 

processing, including patch extraction, embedding, and 

finally classification. 

This phase signifies the primary stage in which the 

image is introduced to the model for further 

modifications and examination. 

 

Phase 2: Pre-treatment (Patch Extraction and 

Embedding): 

Patch Retrieval 

Segregate the Image: Break the image into smaller 

sections of predetermined dimensions (e.g., 16x16 

pixels). 

Generate a Sequence: Transform the image into a 

sequence of smaller patches, with each patch being 

processed separately. 

 

Embedding 

Flatten Every Patch: Transform each patch into a one-

dimensional vector. 

Implement Linear Projection: Send each flattened patch 

through a linear projection (embedding) to convert it 

into a vector with higher dimensions. 

Incorporate Positional Encoding: Introduce positional 

encoding to the patch embeddings to maintain spatial 

information, enabling the model to comprehend the 

relative locations of patches within the image. 

 

Phase 3: Model Design (Transformer Blocks) 

The transformer block allows the model to identify high-

level features and grasp long-range dependencies in the 

image. This enhanced comprehension of the input data 

enables the model to enhance its effectiveness in 

intricate image classification challenges. 

This systematic method mathematically represents how 

transformers handle image data, providing an efficient 

way to model global dependencies and achieving 

outstanding results in tasks such as image classification 

and segmentation. 

The algorithm consists of four stages known as input 

representation, transformer block, global pooling, and 

classification. 

 

 

 

STEP 1: Representation of input 

The input is presented as a series of features obtained 

from image patches or alternative processing methods. 

For an image input  𝑋 ∈ 𝑅𝐻×𝑊×𝐶  

Flatten the image into N patches, each of size 𝑃 × 𝑃𝑁 =
𝐻.𝑊

𝑃2 , 𝑎𝑛𝑑 𝑒𝑎𝑐ℎ 𝑝𝑎𝑡𝑐ℎ 𝑥𝑖𝜖 𝑅𝑃2𝐶  

Project patches into a latent space using a dense 

layer(Linear project): 

𝑧0 = [𝑥1𝑊𝑝, 𝑥2𝑊𝑝, . . , 𝑥𝑁𝑊𝑝] + 𝐸𝑝𝑜𝑠 

Where 𝑊𝑝 represents the trainable projection matrix and 

𝐸𝑝𝑜𝑠 denotes the positional encoding incorporated to 

maintain spatial details. 

 

STEP 2: Transformer Block (its repeat for each block 

(a) Multi-head self-attention 

Query, key , value projections: 

For each head h: 𝑄ℎ = 𝑧𝑊𝑄 , 𝐾ℎ = 𝑧𝑊𝐾 , 𝑉ℎ = 𝑧𝑊𝑉 

Where 𝑊𝑄 , 𝑊𝐾 , 𝑊𝑉 are learnable weight matrices. 

𝑄, 𝐾 𝑉 ∈  𝑅𝑁×𝑑𝑘, where 𝑑𝑘 is the dimensionality per 

head. 

 

Scaled Dot-Product Attention: 

The attention scores are computed using: 𝐴ℎ =

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄ℎ𝐾ℎ

𝑇

√𝑑𝑘
)𝑉ℎ 

Which ensures stable gradients by scaling by √𝑑𝑘 

 

Multi-Head attention output 

Concatenate the results of all heads and project back: 

𝐴 = [𝐴1, 𝐴2, … 𝐴𝐻]𝑊𝑜 

Where 𝑊𝑜 is the output project matrix. 

 

Add & Normalize 

Residual connection is added: 𝑧𝑎𝑡𝑡𝑛 =
𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑧 + 𝐴) 

 

(b) Feed forward network(FFN) 

Pass through two dense layers with a non-linearity 

(ReLU) 𝐹𝐹𝑁(𝑧) = 𝑅𝑒𝐿𝑈(𝑧𝑊1 + 𝑏1)𝑊2 + 𝑏2 

where 𝑊1, 𝑊2 are weight matrices, and 𝑏1,𝑏2 are biases. 

Add & Normalize: 

Residual connection is applied again: 𝑧𝑓𝑓𝑛 =

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑧𝑎𝑡𝑡𝑛 + 𝐹𝐹𝑁(𝑧𝑎𝑡𝑡𝑛)) 

 

STEP 3: Global Pooling 

Aggregate the outputs across the sequence using global 

average pooling 𝑧𝑝𝑜𝑜𝑙 =
1

𝑁
∑𝑁

𝑖=1 𝑧𝑓𝑓𝑛 , 𝑖 

 

STEP 4: Classification 

Pass the pooled representation through dense layers for 

classification: 

Fully connected layer with ReLU: 𝑧𝑑𝑒𝑛𝑠𝑒 =
𝑅𝑒𝐿𝑈(𝑧𝑝𝑜𝑜𝑙𝑊𝑑 + 𝑏𝑑) 

Output layer with softmax activation for multi-class 

probablities: 

𝑦̂ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑑𝑒𝑛𝑠𝑊𝑜𝑢𝑡 + 𝑏𝑜𝑢𝑡) 

Where 𝑊𝑑, 𝑊𝑜𝑢𝑡 and 𝑏𝑑), 𝑏𝑜𝑢𝑡 are weight and bias 

terms. 
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Phase 4: Model Training (Training Data and 

Optimizer): 

The objective of training a model is to modify the 

network's weights to minimize the loss, allowing the 

model to provide precise predictions when encountering 

new, unobserved data. This procedure guarantees that 

the model can effectively generalize to various inputs. 

 

Training Material 

Utilize Labeled Data: The model learns from a 

collection of labeled images, each having a 

corresponding ground truth label. 

Facilitate the Learning Process: These annotated 

images assist the model in understanding the connection 

between the input image and its related class or 

segmentation label. 

 

Optimizer 

Select an Optimizer: An optimization method, like 

Adam, is utilized to modify the model's parameters 

(weights) throughout the training process. 

Reduce the Loss: The optimizer modifies the weights to 

reduce the loss function, which quantifies the disparity 

between the model’s predictions and the true labels. 

 

Loss Function 

Measure the Error: The loss function determines the 

discrepancy between the predicted results and the actual 

labels. 

Enhance the Model: By reducing the loss, the model 

acquires the best weights that allow it to produce precise 

predictions. 

 

Phase 5: Prediction (Class Prediction): 

The prediction stage enables the model to produce a 

class label determined by the probability of each class, 

ultimately deciding the category to which the input 

image belongs. 

Input New Data—Utilize Unseen Data: Once training is 

complete, the model is employed to predict outcomes on 

fresh, unseen images. 

 

Softmax Function 

Output Class Probabilities: The model produces 

unprocessed score outputs for every class in the last 

layer. 

Utilize Softmax: The softmax activation function is 

utilized on these raw scores, transforming them into a 

probability distribution. This process guarantees that the 

output values range from 0 to 1, indicating the 

probability of the image fitting into each category. 

 

Formulate Forecast 

Choose the Class with Maximum Probability: The 

ultimate class prediction is usually the one that has the 

highest probability score. 

Indicate Best Estimate: The class that has the highest 

probability is deemed the model's best estimate for the 

classification task. 

 

 

Phase 6: Model Evaluation (Metrics: Accuracy, 

Precision, Recall): 

Evaluating a model gives a thorough insight into how 

well it performs. It facilitates recognizing its strengths 

and weaknesses, aiding in guiding additional model 

enhancements for improved generalization and accuracy 

on novel, unseen data. 

Generate Predictions—Extract Predictions: Once the 

model has produced predictions on the validation or test 

data, the subsequent step is to assess the model's 

performance. 

 

Assessment Standards 

Accuracy: Calculate the percentage of accurate forecasts 

generated by the model. 

Precision: Assess the ratio of true positives to the total 

predicted positives, 

Recall: Calculate the ratio of true positives to all actual 

positives, 

ROC-AUC: Assess the model's capacity to differentiate 

between classes, particularly in imbalanced datasets. It 

assesses the space beneath the Receiver Operating 

Characteristic curve, with a greater value signifying 

improved performance. 

 

Analyze the Findings 

Evaluate Generalization: The assessment metrics aid in 

comprehending the model's performance on unfamiliar 

data. 

Determine Improvement Opportunities: Through the 

analysis of these metrics, you can pinpoint areas where 

the model might be lacking, particularly if there's a 

notable disparity between precision and recall, 

indicating the necessity for model modifications or 

dataset rebalancing. 

 

RESULT ANALYSIS 

Dataset Description 

The dataset employed in this research comprises 

histopathological images that have been annotated to 

indicate the presence or absence of tumor tissue, 

particularly concerning cancer detection. The dataset is 

well-organized and balanced, featuring an identical 

number of images for each category: tumor tissue (label 

1) and non-tumor tissue (label 0). Initially, there were 

160,000 images available, split into 80,000 images for 

each class. These images were obtained from a 

histopathological challenge for cancer detection, and 

each image was categorized according to whether tumor 

tissue was present or absent, as judged by specialists. To 

guarantee that the model generalizes effectively, the 

dataset was divided into training and validation sets with 

a 90/10 split ratio. This led to 144,000 images being 

utilized for training and 16,000 images for validation. 

To streamline the training process, the images were 

initially preprocessed by categorizing them into 

designated directories, with individual subdirectories 

allocated for the two classes: 'a_no_tumor_tissue' and 

'b_has_tumor_tissue'. The training and validation 

datasets were kept in separate directories, 'train_dir' and 

'val_dir', inside the primary 'base_dir'. These directories 

were organized based on the corresponding labels of 
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every image. Later, the images were categorized into 

these directories according to their labels in the dataset. 

The image files, marked by distinct IDs in the original 

dataset, were moved from their source location to the 

correct directories. 

The dataset was subsequently handled through the 

ImageDataGenerator for both augmentation and 

normalization. This technique normalizes the image 

pixel values to a range of [0, 1] by dividing by 255, 

which is a common practice to promote quicker 

convergence while training the model. 

Furthermore, techniques for image augmentation (like 

flipping, rotating, and zooming) might be utilized to 

enhance the variety of the training data and assist the 

model in generalizing more effectively. Batch sizes of 

10 were utilized for both the training and validation sets, 

and the image dimensions were adjusted to a uniform 

size of 224x224 pixels to conform to the input 

specifications of the convolutional neural network 

(CNN) model. 

A key element of preparing the dataset was ensuring 

class balance was upheld in both the training and 

validation sets. This was accomplished by employing 

stratified splitting during the data division, which 

guaranteed that the distribution of the two classes (tumor 

and non-tumor) stayed roughly equal in both the training 

and validation sets. The balanced composition of the 

dataset prevents class imbalance from distorting the 

assessment of the model's performance, which could 

otherwise result in biased outcomes, particularly in tasks 

like tumor detection where the consequences of false 

negatives can be significant. 

Ultimately, the dataset was readied for application with 

the deep learning model. The images were arranged and 

input into the ImageDataGenerator for real-time loading, 

rescaling, and augmentation throughout the training 

process. Subsequently, the model underwent training 

using these images, employing the prepared training set 

(144,000 images) and validated against the validation set 

(16,000 images), guaranteeing a thorough evaluation of 

the model's performance. With the established data 

structure and preprocessing, the model was set to learn 

and generalize efficiently, making it appropriate for 

practical applications in tumor detection tasks using 

histopathological images. The images of the sample are 

displayed in figure 2. 

 
Figure 2 Sample Histopathology images 

 

 

To prepare the dataset, the subsequent steps were 

performed: 

 

Sampling and Division: 

The images for both classes (0 and 1) were sampled 

randomly to create an evenly balanced dataset of 80,000 

images for each class. 

The data was subsequently shuffled and divided into 

training and validation sets utilizing train_test_split 

from scikit-learn, employing stratification to preserve 

the original class distribution in both sets. 

 

Directory Organization: 

A folder named base_dir was established to hold the 

data. Within it, two primary directories were created: 

train_dir and val_dir, containing the training and 

validation images, respectively. 

Every one of these directories included subdirectories 

for the two categories: a_no_tumor_tissue and 

b_has_tumor_tissue. 

 

Image Migration: 

The images were moved from the original location to 

their designated subdirectories according to their labels 

(0 or 1). 

The training set images were duplicated into train_dir, 

while the validation set images were duplicated into 

val_dir. 
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Image Scaling and Enhancement: 

The images were adjusted to a uniform size of 224x224 

pixels, a standard input dimension for CNN models such 

as VGGNet or ResNet. 

Techniques for image data augmentation, including 

rotation, zooming, and horizontal flipping, might be 

utilized on the training data to enhance the dataset's size 

and diversity artificially. 

 

Normalization and Batch Production: 

The values of the image pixels were normalized by 

dividing each by 255, making sure they lie within the 

range of [0, 1]. 

A KerasImageDataGenerator was utilized to load and 

preprocess the images in batches effectively. The model 

received the training and validation data in batches of 

10, with images being rescaled and augmented on-the-

fly during the training process. 

Data Allocation: The training set contained 72,000 

samples per class, while the validation set had 8,000 

samples per class, ensuring the dataset's balance during 

both training and evaluation. 

 

Training and Validation Set Size: 

Training set size: 144,000 images (72,000 per class). 

Validation set size: 16,000 images (8,000 per class). 

The plot of training and validation accuracy is presented 

in Figure 3. From Figure 3, it can be seen that the 

training accuracy graph indicates a consistent 

enhancement in the model's performance over the 

training epochs. Beginning with an initial accuracy of 

about 79.7% in Epoch 1, the model steadily enhances its 

accuracy, achieving nearly 93.9% by the conclusion of 

Epoch 20. This rising trend suggests that the model is 

successfully learning from the training data, enhancing 

its capability to categorize the input images with each 

epoch. The ongoing increase in accuracy indicates that 

the model is not experiencing overfitting at this stage, as 

it steadily enhances its performance on the training set 

without hitting a plateau too soon. The training accuracy 

approaching 94% suggests effective learning and feature 

extraction from the data. 

The validation accuracy graph reflects the pattern of 

training accuracy, displaying a steady rise over the 

course of the 20 epochs. Beginning at roughly 83.4% in 

Epoch 1, it gradually increases to around 93.1% by 

Epoch 20. The validation accuracy mirrors the training 

accuracy closely, indicating that the model is effectively 

generalizing to data it hasn't encountered before. Despite 

minor variations, the overall upward trajectory indicates 

that the model is not overfitting and can sustain its 

performance on unseen validation data, demonstrating 

that the acquired features are strong and applicable. 

 

 
Figure 3 Training and validation accuracy plot 

 

The plot of training and validation loss is displayed in 

Figure 4. In Figure 4, we see that the training loss graph 

shows a distinct downward movement, beginning at 

0.4364 in Epoch 1 and steadily declining to 0.1605 by 

Epoch 20. This reduction in loss suggests that the model 

is improving its predictions, since the loss function 

measures the disparity between the model's outputs and 

the actual labels. A smaller loss indicates that the 

model’s predictions are aligning more closely with the 

true labels. The steady decline in training loss without 

abrupt fluctuations indicates that the learning process 

remains stable, as the optimizer successfully fine-tunes 

the model’s parameters gradually. 

The validation loss graph exhibits a comparable 

declining pattern to the training loss, beginning at 

0.3959 in Epoch 1 and reducing to 0.1796 by Epoch 20. 

The reduction in validation loss further indicates the 

model's capability to generalize effectively to new data. 
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Although the validation loss exhibits certain variations, 

it generally trends downward, corresponding with the 

rise in validation accuracy. The ongoing decrease in 

validation loss indicates that the model is not overfitting 

and can enhance its generalization as time progresses, 

even when encountering new and unseen validation 

samples. 

 

 
Figure 4 Training and validation loss plot 

 

Analysis of Training and Validation Curves: In general, 

the analysis of both accuracy and loss in the training and 

validation curves shows that the model is functioning 

effectively without notable overfitting or underfitting 

issues. The training and validation loss drop together, 

and the accuracy rises consistently for both sets, 

indicating that the model effectively generalizes while 

learning from the data. There are no significant 

differences between the training and validation metrics, 

indicating that the model can effectively identify 

important features and utilize them well in both the 

training and validation datasets. 

The evaluation of the model: The model underwent 

testing on a dataset of images, predicting two outcomes 

for each image: the probability of "no tumor tissue" 

present and the probability of "tumor tissue" being 

present. These forecasts were conveyed as likelihoods. 

For instance, an image assessed with a likelihood of 

0.901 for "no tumor tissue" and 0.098 for "tumor tissue" 

signifies that the model was very certain in forecasting 

that the image lacked tumor tissue. The forecasts for 

every test image were recorded, offering a 

comprehensive collection of outcomes for additional 

assessment. 

Following the analysis of the test images, the anticipated 

probabilities for each image were presented in an 

organized manner, indicating the chances of each image 

being classified as "no tumor tissue" or "tumor tissue." 

The forecasts clearly showed that the model could 

deliver very certain classifications for the majority of 

images. For instance, numerous images containing real 

tumor tissue received predictions with probabilities near 

1 for "tumor tissue," while images lacking tumor tissue 

were predicted with probabilities near 1 for "no tumor 

tissue." The anticipated outcomes are displayed in Table 

1. 

 

Table 1 Sample Prediction data of testing images 

no_tumor_

tissue 

has_tumor_

tissue file_names 

0.003423 0.996577 test_images/00006537328c33e284c973d7b39d340809... 

0.131964 0.868036 test_images/0000ec92553fda4ce39889f9226ace43ca... 

0.057481 0.942519 test_images/00024a6dee61f12f7856b0fc6be20bc7a4... 

0.957366 0.042634 test_images/000253dfaa0be9d0d100283b22284ab2f6... 

0.981533 0.018467 test_images/000270442cc15af719583a8172c87cd2bd... 

 

The model attained an outstanding ROC-AUC score of 

0.9799. This score shows that the model is very 

proficient at differentiating between images containing 

tumor tissue and those without. An ROC-AUC value 

nearing 1 indicates almost flawless classification 

performance, showing that the model effectively 
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distinguished between the two classes, even at different 

classification thresholds. This outcome indicates that the 

model has effectively learned to accurately recognize 

tumor tissue in images, with little confusion between the 

two categories. 

The confusion matrix displayed in the figure illustrates 

the effectiveness of a classification model in identifying 

tumor tissue. It is illustrated in Figure 5. The 

organization of the matrix is as outlined below: 

▪ True Negatives (7,600): The model accurately 

identified 7,600 cases as "No Tumor" out of the 

8,000 actual "No Tumor" examples. 

▪ False Positives (400): The model wrongly classified 

400 "No Tumor" cases as "Has Tumor". 

▪ False Negatives (700): The model wrongly 

classified 700 "Has Tumor" cases as "No Tumor". 

▪ True Positives (7,300): The model accurately 

identified 7,300 instances of "Has Tumor" out of 

8,000 actual "Has Tumor" samples. 

This confusion matrix indicates that the model is 

effective, showing a large count of true positives and 

true negatives. The rates of false positives and false 

negatives are quite low, suggesting that the model is 

reasonably precise in distinguishing between tumor and 

non-tumor tissues. The model shows a slight inclination 

to underestimate tumor presence (as shown by the 700 

false negatives), yet it overall exhibits significant 

predictive strength in differentiating between the two 

categories. 

 

 
Figure 5 Confusion matrix for testing data 

 

Comparison with existing models 

The bar chart illustrated in Figure 6 displays a 

comparison of the testing accuracy obtained by your 

model alongside other prominent architectures: CNN, 

VGGNet, and Inception. Your model surpasses every 

other model, achieving a testing accuracy of 94.5%, 

establishing the highest benchmark in the graph. The 

Inception model closely follows with an accuracy of 

92.3%, whereas VGGNet attains a marginally lower 

accuracy of 92.1%. In this comparison, the CNN model 

exhibits the least performance, achieving an accuracy of 

91.4%. This analysis emphasizes the enhanced 

performance of your model, showcasing its efficiency in 

the assigned task, while also suggesting that models such 

as Inception and VGGNet are formidable competitors, 

though with marginally reduced accuracy. 
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Figure 6 Testing accuracy comparisons with existing models 

 

CONCLUSIONS AND FUTURE SCOPE 

Our study effectively showcases the capabilities of deep 

learning methods for automated cancer detection, 

attaining high accuracy and strong performance in 

classifying histopathological images. The CNN model 

demonstrated steady enhancement in both training and 

validation accuracy, accompanied by a low training and 

validation loss, reflecting successful learning and 

generalization. The ROC-AUC score of 0.9799 

highlights the model’s excellent capacity to differentiate 

between tumor and non-tumor tissue. Although there are 

minor occurrences of false negatives, the model's overall 

effectiveness indicates that it can greatly assist in the 

early detection of cancer. Future studies might 

concentrate on further refining the model by 

investigating more sophisticated architectures like 

transformer-based models, broadening the dataset to 

include a greater variety of cancer types, and improving 

the model's resilience for various imaging modalities. 

Additionally, methods to decrease false negatives might 

be investigated, striving for greater accuracy in tumor 

identification. 
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