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Abstract—  

Early detection of diabetic retinopathy (DR) is crucial as it allows for timely intervention, preventing vision loss and enabling 

effective management of diabetic complications. This research performs detection of DR and DME at an early stage through the 

proposed framework which includes three stages: preprocessing, segmentation, feature extraction, and classification. In the 

preprocessing stage, noise filtering is performed by fuzzy filtering, artefact removal is performed by non-linear diffusion filtering, 

and the contrast improvement is performed by a novel filter called Adaptive Variable Distance Speckle (AVDS) filter. The AVDS 

filter employs four distance calculation methods such as Euclidean, Bhattacharya, Manhattan, and Hamming. The filter adaptively 

chooses a distance method which produces the highest contrast value amongst all 3 methods. From the analysis, hamming 

distance method was found to achieve better results for contrast and Euclidean distance showing less error value with high PSNR. 

The segmentation stage is performed using Improved Mask-Regional Convolutional Neural Networks (Mask RCNN). In the final 

stage, feature extraction and classification using novel Self-Spatial Attention infused VGG-16 (SSA-VGG-16), which effectively 

captures both global contextual relationships and critical spatial regions within retinal images, thereby improving the accuracy and 

robustness of DR and DME detection and grading. The effectiveness of the proposed method is assessed using two distinct 

datasets: IDRiD and MESSIDOR. 
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Introduction 

Diabetic retinopathy (DR), a severe microvascular 

complication induced by Diabetes Mellitus (DM), is one of the 

major causes of loss of vision worldwide [1, 2]. It is 

characterized by progressive damage to retinal blood vessels, 

leading to inadequacy in oxygen supply to retinal tissue [3]. 

DR has four progressive stages based on severity – mild non-

proliferative DR, moderate non-proliferative DR, severe non-

proliferative DR and proliferative DR. Diabetic macular edema 

(DME), caused due to accumulation of fluids and exudates in 

the macula, is another major complication accelerating vision 

deterioration. Identification of DR and DME through regular 

eye examinations is critical for timely treatment administration 

before the onset of permanent visual impairment [4]. 

Earlier diagnosis relied on manual evaluation of color fundus 

photographs by skilled clinicians. However, this approach 

tended to cause misinterpretations due to inter-observer 

variability. With advancements in digital fundus imaging and 

computer-aided screening techniques, automated assessment of 

DR and DME has received significant attention [5]. 

Conventional computerized methods employed hand-crafted 

features based on abnormalities like microaneurysms, 

hemorrhages and hard exudates. But these features often 
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lacked distinctiveness leading to poor recognition 

performance. 

Automated diagnostic systems for DR have the potential to 

supersede manual approaches by substantially diminishing the 

labor-intensive aspects of the screening process. Enhancing 

efficiency in screening over a broader population is achievable 

through the system's ability to distinguish between normal and 

abnormal cases, eliminating the need for manual examination 

of all images. Hence, the popularity of automatic retinopathy 

detection systems has surged recently. These systems leverage 

image processing and computer vision techniques to identify 

various anomalies associated with retinopathy [6]. As the 

significance of DR became apparent in the context of diabetes, 

numerous endeavors were made to precisely categorize its 

severity and stages. Over time, these classification systems 

underwent changes, adapting to advancements in 

understanding the pathophysiology of the disease, evolving 

imaging techniques for DR assessment, and the emergence of 

effective treatments. The existing DR classification systems, 

having proven efficacy, have served as the foundation for 

substantial research trials and clinical management guidelines 

for an extended period [7]. 

Recent research works [8, 9] have investigated Machine 

Learning (ML) algorithms to extract informative feature 

representations in an autonomous manner. Deep learning (DL) 

models such as convolutional neural networks (CNN) have 

shown impressive improvements in detection accuracy by 

automatically learning hierarchical inter-relationships from 

raw images [10]. However, factors like class imbalance, 

overlapping features and presence of artifacts constrain real-

world reliability of existing techniques. The key research 

problem is enhancing differentiation between normal, DR and 

DME classes through targeted preprocessing, segmentation 

and advanced deep learning methodologies. 

The various stages of DR and DME are shown in figure 1. 

Both DR and DME are specifically microvascular 

complications of diabetes, which result from prolonged high 

blood sugar levels damaging the small blood vessels in the 

retina. DR involves the progressive deterioration of retinal 

blood vessels, leading to various stages of severity, from mild 

non-proliferative (NP) changes to the advanced stage of 

proliferative DR (PDR), where abnormal blood vessels grow. 

DME, a complication of DR, occurs when damaged blood 

vessels leak fluid into the macula, causing swelling and vision 

impairment. Both conditions, if left untreated, can lead to 

significant vision loss. 

 

 
Figure 1. Various Stages of Diabetic Eye Diseases 

 

The principal research objectives of this study are – 

1. Developing an adaptive preprocessing technique minimizing 

artifacts and noise while improving image contrast for 

subsequent analysis 

2. Extracting segmented blood vessel regions accurately 

depicting lesions and abnormalities via improved deep learning 

algorithms 

3. Designing a novel Self-Spatial Attention infused VGG-16 

(SSA-VGG-16) based classifier to distinguish between normal, 

DR and DME classes through learned feature representations 

4. Demonstrating consistent performance improvements on 

standardized datasets compared to current methods 

 

The proposed technique encompasses four phases - 

preprocessing, blood vessel segmentation, feature extraction 

and classification. 

 

Fundus preprocessing plays a crucial role in the diagnosis of 

diabetic-related diseases, particularly DR and DME. These 

conditions are prevalent among diabetic patients and can lead 

to severe vision impairment if not detected early. By focusing 

on these two diagnoses, the preprocessing of fundus images 

enhances the visibility and clarity of specific retinal features, 

such as microaneurysms, hemorrhages, and exudates, which 

are critical indicators of DR and DME. Effective 

preprocessing, including noise filtering and contrast 
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enhancement, allows for more accurate identification of these 

subtle yet significant abnormalities. This step not only 

improves diagnostic accuracy but also supports early 

intervention and monitoring, making it essential for managing 

diabetic eye diseases. Hence, this research proposes a novel 

contrast improvement filter denoted as Adaptive Variable 

Distance based Speckle (AVDS) filter to enhance the quality 

of retinal images. The AVDS filter adaptively chooses the 

distance method (Euclidean, Bhattacharya, Hamming, 

Manhattan) based on the contrast values obtained. 

 

This facilitates discerning finer details through superior vessel 

segmentation and ultimately better classification. A 

customized deep learning architecture called improved Mask 

Region-based CNN (improved Mask R-CNN) is utilized for 

precise segmentation of blood vessels. Robust feature 

extraction is achieved via the SSA-VGG-16 model capturing 

various abnormalities and patterns. The novel contribution of 

SSA-VGG-16 lies in its combined use of self-attention and 

spatial attention mechanisms within the VGG-16 framework, 

enabling it to capture long-range dependencies and enhance 

focus on crucial spatial regions. This dual attention approach 

improves the network’s ability to detect subtle retinal 

abnormalities, leading to more accurate and reliable 

classification and grading of DR and DME. 

 

Finally, a softmax classifier categorizes retinal images into 

normal, DR, and DME groups on the basis of extracted feature 

maps. 

The novel contributions of this research are: 

1. AVDS filter maximizing contrast for better visualization of 

retinal components 

2. Improved Mask R-CNN segmentation identifying lesions 

accurately 

3. Integrated deep learning framework for enhanced DR & 

DME recognition 

4. Significantly higher sensitivity, specificity and accuracy 

over existing methods 

 

The remaining sections of the paper are organized as given. 

Section 2 discusses relevant literature investigating key 

techniques and findings by earlier studies. Section 3 elaborates 

the proposed methodology encompassing contrast 

enhancement, segmentation, feature extraction and 

classification modules. Section 4 analyzes the experimental 

outcomes achieved on standardized datasets and provides 

comparative evaluations with respect to state-of-the-art 

algorithms. At last, section 5 provides a conclusion to the 

paper summarizing the critical contributions and suggesting 

future research directions. 

 

LITERATURE REVIEW 

Diagnosing DR from fundus images is a labor-intensive task 

that requires considerable expertise from a professional 

ophthalmologist. This is particularly challenging in densely 

populated or remote areas, where both the prevalence of 

diabetes and DR is expected to surge in the coming years, 

while the availability of ophthalmologists remains 

disproportionately low [11-14]. Consequently, the research 

community has been driven to create computer-aided diagnosis 

systems to mitigate the challenges, aiming to diminish the cost, 

time, and effort required by medical experts for DR diagnosis 

[15]. Over the past decade, computerized screening for DR and 

DME has been extensively explored to overcome limitations of 

manual assessment. This section reviews major research 

dimensions and emerging techniques making the area. 

 

Conventional/Traditional Approaches: 

Early efforts in DR and DME identification heavily relied on 

conventional or traditional methods, characterized by manual 

assessment and dependence on hand-crafted features. The 

methodology involved in [16] acquired digital retinal images 

from routine monitoring of DR. A developed automatic 

analysis tool, comprising statistical classifiers such as 

Bayesian, Mahalanobis, and KNN, demonstrated superior 

sensitivity, especially with the Mahalanobis classifier. With 

potential implications for routine monitoring, this research 

highlights the value of leveraging digital imaging and 

automatic statistical analysis systems in improving the 

efficiency of DR screening and management. The average 

sensitivity achieved by the model for various abnormalities is 

82.75%. In [17], the critical issue of DR was addressed by 

proposing an automated model for early identification of 

exudates. Utilizing the template matching algorithm on a 

dataset of 130 color images of retinal fundus, the system 

demonstrated impressive results. The emphasis on automated 

detection showcased the potential for efficient and accurate 

early diagnosis of DR, aligning with cost-effective healthcare 

practices and contributing to preventative visual impairment 

measures. The model shows an accuracy of 98.72% with 

sensitivity (recall) and specificity rate as 99.45% and 95.68, 

respectively. The authors of [18] introduced a robust hybrid 

probabilistic model of learning for DR classification in retinal 

images. By combining generative and discriminative models, 

the proposed method utilizes new probabilistic kernels, 

incorporating Fisher score and information divergences. The 

hybrid model, featuring a minimum description length 

criterion, outperforms other methods, demonstrating 

effectiveness in DR detection with flexibility and valuable 

applications in data classification. Similarly, a probabilistic 

learning approach called Gaussian Mixture Model (GMM) was 

implemented in [19 and 20]. This model represents the 

probability distribution of the dataset as a mixture of multiple 

Gaussian distributions. One advantage of GMM is its 

flexibility in modeling complex and multimodal data, allowing 

it to adapt well to the diverse characteristics of retinal images. 

 

Artificial Intelligence (AI) Approaches: 

In response to the constraints of conventional methods, another 

set of approaches emerged, concentrating on Artificial 

Intelligence (AI) techniques to enhance the quality of input 

images. Various organizations have embraced AI, 

incorporating ML and DL techniques to create automated DR 

detection algorithms. Some state-of-the-art models are already 

accessible commercially. These technologies have been crafted 

using diverse training datasets and varied technical approaches 

[21]. These models played a pivotal role in improving image 
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quality, thereby laying the foundation for more effective 

automated diagnosis of DR. 

 

Machine Learning (ML) Strategies: 

As technology progressed, there was a shift towards machine 

learning (ML) strategies, signifying a departure from manual 

and rule-based approaches. A segment-based learning 

approach was proposed in [22]. The study leverages the 

benefits of annotating images at a segment level, reducing the 

burden of expert annotations. By adapting a pre-trained 

Convolutional Neural Network (CNN) for segment-level DR 

prediction and integrating all segment levels, the approach 

achieves a remarkable Area Under the ROC Curve (AUC) of 

0.963 on the Kaggle dataset. With a recall and specificity of 

96.37%, the end-to-end segment-based approach outperforms 

existing models, offering improved diagnostic capabilities for 

DR images. In [23], the datasets encompassing different DR 

stages were obtained from 500 patients, introducing a novel 

clustering-based automated region growth architecture. 

Textures analysis involved extracting features from 

histograms, wavelets, co-occurrence matrices, and run-length 

matrices. Various ML classifiers achieved impressive 

classification accuracies for individual features. To enhance 

accuracy further, a fused hybrid-feature dataset was created, 

and optimized features were selected using different 

techniques. Deploying five ML classifiers on the selected 

optimized features yielded remarkably high accuracies, 

reaching up to 99.73%. This research demonstrates the 

effectiveness of ML techniques in accurate DR segmentation 

and classification. The authors of [24] classified specialized 

retinal images using OPF and Restricted Boltzmann Machines 

(RBM) models. The RBM and OPF approaches, after 

extracting 500 and 1000 features during training, demonstrated 

efficacy in recognizing patterns associated with retinopathy 

and normality. With 15 experiment series and 30 cycles each, 

the study included 73 diabetic individuals (122 eyes), showing 

that RBM-1000 achieved the best diagnostic accuracy of about 

89.47%. The RBM models exhibited notable sensitivity and 

specificity in automatic disease detection, particularly in DR 

screening. 

 

Deep Learning (DL) Strategies: 

Recent studies underscore the significance of tailored 

preprocessing in conjunction with deep learning, representing 

a fusion of techniques to address specific challenges in DR and 

DME detection. In [25], the limitations of traditional ML 

algorithms of detecting and classifying DR levels are 

addressed. Leveraging the power of DL, specifically transfer 

learning, the study proposes a DL network trained using image 

features and metadata from a variety of DR fundus images. 

This approach overcomes the challenges of creating models 

from scratch and demonstrates the model's capacity to identify 

unseen fundus images precisely. Trained on IDRD images, the 

DL model, coupled with different classifiers, exhibits accuracy 

of upto 95.9%, marking a significant advancement in DR 

severity classification.  The study in [26] employed a 

systematic approach to analyze fundus scans, involving pre-

processing and segmentation techniques, particularly using 

maximal principal curvature for blood vessel extraction. Post-

segmentation, adaptive histogram equalization (AHE) and 

morphological openings improve and refine the results. A 

CNN with a unique architecture, incorporating squeeze and 

excitation, bottleneck layers, and convolutional and pooling 

layers, was utilized for classification between diabetic and 

normal retinas. The proposed algorithm, evaluated on 

DIARETDB1 dataset and a medical institution's dataset, 

outperforms traditional methods, achieving an accuracy of 

98.7% and precision of 97.2%. These results signify the 

efficiency of the proposed model in identifying DR. The 

authors of [27] employed a DL network, leveraging AlexNet 

and ResNet101-based extraction of features, to automatically 

identify and classify DR fundus images based on severity. 

Utilizing interconnected layers for identifying critical features 

and incorporating Ant Colony systems for attribute selection, 

the chosen characteristics are passed through SVM with 

multiple kernels, resulting in a final model of classification 

with excellent accuracy. The approach, relying on 750 

features, obtained an accuracy of 93% in DR image 

classification. 

 

Local Contrast Enhancement: 

The authors of [30] created a feature map cyclic shift 

mechanism, where the authors have broken down a traditional 

local contrast measurement approach into a depthwise 

parameter-free nonlinear feature refinement layer within a 

complete network architecture. This layer captures extensive 

contextual interactions over relatively large distances, 

providing clear physical insights into the data. Similarly, local 

contrast based method was employed in [31], where a novel 

spatial local contrast (SLC) and a novel temporal local contrast 

(TLC) were combined as STLCF to improve the contrast of the 

target. 

 

Scope of Research 

The existing works in DR detection have made commendable 

progress, transitioning from traditional methods to advanced 

DL techniques. However, several scopes for improvement 

exist within this research domain. Firstly, there is room for 

enhancing the interpretability of deep learning models to make 

their decision-making processes more transparent and 

clinically meaningful. Integrating explainable AI techniques 

could contribute to building trust in the diagnostic outcomes. 

In our previous work [28], a DL framework was proposed to 

detect & classify DR and DME. The framework comprises of 

preprocessing unit to enhance the image quality by filtering 

noise, removing artifacts, and enhancing contrast. Blood vessel 

segmentation was performed via Improved Mask-RCNN. 

Extraction of features and classification were conducted with 

SSA-VGG-16 categorizing images into DR, DME, and normal 

classes, followed by severity level assessment using 

conditional entropy.  Furthermore, the optimization of 

preprocessing techniques remains a crucial area for refinement. 

While recent efforts have focused on improving the quality of 

input images, tailoring preprocessing methods specifically for 

diabetic retinopathy characteristics could yield more accurate 

and reliable results. Exploring novel artifact removal 

algorithms and illumination normalization approaches targeted 
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at the unique features of diabetic retinopathy lesions could 

enhance the overall efficacy of the detection system. 

 

Additionally, addressing the challenges related to dataset 

diversity and size is pivotal. As the field evolves, efforts 

should be directed towards constructing comprehensive and 

diverse datasets that encompass a broad spectrum of DR 

manifestations. This will facilitate the development of robust 

models capable of generalizing well to various clinical 

scenarios. In summary, the scope of research lies in refining 

interpretability, optimizing preprocessing techniques, and 

addressing challenges related to dataset diversity to further 

advance the capabilities of diabetic retinopathy detection 

systems. 

 

Motivation 

The Literature review brings out two crucial aspects which are 

the underlying motivation for the proposed technique - 

1. Importance of preprocessing for reducing noise and 

improving contrast which aids in discerning retinal lesions 

accurately 

2. Leveraging deep learning methods enhance feature 

differentiation capabilities for reliable DR and DME 

recognition 

A special variant of speckle filter [29] caught our attention in 

contrast enhancement, where a novel windowing technique 

was introduced to divide the total window into five 

overlapping sub-windows of equal size. Each sub-window 

contributes to a weighted mean for the pixel being filtered, 

with weights determined by sub-window heterogeneity 

measures. The filter employs Quadratic Corner Difference 

(QCD) to create masks for the windowing method of speckle 

filtering. This filter automatically adjusts speckle suppression 

strength based on local statistics, ensuring edge preservation 

while effectively reducing speckle in homogeneous areas. 

Motivated by such local contrast enhancement based method, 

the proposed model employs a novel AVDS filter to minimize 

artifacts and boost image quality which allows finer 

segmentation of abnormal regions. However, in the proposed 

AVDS, four distance methods are replaced with QCD, they 

are: Euclidean, Bhattacharya, Manhattan, and Hamming. The 

best method out of the 4 is chosen and proceeded with the rest 

of the framework, where, an improved Mask R-CNN 

facilitates precise localization of manifestations through robust 

encoder-decoder architecture. And, the extracted feature maps 

are classified using a customized SSA-VGG-16 model 

ensuring high sensitivity and specificity. The integrated 

methodology is anticipated to push performance boundaries 

over current approaches. 

 

PROPOSED METHODOLOGY 

The overall architecture of the proposed technique consists of 

four main units as illustrated in Figure 2. First, fundus images 

are enhanced using fuzzy filtering for the removal of noise, 

non-linear diffusion filtering for the removal of artefacts, and 

the newly developed AVDS filter for contrast improvement. 

Next, segmentation of blood vessels is conducted via improved 

Mask R-CNN focusing especially on abnormal regions. The 

segmented image is then passed to a SSA-VGG-16 model 

which performs multi-level feature extraction encoding various 

lesions and patterns. Finally, a softmax classifier categorizes 

the fundus image as normal, DR or DME based on the learned 

features. The upcoming subsections explain the individual 

components of proposed model in a detailed manner. 

 
Figure 2. Proposed Framework 

 

Preprocessing Stage 

This represents the preliminary phase in the detection process 

for DR and DME. The preprocessing unit consists of fuzzy 

filter for noise removal, non-linear diffusion filter for artifacts 

removal, and proposed novel AVDS for contrast enhancement. 

The pseudocode of the preprocessing technique is given below 
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and the explanation of each of the blocks of preprocessing unit is given in the following sub-sections. 

 

Algorithm 1: Preprocessing Stage 

1)   Apply Novel AVDS Filter for Contrast Enhancement: 

Function NovelAVDSFilter(image): 

For each pixel (x, y) in the image: 

Compute Euclidean Distance (ED) using Equation (3) 

Compute Hamming Distance (HD) using Equation (4) 

Compute Bhattacharya Distance (BD) using Equation (5) 

Compute Manhattan Distance (MD) using Equation (6) 

Determine the distance yielding maximum contrast 

End For 

Apply the chosen distance function to enhance contrast 

Return enhanced image 

 

Noise Removal using Fuzzy Filter 

Fundus images often encounter challenges due to the presence 

of both Gaussian and impulsive noises. Existing methods, such 

as statistical filters, have proven successful in effectively 

removing Gaussian noise, and impulsive noise has been 

addressed using median filters with success (BahadarKhan et 

al., 2016). 

 

On the other hand, fuzzy filtering is particularly well-suited for 

noise filtering in medical image processing due to its ability to 

handle the inherent uncertainty and variability in medical 

images. Medical images often contain complex, nuanced 

details that are critical for accurate diagnosis and analysis. 

Fuzzy filtering allows for precise noise reduction while 

preserving essential image features, such as edges and textures, 

which are vital in distinguishing between healthy and 

pathological areas. Its adaptive nature is beneficial for medical 

imaging, as it can effectively manage variations in image 

quality without compromising critical diagnostic information. 

Therefore, despite the existence of more advanced methods, 

fuzzy filtering remains a valuable tool in medical image 

processing where maintaining data integrity and detail 

preservation is paramount. However, when faced with the task 

of removing mixed noise types from retinal images, these 

conventional approaches struggle and often result in undesired 

blurriness. To overcome this limitation, we introduce a fuzzy 

filtering approach for noise removal, specifically designed to 

handle the complexity of mixed noise in retinal images. 

 

In our proposed method, we acknowledge the difficulties 

posed by mixed noise types and address them through the 

incorporation of a fuzzy filter. This innovative approach aims 

to remove both Gaussian and impulsive noises seamlessly, 

providing a solution to the challenges faced by conventional 

methods. The key concept driving the success of our fuzzy 

filter lies in its ability to manage uncertainty through the 

utilization of membership function variables. 

Let 'm' represent the corrupted image affected by noise, and 

consider a pixel positioned at (x, y). The noise removal process 

is defined mathematically as follows: 

 

𝐼𝑥 ,𝑦 = 
∑ ∑  𝑊(𝛥𝑃ⅈ, 𝑗)𝑃ⅈ, 𝑗𝑛 

𝑗=−𝑛
𝑛
𝑖=−𝑛

∑ ∑  𝑊(𝛥𝑃ⅈ, 𝑗)𝑛 
𝑗=−𝑛

𝑛
𝑖=−𝑛

      (1) 

 

Where Δ𝑃ⅈ, 𝑗 = 𝑃ⅈ, 𝑗 − 𝑃𝑚, 𝑛 denotes the grey level difference 

between the pixel in the center and its neighboring pixels on all 

4 sides, with 'n' representing the pixel size. The weight values 

W(Δ𝑃ⅈ, 𝑗) are computed on the basis of grey level difference of 

the neighboring pixels. The term W(Δ𝑃ⅈ, 𝑗) is expressed as the 

membership function of crisp values, where a crisp value of 

one indicates a low grey level difference, and a crisp value of 

zero indicates a high grey level difference. 𝑃𝑚, 𝑛  represents 

the intensity value of the central pixel located at coordinates 

(m, n). 

 

To elaborate, the membership function plays a vital part in the 

identification of weight assigned to each pixel with respect to 

its grey level difference. The membership function ensures that 

pixels with low grey level differences are given more weight, 

signifying their importance in the filtering process. 

Conversely, pixels with high grey level differences receive 

lower weights, reflecting their lesser impact on noise removal. 

 

Additionally, a dynamic threshold T is calculated, taking into 

account the resolution of the image. This dynamic threshold is 

crucial for adapting the noise removal process to the specific 

characteristics of each image, considering that the resolution of 

each image varies. The dynamic threshold adjustment is an 

integral part of the fuzzy filtering approach, contributing to its 

effectiveness in noise removal. 

 

Artefacts Removal using Non-Linear Diffusion Filter 

The Nonlinear Diffusion Filtering technique is utilized to 

address artifacts, emphasizing the correction of blurriness, 

illumination challenges, and poor edges, thereby indirectly 

improving image quality based on edge preservation and 

illumination correction. The algorithm operates within the 

image domain µ with Fa() representing the original image. The 

resulting filtered image 𝑥𝑎,𝑡 ()  is obtained through a nonlinear 

diffusion function with the initial state set as the original 

image. The algorithm involves partial differential equations 

(PDEs) that govern the evolution of the image over time (t), 

ensuring the preservation of important image features. The 

diffusivity variable g is strategically chosen to act as an edge 

detector, minimizing edge smoothing during the diffusion 

process. This approach effectively eliminates blurriness, poor 

edges, and illumination issues from the images while 

preserving essential image details. The algorithm contributes 
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to enhancing image quality and preparing the images for 

subsequent processing steps in the overall technique. 

 

𝜕𝑡𝑋 = div(𝑔(|𝛻𝑥𝛼|
2)𝛻𝑥) 𝑜𝑛 𝜇 × (0,∞) 

𝑋(𝑎, 0) = 𝐹(𝑎)𝑜𝑛 𝜇 

𝜕𝑛X = 0 on ∂∞  x (0,∞) 
 

𝑔(𝑣2) ∶=

{
 
 

 
 1, (𝑣2 = 0)

1 − exp(−𝑐

(
𝑣
𝜆
)
8      ⁄

) , (𝑣2 > 0)

}
 
 

 
 

      (2) 

 

 

Contrast Enhancement using Novel AVDS Filter 

A filtering operation generally involves averaging the pixels 

within a window that is symmetrically distributed around a 

central pixel. This process can cause high-contrast areas or 

edges present in one part of the central pixel's neighborhood to 

spread to other parts where they were not initially present, 

resulting in edge blurring. To address this issue, our work 

employs a subwindow-based approach. This method prevents 

high-contrast areas or edges in one part of the neighborhood 

from affecting other parts. 

The AVDS filter represents an adaptive technique for contrast 

improvement in retinal images through novel distance 

computation. Existing variant of speckle filtering methods 

employs QCD method to calculate pixel statistics within local 

regions and suppress noise accordingly [29]. In fundus image 

analysis, several types of noise can significantly affect image 

quality and hinder accurate diagnosis. These include Gaussian 

noise, which is commonly introduced during image 

acquisition, and impulsive noise, which often arises from 

transmission errors or sensor faults. Gaussian noise can blur 

subtle retinal features, while impulsive noise may result in 

random bright or dark spots that obscure critical details. 

Additionally, fundus images may suffer from uneven 

illumination, causing varying brightness levels across the 

image, and motion artifacts, which can lead to blurring and 

distortions. 

The proposed AVDS technique addresses these issues by 

adaptively selecting the optimal distance metric for each image 

region, which enhances contrast while preserving essential 

details. Unlike traditional methods that might use fixed 

thresholding, AVDS dynamically responds to the specific 

characteristics of the image, allowing it to handle both 

Gaussian and impulsive noise effectively. Furthermore, the 

AVDS filter is designed to minimize over-smoothing, which is 

a common issue with traditional filtering techniques that can 

obscure important retinal features. This adaptive approach 

ensures that the technique is versatile and capable of 

improving image quality across a range of noise conditions, 

making it particularly suitable for the challenges associated 

with fundus image analysis. 

However, this often leads to over-smoothing causing loss of 

finer details critical for clinical interpretation. The newly 

introduced AVDS filter computes four different distances to 

capture local contrasts, they are - Euclidean, Hamming, 

Bhattacharya and Manhattan distances. The proposed AVDS 

technique enhances both high- and low-contrast fundus images 

by dynamically selecting the most suitable distance metric 

(Euclidean, Hamming, Bhattacharya, or Manhattan) based on 

the local contrast within each region of the image. This 

adaptive selection ensures that the AVDS filter maximizes 

contrast enhancement without requiring fixed thresholds, 

which allows the technique to effectively handle a wide range 

of contrast conditions. 

Initially, the total filter mask is divided into five sub-windows, 

each including the pixel to be filtered (central pixel) as one of 

its elements. This neighborhood structure makes the filter more 

adaptive to single targets, edges, and homogeneous regions. 

Generally, if 𝑘 is the size of each sub-window, then the total 

filter mask will be of size 2𝑘 − 1 . Then the following 

distances are calculated to choose the pixel to be filtered. 

 

Euclidean Distance: The distance defined by the length of the 

line connecting the two pixel coordinates. 

𝑑 = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2          (3) 
 

Where the coordinates (x1,y1)and (x2,y2) represent the 

positions of two pixels in the image grid. This distance 

measures the straight-line intensity difference between these 

two pixels, which is important for detecting changes in the 

image that indicate abnormalities such as microaneurysms or 

hemorrhages. 

 

Hamming Distance: The distance defined by the measure of 

the difference between two strings of pixels of equal length. 

HD = sum( xi ≠ yi ), where i = 1, 2          (4) 
 

Bhattacharya Distance: The distance defined by the measure of 

the similarity between two probability distribution functions 

(PDFs) associated with the coordinates. 

𝐵𝐷 = − ln(∑(√𝑝(𝑥𝑖) ∙ 𝑝(𝑦𝑖)))   (5) 

 

Where p(.) refers to the PDF of the corresponding coordinate. 

Manhattan Distance: The distance defined by the sum of the 

absolute differences between the coordinates. 

MD = | x1 – y1 | + | x2 – y2 |        (6) 
 

Here, x and y are intensity vectors of the reference pixel and its 

neighbors within the filtering window respectively. The 

contrast measure is computed for the images resulting from 

each distance function. The final filtered value I is attained for 

a mask of size 2𝑘 − 1 as expressed below. 

𝐼 =
∑ 𝜇𝑖(

1

𝐷𝑖
)
𝜔

𝑘
𝑖=1

∑ (
1

𝐷𝑖
)
𝜔

𝑘
𝑖=1

     (7) 

 

Where 𝐷𝑖 ∈ {𝐸𝐷𝑖 , 𝐻𝐷𝑖 , 𝐵𝐷𝑖 , 𝑀𝐷𝑖} , 𝜇𝑖  is the mean of the i-th 

sub-window. The sub-window configuration, combined with 

the inverse D, helps preserve features while the mean 

operation handles the smoothing. The exponent 𝜔  controls 

how well the filter adapts to the specific window being 

analyzed. By adjusting 𝜔 , the filter can control the balance 

between feature preservation and smoothing. A higher value of 

𝜔 gives more weight to the inverse D, enhancing the filter's 
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ability to preserve edges and features. Conversely, a lower 

value of 𝜔  will result in more smoothing, as the mean 

operation becomes more dominant. 

The distance yielding the maximum contrast is adaptively 

chosen for further processing. By avoiding over-smoothing, 

the AVDS filter enables finer details of lesions to become 

more discernible. 

 

Segmentation Stage 

Improved Mask R-CNN: This enhances the segmentation 

performance of the popular Mask R-CNN [23] technique 

through modifications like boundary refinement modules, 

upsampling decoders and multi-level feature aggregation 

networks. This facilitates accurate capture of abnormalities 

within the vasculature structure as shown in figure 3. 

After the effective preprocessing steps, the segmentation of 

blood vessels becomes a critical step in retinal image analysis. 

This is achieved through the utilization of an advanced 

algorithm, an upgraded version of the Mask R-CNN. Blood 

vessels play a pivotal role in calculating image intensity, 

edges, texture, and various features like the blood vessels, 

lesions, and optic disc. Analyzing the diagnosis over the 

segmented regions significantly boosts the accuracy and 

precision of disease identification. 

The selection of Mask R-CNN is based on its simplicity in 

training compared to existing CNN algorithms, with a specific 

focus on particular regions, contributing to enhanced 

efficiency. Nevertheless, the conventional Mask R-CNN has a 

drawback of low boundary precision accuracy. To address this 

limitation, our proposed approach employs an improved Mask 

R-CNN to achieve higher precision accuracy. 

The preprocessing involves removing the optic disc from the 

preprocessed image, and subsequently, the blood vessels are 

segmented with the help of improved Mask R-CNN. The 

initial step in this process is the Region of Interest (ROI) 

alignment, predicting the region of interest from the input 

image. 

 

Network Structure of Enhanced Mask R-CNN 

The enhanced Mask R-CNN is engineered to concurrently 

conduct identification of blood vessels and pixel-level blood 

vessels. It incorporates structures from the faster R-CNN 

network and the Feature Pyramid Network (FPN) with a 

Region of Interest (ROI) Align algorithm. The comprehensive 

structure of the Mask R-CNN is dissected into six blocks: 

input, backbone network, FPN, Regional Candidate Network 

(RPN), ROI alignment and bounding box, category, and the 

mask output (box, class, and mask). 

 

ROI Alignment 

ROI alignment proves to be a crucial step in Mask R-CNN to 

enhance pixel-level segmentation of blood vessels. The layer 

of ROI alignment refrains from quantization for the boundary 

of ROI. It involves achieving information about the optic disc 

surrounding regions from the retinal fundus images through 

binary classification in both background and foreground 

blocks. The improved Mask R-CNN introduces a decoder layer 

with learnable up-sampling to handle features with high spatial 

resolution. The features of high-resolution achieved from the 

ROI are used and aligned to the decoding layer with the help 

of skip connections. 

 

𝐵𝑗 = {𝑃1,𝑃2,𝑃3,𝑃4}      (7) 

 

Where 𝐵𝑗  is described by the base points as given below: 

𝑅𝑂𝐼(𝑀,𝑁) ≈
𝑅𝑂𝐼(𝑃1)

(𝑀2 −𝑀1)(𝑁2 − 𝑁1)
∗ ( 𝑀2 − N)(N2 − 𝑁) + 

𝑅𝑂𝐼(𝑃2)

(𝑀2 −𝑀1)(𝑁2 −𝑁1)
∗ ( 𝑀2 −M)(N2 −𝑁) + 

𝑅𝑂𝐼(𝑃3 )

(𝑀2 −𝑀1)(𝑁2 −𝑁1)
∗ ( 𝑀2 −M)(N2 −𝑁) + 

𝑅𝑂𝐼(𝑃2)

(𝑀2 −𝑀1)(𝑁2 − 𝑁1)
∗ ( 𝑀2 −M)(M2 − 𝐶)      (8) 

 

Loss Function 

The loss function in Mask R-CNN for all sampled Regions of 

Interest (ROI) integrates the accumulation of Mask loss, 

Bounding-box loss, and Classification loss. The loss is a 

combination of prediction loss for class labels, refinement loss 

of bounding boxes, and prediction loss for mask segmentation. 

The loss function ensures a comprehensive assessment for 

accurate blood vessel segmentation. 

 

𝐿′ = 𝐼𝑐𝑙𝑠   
′ + 𝐼𝑏𝑜𝑥

′ + 𝐼𝑚𝑎𝑠𝑘
′             (9) 

 

𝐼. (Prb, 𝐺b, 𝑃rcls , 𝐺𝑐𝑙𝑠  ) =  𝐼.𝑐 ( 𝑃𝑐𝑙𝑠 , 𝐺𝑐𝑙𝑠) +  𝜑[𝐺𝑐𝑙𝑠 ≥ 1]       (10) 
 

Algorithm 2: Segmentation using Improved Mask R-CNN 

1)    Preprocessing: 

Remove optic disc from preprocessed image 

2)    Network Structure of Enhanced Mask R-CNN: 

Input: 

Input image 



A Novel Preprocessing Unit for Effective Deep Learning based Classification and Grading of Diabetic Retinopathy 

1100  Afr. J. Biomed. Res. Vol. 27, No.3 (October) 2024  Pranoti Nage et al  

Backbone Network: 

Extract features from input image 

Feature Pyramid Network (FPN): 

Generate multi-level feature maps 

Regional Candidate Network (RPN): 

Propose candidate object regions 

ROI Alignment and Bounding Box: 

Refine region proposals and predict bounding boxes 

Category and Output of the Mask: 

Classify objects and output segmentation masks 

3)    ROI Alignment: 

Function ROIAlignment(image): 

Obtain ROI from input image 

Refrain from quantization for ROI boundary 

Introduce decoder layer with learnable up-sampling 

Align high-resolution features from ROI to decoder layer 

Use skip connections to align features 

Return aligned features 

4)    Loss Function: 

Function MultiTaskLoss(P_cls, G_cls, Pr_b, G_b, Pr_cls, G_cls, Pr_mask, G_mask): 

Calculate classification loss I_cls 

Calculate bounding box loss I_box 

Calculate mask loss I_mask 

Combine losses to get total loss L' 

Return total loss L' 

 

 
Figure 3. Process of segmentation of blood vessels using improved mask R-CNN 

 

Classification & Grading 

VGG-16 Classifier: This is an established CNN architecture 

known for its capability to learn robust feature representations 

facilitated by increased depth [24]. In the proposed method, 

VGG-16 extracts numerous lesions, texture and morphological 

attributes which are classified using additional layers. 

After completing the segmentation phase, the segmented 

images undergo feature extraction and classification. The 

proposed SSA-VGG-16 architecture is applied for this task. 

SSA-VGG-16 comprises convolutional layers, fully connected 

layers, and softmax layers. The proposed SSA-VGG-16 model 

starts with the foundational VGG-16 architecture, which 

consists of a series of convolutional layers followed by pooling 

layers, and culminates with fully connected layers for 

classification. The model is modified to include self-attention 

and spatial attention mechanisms, collectively referred to as 

SSA, which are added after the last convolutional block of 

VGG-16. This attention module ensures that the network can 

capture global context as well as focus on crucial spatial 

details within the retinal images. 

In the SSA module, a self-attention block is first applied to 

capture long-range dependencies between spatial locations in 

the feature map. This mechanism enables each pixel to attend 

to all other pixels, creating an attention map that represents 

how each location in the image is influenced by all other 

locations. The self-attention mechanism helps the model to 

focus on critical regions of the retina, ensuring that subtle 

features related to retinal damage are detected. Meanwhile, the 

spatial attention mechanism refines this focus by highlighting 

important regions in the feature maps, such as areas with 

swelling or fluid accumulation, which are characteristic of 

DME. The feature map from the last convolutional block is 

transformed into query, key, and value matrices. These 

matrices are used to compute attention weights, representing 

the similarity between each pair of pixels. Using dot-product 

attention, the similarity between the query and key matrices is 

calculated, scaled, and passed through a softmax function to 
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generate attention scores. These scores are then used to weight 

the value matrix, allowing the model to aggregate information 

from all locations in the feature map. This self-attention 

process results in a context-aware feature representation that 

enhances the model’s sensitivity to relevant features across the 

entire image. 

Following the self-attention block, a spatial attention 

mechanism is applied to further refine the focus on key regions 

of interest within the feature map. Average and max pooling 

operations are performed along the channel dimension to 

summarize the presence of important features at each spatial 

location. The pooled features are concatenated and passed 

through a convolution layer with a sigmoid activation function, 

generating a spatial attention map that highlights the 

significant regions. This attention map is then used to scale the 

original feature map, thereby emphasizing spatial areas that are 

crucial for identifying and grading DR and DME. By 

combining self-attention and spatial attention, the SSA module 

ensures that the model is both contextually aware and spatially 

focused, making it particularly adept at identifying subtle 

retinal abnormalities associated with DR and DME. 

Structural features like microaneurysms, hemorrhages, and 

hard exudates are focused on, alongside shape, orientation, and 

color features, contributing to the comprehensive analysis for 

the classification of DR and DME. 

𝐶(𝐹) =  𝜗(𝑓7×7[ 𝐹𝑎; 𝐹𝑚  ] )      (11) 

 

In feature extraction, both max pooling and average pooling 

layers contribute to extracting relevant features from the 

segmented image. The resulting output, denoted as C(F), is a 

critical step in the feature extraction process. 

𝐶 (𝑝 =
𝑠

𝑡
) =  ⅇ𝑑/𝛴𝑗ⅇ

𝑑𝑗          (12) 

 

The extracted features move on to a fully connected layer, 

incorporating a dense layer, dropout layer, and flatten layer. 

The softmax layer is pivotal in classifying these features into 

three distinct categories: normal, DR, and DME. The 

classification process involves calculating weight values, and 

the output is categorized into the three classes using a 

probability formula. 

𝐻(𝑋) =  −  ∑𝑃(𝑋) log (

𝑥𝜖𝑋

𝑋)        (13) 

 

The entire process of extraction of features and classification is 

depicted in Figure 4. Following this, the images are 

categorized as normal, DR, or DME. To assess the disease's 

severity, an entropy function is employed, factoring in the total 

count of lesions for threshold generation. Severity levels, 

ranging from mild to moderate and severe, are assigned based 

on the computed threshold value from the entropy function. 

 

Algorithm 3: Feature Extraction and Classification 

Initialise Features F = {f1, f2, ..., fn} 

Initialise SSA-VGG-16 model 

SSA-VGG-16.train(training_data) 

For i = 0 to n do 

Extract F from segmented region 

Feature extracted by Fa 

Feature extracted by Fm 

Combined_features = Combine(Fa, Fm) 

Classify_result = SSA-VGG-16.classify(Combined_features) 

Assign class labels: Class = {normal, DR, DME} 

Output Classify_result 

End for 

 

 
Figure 4. Process of extraction of features and classification using SSA-VGG-16 

 

RESULTS & DISCUSSION 

Dataset Description 

IDRiD Dataset 

The IDRiD (Indian Diabetic Retinopathy Image Dataset) is an 

innovative collection designed specifically for the Indian 

demographic, capturing both the details of diabetic retinopathy 

lesions and the nuances of normal retinal structures down to 

the pixel. This rich dataset is a game-changer for refining 

image analysis techniques aimed at catching diabetic 

retinopathy in its early stages. It's neatly organized into three 

main parts: Segmentation, Disease Grading, and Localization. 

In the Segmentation area, you'll find original color images of 
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the retina alongside detailed annotations for lesions and the 

optic disc. The Disease Grading section includes these retinal 

images but focuses on identifying the severity levels of 

diabetic retinopathy and diabetic macular edema. Meanwhile, 

the Localization segment highlights the exact positions of key 

retinal features like the optic disc and fovea center. IDRiD is 

more than just a dataset; it's a critical asset for those on the 

front lines of creating and testing new tools to combat diabetic 

eye conditions, offering a clear window into both healthy and 

diseased states. 

 

Messidor Dataset 

The MESSIDOR dataset, short for Methods to Evaluate 

Segmentation and Indexing Techniques in Retinal 

Ophthalmology, features a collection of 1200 color images of 

the eye's fundus, focusing on the posterior pole. These images 

were captured by three different ophthalmologic departments 

using a sophisticated color video 3CCD camera attached to a 

Topcon TRC NW6 non-mydriatic retinograph, which provides 

a broad 45-degree view of the retina. The images are detailed, 

captured at 8 bits per color plane, and come in various 

resolutions (1440*960, 2240*1488, or 2304*1536 pixels). Of 

these, 800 images were taken with the pupils dilated, and 400 

were taken without dilation. Organized into three sets to 

represent each ophthalmologic department, the dataset is 

further segmented into four zipped subsets containing 100 

TIFF format images each. To aid in medical analysis, each 

subset is accompanied by an Excel file detailing the medical 

diagnoses for every image, including the grade of retinopathy 

and the risk of macular edema present. This carefully curated 

dataset is an invaluable tool for those looking to advance 

segmentation and indexing methods in the field of retinal 

ophthalmology. 

 

Results of Preprocessing Unit 

Performance measures considered for evaluating the 

preprocessing unit are MSE, RMSE, PSNR, & Contrast. 

 

MSE 

Mean Squared Error (MSE) is a performance metric used for 

evaluating the performance of a preprocessor or a regression 

model by measuring the average squared difference between 

the predicted and actual values. It quantifies the average 

squared deviation of predictions from the ground truth. 

MSE calculates the average of the squared differences between 

actual and predicted values, providing a measure of how well 

the model or preprocessor is performing. Lower MSE values 

indicate better performance, with zero MSE representing a 

perfect match between actual and predicted values. The 

formula for MSE is as follows: 

MSE = (1/n) * Σ(yi - ŷi)^2      (14) 
 

Where n denotes the number of samples in the dataset; yi 

represents the actual value of the i-th pixel; ŷi represents the 

predicted value of the i-th pixel; and Σ denotes the summation 

across all pixels of the image. 

 

 

 

RMSE 

Root Mean Squared Error (RMSE) is a variation of the MSE 

commonly used for evaluating the performance of regression 

models or preprocessors. RMSE is advantageous because it 

presents the error metric in the same unit as the target variable, 

making it easier to interpret. 

RMSE evaluates the square root of the average of the squared 

differences between predicted and actual values. This metric 

renders a more intuitive understanding of the error by bringing 

it back to the original unit of the target variable. As with MSE, 

lower RMSE values indicate better model or preprocessor 

performance. 

RMSE = sqrt (MSE)      (15) 
 

PSNR 

Peak Signal-to-Noise Ratio (PSNR) is a performance measure 

used for computing the quality of a processed or compressed 

signal concerning the original signal. It provides insight into 

the level of distortion introduced during compression or 

processing. 

PSNR is expressed in decibels (dB), and a higher value of 

denotes a smaller amount of signal distortion or noise. It is a 

widely utilized measure in image and video processing to 

assess the visual quality of compressed or processed signals. 

PSNR = 20*log10(MAX) – 10*log10(MSE)      (16) 
 

Contrast 

Contrast in an image refers to the difference in intensity 

between the darkest and lightest parts of the image. In the 

context of a preprocessed image, contrast enhancement 

techniques are often applied to improve the visibility of details 

by increasing the difference in intensity between different 

regions. 

Calculating contrast value involves measuring the standard 

deviation of pixel intensities in the image. This contrast value 

provides a measure of how spread out pixel intensities are in 

the image. Higher contrast values indicate a more distinct 

difference between light and dark areas, leading to a visually 

sharper image. Contrast enhancement is a common 

preprocessing step to improve the quality and visibility of 

important features in images. 

 

Results of Classification & Grading Unit 

Performance measures considered are accuracy, sensitivity, 

specificity, f1-score, and ROC curve. 

 

Accuracy 

Accuracy, in the context of a confusion matrix, is a key 

indicator of how well a classification model performs, 

quantifying the proportion of predictions it got right. It takes 

into account both the true positives (correctly identified 

instances) and the true negatives (correctly rejected instances), 

comparing these to the overall count of instances being 

examined. The formula to compute accuracy is: 

Accuracy = (TP + TN) / (TP + TN + FP + FN)       (17) 
 

Where: 

- TP: True Positives 

- TN: True Negatives 
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- FP: False Positives 

- FN: False Negatives 

 

Accuracy calculates the proportion of instances that are 

correctly predicted (including both true positives and true 

negatives) relative to the entire dataset's number of instances. 

At its core, accuracy evaluates how well the model can 

correctly identify both positive and negative instances. 

However, in situations where there's an uneven distribution of 

classes, accuracy may not be the most reliable measure. This is 

because a model might achieve a high accuracy score by 

predominantly predicting the more frequently occurring class, 

skewing the real picture of its performance. For a more 

comprehensive evaluation, additional metrics like precision, 

recall, and F1 score may be considered alongside accuracy. 

Accuracy of the proposed work is 98.7% for IDRiD dataset 

and 98.2% for Messidor dataset. 

 

Sensitivity 

Sensitivity, also called as True Positive Rate (TPR) or Recall, 

is a performance metric from a confusion matrix that measures 

the capability of a classification algorithm to correctly identify 

positive cases from the entire pool of positive cases. 

Sensitivity = (TP) / (TP + FN)       (18) 
 

In the medical context, sensitivity is crucial, as it indicates the 

model's effectiveness in capturing instances of a particular 

condition. A high sensitivity value implies that the algorithm 

has a low rate of FN, ensuring that most actual positive cases 

are correctly identified. However, there is often a trade-off 

between sensitivity and specificity, and the appropriate balance 

depends on the specific goals and constraints of the 

classification task. Sensitivity of the proposed work is 98.2% 

for IDRiD dataset and 98.5% for Messidor dataset. 

 

Specificity 

Specificity is a performance metric derived from a confusion 

matrix in the context of classification models. It gauges the 

model's capability to accurately distinguish negative instances 

among all actual negative cases. 

Specificity = (TN) / (TN + FP)       (19) 
 

Specificity is essential in situations where correctly identifying 

true negatives is crucial, such as in medical diagnostics or 

other scenarios where false positives can have significant 

consequences. A high specificity value denotes that the model 

has a low rate of FPs, meaning that it accurately identifies 

instances that are truly negative. Similar to sensitivity, there's 

often a trade-off between sensitivity and specificity, and the 

optimal balance depends on the specific needs of the 

classification problem. Specificity of the proposed work is 

99.1% for IDRiD dataset and 98.9% for Messidor dataset. 

 

AUC 

The Area Under the Curve (AUC) is the area under the 

Receiver Operating Characteristic (ROC), which is a plot 

showing the trade-off between true positive rate (sensitivity) 

and false positive rate (FPR) (1 - specificity). 

AUC = ∫[TPR (FPR)] d(FPR)       (20) 
 

The AUC of the proposed model is 0.95 for IDRiD dataset and 

0.94 for Messidor dataset. 

 

Comparative Evaluation 

The study compares existing preprocessing methods and the 

proposed model of preprocessing with respect to MSE, RMSE, 

PSNR, & Contrast measure. The outcomes are tabulated in 

Table 1. 

Table 1. Performance Comparison of Preprocessing Methods 

Method MSE RMSE PSNR Contrast 

Histogram Equalization 105.77 10.28 26.89 10.23 

CLAHE 109.84 10.48 27.11 11.56 

Proposed Euclidean based AVDS Method 80.04 8.94 29.09 12.31 

Proposed Bhattacharya based AVDS Method 85.56 9.24 28.8 18.18 

Proposed Hamming based AVDS Method 93.48 9.66 28.42 50.23 

Proposed Manhattan based AVDS Method 79.76 8.93 29.09 12.26 

 

Thus the table 1 proves that the performance of the proposed 

AVDS method of filtering involves four distance methods such 

as Euclidean, Bhattacharya, Hamming, and Manhattan, 

outperform the existing methods Histogram Equalization and 

CLAHE by exhibiting least values for MSE and RMSE and 

highest values of PSNR and contrast. Euclidean based 

approach is found to perform the best in lower MSE and higher 

PSNR values with hamming distance showing best contrast 

value and so, the further processing is carried out using the 

Euclidean and hamming based AVDS output. 

Furthermore, table 1 justifies the effectiveness of the novel 

AVDS filter in improving image quality and minimizing 

artifacts. The lower MSE and RMSE values, particularly for 

the Euclidean and Manhattan distance-based AVDS methods, 

indicate superior noise reduction, while the higher PSNR 

values demonstrate better signal preservation compared to 

traditional methods like Histogram Equalization and CLAHE. 

Additionally, the significantly improved contrast, especially 

with the Hamming distance-based AVDS filter, enhances the 

visibility of critical retinal features, which is essential for 

accurate diagnosis of DR and DME. These metrics collectively 

validate the AVDS filter’s ability to boost image quality and 

handle noise and artifacts more effectively than conventional 

techniques. 
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The image results taken in BGR format of the 4 variants of AVDS are illustrated along with histograms in figure 5. 

 
(a) Input Image 

 
(b) Fuzzy Filtered Image 

 

 
(c) Non-Diffusion Filtered Image 
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(d) ADVS – Euclidean Distance Output 

 

 
(e) ADVS – Hamming Distance Output 

 

 
(f) ADVS – Bhattacharya Distance Output 
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(e) ADVS – Manhattan Distance Output 

 

 
(f) Histogram Plots of the 4 variants of AVDS 

Figure 5. Image Results 

 

From the histograms of the processed images using different 

AVDS metrics, we observed distinct variations in pixel 

intensity distributions. The AVDS Euclidean output showed an 

overwhelming concentration of high-intensity pixels. The 

AVDS Hamming output showed diverse intensity peaks, 

suggesting a preservation of image details across a broader 

range of intensities, which could be advantageous for 

applications requiring detailed textural information. The 

AVDS Bhattacharya output predominantly displayed low 

intensities, showing it can be potentially useful for enhancing 

visibility in darker regions. The AVDS Manhattan output 

exhibited extreme brightness. Each method has its own 

characteristics. The choice of which technique is performing 

well depend heavily on the specific application. In the context 

of contrast enhancement, AVDS Hamming distance output is 

found to give best results. 

 

The study compares existing model [28], [32], [33], [34] and 

the proposed model of classification and grading in terms of 

accuracies, sensitivities, and specificities. 

 

Table 2. Performance Comparison of Classification Models 

Method Accuracy (%) Sensitivity (%) Specificity (%) AUC 

Ref [28] 80.7 93.67 93.67 0.93 

Ref [32] 90.07 - - - 

Ref [33] 95.65 89 99 - 

Ref [34] 94.17 94.17 - - 

Proposed Model 98.7 98.2 99.1 0.95 

 

The table 2 presents a clear comparison between the existing 

methods (Ref [28], Ref [32], Ref [33], Ref [34]) and the 

proposed model in terms of accuracy, sensitivity, and 

specificity for DR classification. The proposed model 

demonstrates significant improvements over existing models in 

terms of classification accuracy, sensitivity, specificity, and 

AUC. Compared to the referenced models, it shows an 

accuracy increase of 18% over Ref [28], 9.6% over Ref [32], 

3.05% over Ref [33], and 4.8% over Ref [34]. Additionally, 

the proposed model excels in sensitivity and specificity, with 

values of 98.2% and 99.1%, respectively, showcasing its 

robust performance. The AUC of 0.95 further highlights its 

superior discriminatory power, making the proposed model a 

highly effective and reliable choice for classification tasks. 
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This suggests that the proposed model not only outperforms 

the existing state-of-the-art models but does so by a significant 

margin, making it a more effective solution for classifying and 

grading DR. 

 

CONCLUSION 

In conclusion, this paper presented a novel and comprehensive 

framework for the early detection and grading of DR and 

DME, integrating advanced preprocessing, segmentation, and 

classification techniques. The proposed method introduced an 

AVDS filter, which enhanced image contrast by adaptively 

selecting the most effective distance metric, thus optimizing 

retinal image quality while preserving essential features. This 

preprocessing approach proved effective in handling noise and 

artifacts, which was crucial for accurate downstream analysis. 

The improved Mask R-CNN module then segmented blood 

vessels and abnormal regions with high precision, enabling a 

clearer identification of DR and DME-related features. 

Subsequently, the SSA-VGG-16 classification model, which 

combined self-attention and spatial attention, demonstrated a 

robust capacity to focus on critical retinal details and capture 

long-range dependencies. This dual attention approach led to 

substantial improvements in classification accuracy, with the 

proposed model achieving an accuracy of 98.7%, a sensitivity 

of 98.2%, a specificity of 99.1%, and an AUC of 0.95 on the 

IDRiD dataset, and similar high-performance metrics on the 

MESSIDOR dataset. These results reflected significant gains 

over existing methods, which underscored the framework's 

reliability and diagnostic effectiveness. The framework was 

validated on both IDRiD and MESSIDOR datasets, 

demonstrating adaptability and robustness across diverse 

clinical data. This adaptability indicated that the proposed 

model could be effectively applied to other fundus image 

databases, supporting its potential for widespread clinical use. 

In the future, additional imaging modality such as OCT scan 

images can be included as inputs for evaluating structural and 

functional details. 
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