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Abstract 

Skin cancer especially melanoma is one of the most common cancers around the world and needs early and accurate detection to 

improve the results for patients. Traditional methods for diagnosis have problems like being subjective and inconsistent which 

shows the need for better computer-based solutions. While deep learning techniques show promise in automating detection through 

dermoscopic image analysis existing models struggle with limited generalizability high computational demands and class imbalance 

in datasets. To address these limitations, this work proposes the Multi-Center Validation of Ladybug Beetle Optimized 

Convolutional Capsule Neural Networks with Explainable AI (LOCapsNet-XAI) for skin cancer classification using dermography 

images. The proposed workflow for skin cancer classification using LOCapsNet-XAI begins with the acquisition of multi-center 

clinical data contains diverse dermoscopic images from various healthcare institutions to create a representative training dataset. 

Next, image preprocessing techniques such as Anisotropic Diffusion and Kuwahara Filtering are employed to enhance image clarity 

by reducing noise while preserving important features like lesion boundaries. Following preprocessing, feature extraction is 

performed using the innovative Convolutional Capsule Neural Network (CapsNet) architecture, which effectively captures complex 

patterns and spatial relationships within the images. The model's parameters are then optimized using the Ladybug Beetle 

Optimization Algorithm (LBOA), which enhances the exploration and exploitation capabilities to improve classification 

performance. To foster trust in AI-assisted diagnoses, Explainable AI methodologies specifically Grad-CAM++ are integrated into 

the framework, that provides the clinicians with visual insights into the model's decision-making processes. Finally, the workflow 

culminates in the classification of skin lesions by accurately identifying them as benign or malignant and facilitating informed 

clinical decision making. The proposed LOCapsNet-XAI method achieves exceptional performance metrics including 99.992% 

accuracy; 99.99% precision; 99.988% specificity; 99.99% recall; 99.98% F1-score; 91ms computation time and an AUC value of 

0.99. These findings underscore the capability of the proposed model to enhance early skin cancer detection and improve clinical 

outcomes. In conclusion, LOCapsNet-XAI represents a significant advancement in the automated detection of skin cancer 

facilitating reliable and interpretable diagnostics in diverse clinical environments. 
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INTRODUCTION 

Skin cancer is a malignant condition resulting from abnormal 

skin cell growth, and it is one of the most common cancers 

worldwide [1]. Each year, millions of people are affected due to 

prolonged exposure to ultraviolet (UV) radiation [2]. Among the 

various types of skin cancer, basal cell carcinoma (BCC), 

squamous cell carcinoma (SCC), and melanoma is the most 

common [3]. Melanoma is highly aggressive and responsible for 

most skin cancer-related deaths [4]. Early detection plays a 

crucial role in improving survival rates especially for 

melanoma, where timely diagnosis significantly enhances 

treatment outcomes [5-7]. Traditional diagnostic methods such 

as visual examination and biopsy are time-consuming, intrusive, 

and subject to varying interpretations, which leads to 

inconsistent outcomes [8-10]. While visual assessments by 

dermatologists remain the standard, these methods have 

limitations including human error and diagnostic inconsistency 

[11]. Distinguishing between malignant and benign lesions is 

challenging, which results in delayed diagnoses [12]. This issue 

is especially pronounced in regions with limited access to 

dermatological expertise [13-15]. Therefore, making early 

detection is difficult in certain populations. 

To address these challenges, automated systems based on 

machine learning (ML) and deep learning (DL) have shown 

promise in improving skin cancer detection. These systems by 

analyzing dermoscopic images and classifying lesions as benign 

or malignant [16-18]. Despite their potential, current AI models 

face several limitations which includes restricted generalization 

capabilities, high computational demands, and difficulties 

integrating with existing clinical practices. A major issue with 

AI-based detection systems is their dependence on the data used 

for training. Models trained on non-diverse datasets struggle to 

generalize effectively to new cases, which limits their reliability 

across different populations [19]. Moreover, training and 

deploying deep learning models demand substantial 

computational cost, which is a barrier in settings with limited 

resources. The class imbalance in skin cancer datasets also 

result in models that are less effective at detecting early-stage 

malignant lesions [20-22]. 

One solution to these challenges is Explainable AI (XAI), which 

improves transparency by clarifying the decision-making 

process of AI models. This transparency fosters trust in the 

system and enables healthcare professionals to better understand 

and interpret AI predictions. XAI also helps to identify and 

rectify errors and biases in machine learning models, which 

reduces the probability of false positives and false negatives. By 

this, it improves the overall reliability of the model. XAI 

encourages collaboration between AI developers and clinicians 

by creating a shared framework for discussing results. This 

collaboration enhances system integration into clinical practice. 

Additionally, use of multi-center clinical data further enhances 

model generalization, reducing bias and promoting fairness 

across diverse populations. 

Advancing AI models for skin cancer detection necessitates the 

integration of Explainable AI and multi-center clinical data. 

Explainable AI enhances model transparency, fostering trust 

among clinicians, while multi-center data improves 

generalization, reduces bias, and promotes fairness across 

diverse populations. These combined approaches aim to create 

a reliable and effective AI-based tool for skin cancer detection, 

that can significantly improve patient outcomes. The 

contributions of the proposed LOCapsNet-XAI work are 

outlined below, 

⮚ The Convolutional Capsule Neural Networks optimized 

with the Ladybug Beetle Optimization algorithm 

(LOCapsNet) represents a novel approach designed to 

enhance feature extraction and classification capabilities in 

dermoscopic image analysis for skin cancer detection. 

⮚ The LOCapsNet model integrates Explainable AI (XAI) to 

improve transparency in the decision-making process, that 

enables healthcare professionals to better interpret and trust 

the system’s predictions. 

⮚ The system is trained and validated on multi-center clinical 

data, which enhances generalization, reduces bias, and 

improves model performance across diverse populations. 

⮚ The proposed approach addresses the issue of class 

imbalance in skin cancer datasets, thereby improving the 

detection of early-stage malignant lesions. 

⮚ The system is optimized for computational requirements. 

So, it is feasible for deployment in settings with limited 

resources, thus increasing accessibility to early skin cancer 

diagnosis. 

 

The subsequent sections of this manuscript detail the proposed 

LOCapsNet-XAI model for skin cancer diagnosis. Section 2 

presents a systematic review of current skin cancer detection 

methods, emphasizing their advantages and limitations. Section 

3 elaborates on the methodological framework of the 

LOCapsNet -XAI model, including its architecture and 

optimization strategies. Section 4 conducts an extensive 

evaluation of the model's performance, benchmarking it against 

existing state-of-the-art techniques. Finally, Section 5 discusses 

the results in depth, addressing the model's limitations and 

suggesting avenues for future research. 

 

LITERATURE SURVEY 

This section examines recent progress in deep learning 

approaches for the diagnosis of skin cancer using dermoscopic 

images. Below are several notable studies that illustrate diverse 

techniques and their contributions to enhancing diagnostic 

precision in this domain. 

In 2022, Nigar, N., et.al [16] suggested explainable artificial 

intelligence (XAI) based system for skin lesion classification to 

enhance the accuracy of identifying various skin lesions. This 

approach assisted dermatologists in making informed diagnoses 

during the early stages of skin cancer. The XAI model was 

validated using the International Skin Imaging Collaboration 

(ISIC) 2019 dataset. The ResNet-18 model effectively classified 

eight types of skin lesions achieving classification accuracy, 

precision, recall, and F1 score of 94.47%, 93.57%, 94.01%, and 

94.45% respectively. These predictions were further analyzed 

using the Explainable Artificial Intelligence (XAI) techniques 

such as local interpretable model-agnostic explanations (LIME) 

framework, which generated visual explanations that aligned 

with prior knowledge and established explanation 
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methodologies. The integration of explainability in the model 

enhanced its practical utility for clinical applications (ResNet-

18-XAI). However, it has high error rate. 

In 2024, Gautam, Y., et.al [17] presented FusionEXNet as an 

innovative and interpretable fused deep-learning model for skin 

cancer detection. FusionEXNet leveraged the strengths of 

EfficientNetV2S and XceptionNet architectures to extract 

robust features from dermoscopic images, that achieves superior 

performance compared to individual models. XceptionNet and 

EfficientNetV2S achieved accuracies of 88.82% and 88.01%, 

respectively, while FusionEXNet surpassed these results with 

an accuracy of 90.83%. To enhance model interpretability, 

Explainable Artificial Intelligence (XAI) techniques such as 

SmoothGrad and Faster Score-CAM were integrated for 

providing valuable insights into the decision-making process. 

The model was trained and evaluated using the extensive 

HAM10000 dataset, which consists of 10,015 high-resolution 

images across seven skin lesion categories. The 

EfficientNetV2S and XceptionNet-XAI model offered a 

reliable, accurate, and interpretable system for skin cancer 

detection. However, it has low accuracy. 

In 2023, Mridha, K., et.al [18] suggested Enhanced 

Interpretability in Skin Cancer Classification via an Optimized 

Convolutional Neural Network for Intelligent Healthcare 

Solutions. It utilized the HAM10000 dataset and an optimized 

convolutional neural network (CNN) to identify seven forms of 

skin cancer. The model was trained using two optimization 

functions such as Adam and RMSprop along with three 

activation functions includes ReLU, Swish, and Tanh. 

Additionally, an explainable artificial intelligence (XAI) based 

skin lesion classification system was developed, incorporating 

Grad-CAM and Grad-CAM++ to elucidate the model’s 

decisions. This CNN-Adam-RMSprop-XAI system assisted 

doctors in making informed diagnoses of skin cancer in its early 

stages. It achieves a classification accuracy of 82% and a loss 

accuracy of 0.47%. However, it has low F-Score value. 

In 2023, Khater, T., et.al [19] developed machine learning-

based model for skin cancer classification using preprocessed 

images from the PH² dataset. Initially, relevant features were 

extracted from these images, which provided more significant 

information than raw data. The XGBoost algorithm was 

employed for classification. It provides notable accuracy of 94% 

and an area under the curve (AUC) value of 0.9947. As a result, 

it effectively distinguishing the image between non-melanoma 

and melanoma skin cancers. Explainable artificial intelligence 

techniques, including partial dependence plots, permutation 

importance, and SHAP, were utilized to enhance 

interpretability. The analysis revealed that asymmetry and 

pigment network features emerged as the most critical factors 

influencing the classification of skin lesions. However, it has 

high computation time. 

In 2024, Attallah, O., [20] developed Skin-CAD system to 

classify dermoscopic photographs of skin cancer (SC) into 

benign and malignant categories. It utilized four convolutional 

neural networks (CNNs) of varied topologies to extract features 

from the final pooling and fully connected layers, rather than 

relying solely on one layer. The system was validated using 

HAM10000 datasets. It employed Principal Component 

Analysis (PCA) for dimensionality reduction of pooling layer 

features, thereby it minimizes the training complexity. Reduced 

pooling features were combined with fully connected features 

from each CNN integrating dual-layer features across the 

architectures. A feature selection step identified the most critical 

deep attributes for classification process. Predictions were 

analyzed using the Local Interpretable Model-agnostic 

Explanations (LIME) method to provide visual interpretations 

aligned with existing perspectives. However, it has low recall 

value. 

In 2024, Hosny, K.M., et.al [21] proposed deep inherent 

learning method to classify seven types of skin lesions. 

Explainable AI (X-AI) was employed to elucidate decision-

making processes at both local and global levels, that provides 

visual information and it enhanced the physician’s trust. The 

challenging HAM10000 dataset served as the evaluation 

framework for this approach. A DIL-XAI framework was 

developed to aid medical practitioners in understanding the 

mechanisms of black-box AI models. However, it has low 

specificity value. 

In 2023, Priyanka Pramila, R. and Subhashini, R., [22] proposed 

a fused deep convolutional neural network for the automated 

detection and classification of skin lesions using dermoscopic 

images (FDCNN-VGG19-ResNet152). The methodology 

involved preprocessing the images, followed by feature 

extraction utilizing the VGG19 and ResNet152 architectures. 

The obtained features were then input into a fused deep 

convolutional neural network for the classification task. 

Although the model demonstrated significant accuracy, its high 

computational demands constrained its effectiveness in real-

time applications. 

 

Problem Statement and Motivation 

Automated systems employing machine learning (ML) and deep 

learning (DL) show promise in enhancing skin cancer detection 

through dermoscopic image analysis. Accurate and timely skin 

disease detection is crucial for effective treatment outcomes. 

However, existing AI models face challenges including limited 

generalization due to reliance on non-diverse training datasets, 

high computational demands, and difficulties in clinical 

integration. Class imbalance in skin cancer datasets further 

hampers the detection of early-stage malignant lesions [16-22]. 

To address these issues, Multi-Center Validation of Ladybug 

Beetle Optimized Convolutional Capsule Neural Networks with 

Explainable AI for Skin Cancer Classification Using 

Dermography Images is proposed. This study integrates 

Explainable AI (XAI) to enhance transparency and foster 

clinician trust while utilizing multi-center clinical data to 

improve generalization and fairness. The goal is to create a 

reliable AI tool that significantly improves patient outcomes in 

skin cancer diagnosis. 

 

PROPOSED METHODOLOGY 

In this section, the proposed methodology for skin cancer 

detection using a Ladybug Beetle Optimized Convolutional 

Capsule Neural Network (LOCapsNet) with Explainable AI is 

outlined. The workflow encompasses several key stages 

beginning with the acquisition of multi-center clinical data to 

ensure a diverse and representative dataset for model training 

and validation. This collaborative effort involves gathering 
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dermoscopic images from various institutions which facilitates 

a comprehensive dataset that spans a range of skin conditions, 

demographics, and skin types. The subsequent step involves 

preprocessing the collected images to ensure uniformity and 

eliminate noise which can obscure critical features such as 

lesion boundaries and textures. Techniques such as Anisotropic 

Diffusion and Kuwahara Filtering are employed to enhance 

image clarity while preserving vital diagnostic information. 

Following preprocessing the refined images serve as inputs for 

feature extraction and skin cancer detection through the 

innovative architecture of Convolutional Capsule Neural 

Networks (CapsNet). CapsNet's unique design allows it to 

effectively capture intricate patterns and spatial relationships 

within the dermoscopic images leading to improved 

classification accuracy. The model's parameters are then 

optimized using the Ladybug Beetles Optimization Algorithm 

(LBOA) which enhances exploration and exploitation 

capabilities in the parameter space while ultimately improving 

model performance. To further enhance the transparency and 

trustworthiness of the LOCapsNet model, Explainable AI 

techniques specifically Grad-CAM++ are integrated into the 

framework. This step provides clinicians with visual insights 

into the model’s decision-making process while fostering 

confidence in AI-assisted diagnoses. Finally, the proposed 

methodology culminates in the classification of skin lesions 

ensuring precise detection and facilitating informed clinical 

decision-making. The block diagram illustrating the proposed 

LOCapsNet-XAI framework is presented in Figure 1. A detailed 

description of each stage is given below, 

 

Multi-Center Data Acquisition for Skin Cancer Detection 

The collection of multi-center data is crucial for enhancing skin 

cancer detection through explainable AI methodologies. By 

collaborating with various institutions, a diverse dataset of 

dermoscopic images is assembled. It encompasses a wide range 

of skin conditions, demographics, and skin types. This diversity 

ensures that the developed models are generalized and 

applicable across different patient populations. 

A key dataset in this domain is the International Skin Imaging 

Collaboration (ISIC) Dataset, which features over 482,781 

dermoscopic images sourced from multiple international 

institutions. This expansive repository includes a broad 

spectrum of skin lesion types, enhancing the robustness and 

clinical applicability of models trained on it. The ISIC dataset is 

widely utilized in machine learning competitions focused on 

melanoma detection and is accessible via the ISIC Archive [23]. 

Another significant dataset is HAM10000, which comprises 

10,015 images collected from various clinics in Austria and 

Australia. This dataset encompasses a variety of skin lesions, 

including melanoma, benign nevi, and seborrheic keratosis. Its 

extensive coverage of different lesion types and patient skin 

profiles serves as a valuable resource for developing models 

with high generalization capabilities. Therefore, it is widely 

adopted dataset in deep learning research for skin lesion 

classification available on Kaggle [24]. 

 

Multi-Center Data Acquisition

· International Skin Imaging Collaboration 

(ISIC) Dataset

· HAM10000 Dataset

· DermNet Dataset 

· PH2 Dataset 

Optimization with Ladybug 

Beetle Optimization Algorithm

 Pre-processing process

Anisotropic Diffusion and 

Kuwahara Filtering for 

enhancing image clarity and 

removing noise

Feature Extraction and Skin Cancer 

Detection

Convolutional Capsule Neural 

Networks (CapsNet)

Skin Cancer Classification

Explainable AI Integration with 

Grad-CAM++

 
Figure 1: Block diagram of proposed LOCapsNet-XAI framework for skin cancer detection 
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The DermNet Dataset offers approximately 19,500 clinical and 

dermoscopic images from Australia, that covers a wide array of 

skin conditions, including melanoma. This dataset plays a 

significant role in training models for cancerous lesion detection 

and differentiating between benign and malignant skin 

conditions. It is publicly available on Kaggle [25]. 

 

Lastly, the PH2 dataset is collected by the Dermatology Service 

of Hospital Pedro Hispano in Portugal, which comprises 200 

dermoscopic images with each image representing one of three 

categories such as common nevi, atypical nevi, and melanoma 

[26]. This dataset provides a high-quality source of annotated 

images for skin cancer research. Its inclusion enhances the 

robustness of models trained for melanoma detection and 

provides a balanced set of cases for testing the performance of 

machine learning algorithms. 

 

By integrating these datasets, a comprehensive and diverse 

collection of dermoscopic images is established for training and 

evaluating models aimed at skin cancer detection. This multi-

center approach mitigates bias toward specific lesion types or 

demographics. Thereby, it improves the generalization and 

reliability of skin cancer detection systems. 

 

Preprocessing process using Anisotropic Diffusion and 

Kuwahara Filtering 

In multi-center data for skin cancer detection, preprocessing is 

essential to ensure uniformity and eliminate noise that 

ambiguous critical features like lesion boundaries and textures. 

Noise from various acquisition sources reduce the accuracy of 

machine learning models and introduce bias, thus making 

preprocessing a critical step to standardize images from diverse 

demographics and institutions. Techniques such as Anisotropic 

Diffusion and Kuwahara Filtering are particularly effective for 

this task [27], as it enhances image clarity while preserving vital 

diagnostic information like edges and textures. 

 

Anisotropic Diffusion (AD) provides a nonlinear approach to 

filtering. By this, it balances the noise reduction with edge 

preservation. The traditional linear methods are blur uniformly 

across the image. But AD selectively smooths homogeneous 

regions while maintaining sharp boundaries. This is crucial for 

dermoscopic images where preserving lesion edges is necessary 

for accurate skin cancer detection. The diffusion process 

minimizes noise without distorting significant features, such as 

melanoma borders. Kuwahara Filtering further enhances the 

image by dividing it into local regions and applying an adaptive 

smoothing process. It calculates the mean and variance within 

sub-regions and selects the region with the smallest variance. 

By this, it ensures the structure of important features like lesions 

remains intact. This approach outperforms simple median or 

Gaussian filters, which often blur important diagnostic features 

in skin lesion images. 

 

When combined these Anisotropic Diffusion and Kuwahara 

Filtering methods provide a robust preprocessing framework 

that removes noise, enhances structural details, and ensures the 

preservation of critical features across multi-center datasets. 

Initially, Anisotropic diffusion operates by smoothing regions 

of the image based on gradient magnitude. By this, it preserves 

the edges where needed. The diffusion equation for AD is given 

in the subsequent equation (1) 
𝜕𝐷𝐼

𝜕𝑡
= 𝑑𝑖𝑣[𝑓|𝛻𝐷𝐼|2] × 𝛻𝐷𝐼            (1) 

 

Where 𝐷𝐼 represents the dermoscopic image, 𝑓|𝛻𝐷𝐼|2 is the 

diffusivity function and it is mathematically given in the 

following equation (2) 

𝑓|𝛻𝐷𝐼|2 =
1

1+
𝛻𝐷𝐼2

𝛼2

                           (2) 

 

Where 𝛼 is the contrast parameter controlling diffusion across 

different regions of the image. For skin cancer detection, 

preserving the boundaries of lesions (high gradients) while 

smoothing noise within homogeneous areas (low gradients) is 

vital. This method ensures that key diagnostic features like 

lesion edges are intact while reducing irrelevant noise from 

diverse datasets. Then, Kuwahara filtering is applied to enhance 

local structural stability after AD. For each pixel, the image is 

divided into sub-regions, and the mean and variance are 

computed using equation (3-4) 

𝑀𝑒𝑎𝑛𝑅𝑒𝑔 =
1

𝑃𝑖𝑥𝑒𝑙𝑅𝑒𝑔
× ∑ ⬚⬚

(𝑎,𝑏)𝜖𝜃𝑅𝑒𝑔
𝛽 × 𝑓(𝑎, 𝑏)           (3) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑅𝑒𝑔
2 =

1

𝑃𝑖𝑥𝑒𝑙𝑅𝑒𝑔
× ∑ ⬚⬚

(𝑎,𝑏)𝜖𝜃𝑅𝑒𝑔
[𝛽 × 𝑓(𝑎, 𝑏) − 𝑀𝑒𝑎𝑛𝑅𝑒𝑔]

2
   (4) 

 

Where 𝑓(𝑎, 𝑏) denotes the input dermoscopic image function; 

𝛽 × 𝑓(𝑎, 𝑏) represents the pixel value in the dermoscopic 

image, 𝑃𝑖𝑥𝑒𝑙𝑅𝑒𝑔 is the number of pixels in region 𝑅𝑒𝑔. The 

region with the smallest variance is selected to update the pixel 

value, that ensures the noise reduction while retaining lesion 

boundaries and texture in the processed dermoscopic image. 

 

The combined use of Anisotropic Diffusion and Kuwahara 

Filtering in multi-center skin cancer detection datasets enables 

effective noise reduction while preserving essential diagnostic 

features. This preprocessing approach enhances the model’s 

ability to generalize across diverse datasets, improving the 

accuracy of skin cancer detection systems. Following 

preprocessing, the refined output serves as input for feature 

extraction and skin cancer detection utilizing Convolutional 

Capsule Neural Networks (CapsNet). 

 

Feature extraction and skin cancer detection utilizing 

Convolutional Capsule Neural Networks (CapsNet) 

The proposed Convolutional Capsule Neural Networks 

(CapsNet) offer significant advantages for feature extraction 

and skin cancer detection [28] compared to traditional neural 

networks. CapsNet has unique architecture, that employs 

capsules which effectively capture nuanced patterns and spatial 

relationships. By this, it enables the identification of delicate 

variations in skin lesions that are crucial for accurate diagnosis. 

CapsNet exhibits enhanced robustness to spatial 

transformations such as rotation and scaling. As a result, it 

ensures reliable classification results regardless of skin lesion 

position. This capability allows the networks to adapt to 

variations. Accordingly, it reduces the need for extensive data 
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augmentation. Additionally, CapsNet provides improved 

generalization, minimizes the risk of overfitting and allowing 

for better performance on unseen data. It also facilitates 

enhanced interpretability that helps clinicians understand the 

reasoning behind diagnoses, which is vital in medical 

applications. With lower computational complexity and the 

ability to learn features at multiple abstraction levels, CapsNet 

enables faster training and inference times. So, it is suitable for 

low-resource environments like mobile health applications. 

Furthermore, CapsNet handles occlusions and part 

deformations effectively. With this, it maintains the 

performance even in challenging scenarios. Overall, these 

benefits establish CapsNet as a powerful tool in skin cancer 

detection, which enhances the skin cancer diagnostic accuracy 

and supporting clinical decision-making. 

 

The proposed CapsNet network is divided into two key 

components such as the feature extraction section and the skin 

cancer detection section. The primary function of the feature 

extraction section is to derive detailed features vital for the 

identification of skin cancer. This section employs a 2D 

Convolutional Neural Network (CNN) in conjunction with 

batch normalization (BN), ReLU activation, and four layers of 

Dense Convolutional (DC) blocks. Importantly, two DC blocks 

are followed by a Feature Attention block (FAB) and a Residual 

Block (RdB). The use of DC significantly decreases the number 

of parameters when compared to traditional CNN architectures, 

so it is well-suited for low-resource applications. 

 

The FAB is instrumental in extracting robust features, while the 

RdB mitigates issues related to vanishing gradients. With this, 

it enhances both feature reuse and gradient flow. For the skin 

cancer detection section, global average pooling, dropout layers, 

dense layers, and softmax activation are employed to classify 

the features obtained. This structure minimizes both training and 

inference times. So, it is ideal for resource-constrained 

environments.  The Architecture diagram of CapsNet network 

for Skin cancer classification is given in Figure 2. 

 

To construct a compact deep learning model, Depthwise 

Separable Convolution (DC) is utilized as an efficient substitute 

for conventional CNN designs. This technique divides the 

convolution process into two phases namely depthwise 

convolution (𝐷𝑝𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛) and pointwise convolution 

(𝑃𝑠𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛). In depthwise convolution, each input channel 

receives a single convolutional kernel, while pointwise 

convolution employs a 1 × 1 convolution to merge the outputs 

from depthwise convolution. This approach significantly lowers 

the computational demand and reduces the overall model size. 

As a result, it is advantageous for applications on devices with 

limited resources. Mathematically, depthwise convolution is 

represented with the following equation (5) 

𝐷𝑝𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝛫, 𝐹)𝑎,𝑏,𝑢 = ∑ ⬚⬚
𝑘ℎ,𝑘𝑤 𝛫𝑘ℎ,𝑘𝑤 × 𝐹𝑎+𝑘ℎ,𝑏+𝑘𝑤,𝑢   

(5) 

 

In this formulation, 𝛫 indicates the convolution kernel and 𝐹 

denotes the feature map. The indices 𝑎, 𝑏 𝑎𝑛𝑑 𝑢 represent the 

height, width, and depth of the feature map, respectively. 𝑘ℎ, 𝑘𝑤 

 are the height and width of the kernel, respectively. Pointwise 

convolution is described by the following equation (6) 

𝑃𝑠𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝛫, 𝐹)𝑎,𝑏 = ∑ ⬚⬚
𝑢 𝛫𝑢 × 𝐹𝑎,𝑏,𝑢         (6) 

 

Additionally, The Feature Attention Block (FAB) enhances the 

performance of CNNs by emphasizing the relationships among 

various local features. This block incorporates both average 

pooling and max pooling operations to extract spatial 

characteristics, which are subsequently combined into a unified 

feature set. The spatial attention feature map is defined by the 

following equation (7) 

𝑆𝑝(𝐹) = 𝛾[ 𝑓3×3(𝐹𝑎𝑣𝑔 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 ⊕ 𝐹𝑀𝑎𝑥 𝑝𝑜𝑜𝑙𝑖𝑛𝑔)]                      (7) 

 

In this formulation, 𝛾 represents the sigmoid activation function, 

and  𝑓3×3 denotes a convolution operation with a kernel size of 

3 × 3. ⊕ is the concatenation operator. The average pooling 

and max pooling are calculated based on the following equation 

(8-9) 
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Figure 2: Architecture diagram of CapsNet network for Skin cancer classification 

 

𝐹𝑎𝑣𝑔 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 = 𝐴𝑣𝑔 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 (𝐹)                                 (8) 

𝐹𝑀𝑎𝑥 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 = 𝑀𝑎𝑥 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 (𝐹)                                (9)            

 

The refined feature representation is derived through element-

wise multiplication and it is mathematically expressed in the 

following equation (10) 

𝐹̃ = 𝐹 × 𝑆𝑝 (𝐹)                                                                   (10) 

 

The Residual Block (RAB) addresses challenges associated 

with gradient propagation in deeper networks. This block 

consists of two convolutional layers, followed by batch 

normalization (BN) and a LeakyReLU activation layer. The 

residual connection is formulated using equation (11) 

𝐹∗ = 𝐹 ⊕  𝑓(𝐹)                                                               (11) 

 

In this, 𝐹 is the input feature and 𝑓(𝐹) represents the output 

from the convolutional layers. The LeakyReLU activation 

function is expressed using equation (12) 

𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 [𝐹∗] = {1;  𝑖𝑓 𝐹∗ > 0  𝛿;  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     
(12) 

 

Here, 𝛿 signifies the leakage factor. After the feature extraction 

process, the model transitions into the classification phase, 

which leverages the features derived from the previous stages. 

This section utilizes global average pooling followed by dropout 

layers to enhance the robustness of the model against 
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overfitting. The pooled features are then fed into dense layers 

that ultimately produce class probabilities for skin cancer 

detection. 

Here, Global average pooling serves to reduce the spatial 

dimensions of the feature maps, which generates a single feature 

vector per class. This process is defined mathematically with the 

equation (13) 

𝐺𝐴𝑃(𝐹) =
1

𝐻𝑒𝑖𝑔ℎ𝑡×𝑊𝑖𝑑𝑡ℎ
∑ ⬚

𝐻𝑒𝑖𝑔ℎ𝑡
𝑎=0 ∑ ⬚𝑊𝑖𝑑𝑡ℎ

𝑏=0 𝐹𝑎,𝑏                                                                             

(13) 

 

Where 𝐻𝑒𝑖𝑔ℎ𝑡 and 𝑊𝑖𝑑𝑡ℎ represent the height and width of the 

feature maps, respectively. This operation minimizes the risk of 

overfitting and enhances the model's generalization capabilities. 

To further combat overfitting, a dropout layer is introduced. 

This layer randomly sets a fraction of the input units to zero 

during training. Thereby, it effectively prevents the model from 

relying too heavily on specific neurons. The dropout layer is 

expressed based on the following equation (14) 

𝑂𝑢𝑡 = 𝐹⨀𝑀𝑎𝑠𝑘                                                           (14) 

 

In this context, 𝑀𝑎𝑠𝑘 is a binary tensor generated randomly, and 

𝑂𝑢𝑡 is the output after dropout. The output from the dropout 

layer is then passed through a series of dense layers. The final 

dense layer employs a softmax activation function to produce 

class probabilities for skin cancer detection across multiple 

categories. The softmax function is defined using equation (15) 

𝜂(𝐵)𝑚 =
𝑒𝐵𝑚

∑ ⬚⬚
𝑍 𝑒𝐵𝑍

                                                          (15) 

 

for 𝑚 = 1,2, … … … … … . . , 𝑍, where 𝑍 is the number of classes, 

and 𝑚 is the input to the SoftMax layer. The classification 

output 𝑃𝑟𝑜𝑏 (
𝑂𝑢𝑡

𝐹
) indicates the likelihood of each class given 

the input features 𝐹. The predicted class is determined using 

equation (16) 

𝑂𝑢𝑡̂ =𝑎𝑟𝑔 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑚 × 𝑃𝑟𝑜𝑏 (
𝑂𝑢𝑡𝑚

𝐹
)                    (16) 

 

This formulation facilitates the identification of skin cancer 

types, that ensures precise detection and classification. By this, 

the proposed CapsNet network effectively combines the feature 

extraction and classification through a series of advanced 

techniques, that offers a robust approach for skin cancer 

detection. The integration of Depth wise Separable 

Convolutions, Feature Attention, Residual Blocks, and 

sophisticated classification methods ensures high accuracy and 

efficiency, and it also suitable for practical applications in 

dermatological assessments. 

Optimization algorithms play a vital role in enhancing the 

performance of Convolutional Capsule Neural Networks 

(CapsNet) for skin cancer detection. These algorithms 

accelerate training by minimizing the loss function and enabling 

quicker learning of optimal weights. Additionally, it reduces 

overfitting through regularization techniques which ensure 

effective generalization to unseen data. In resource-constrained 

environments optimization algorithms improve computational 

efficiency and maintain high accuracy without excessive 

resource demands. 

 

Ladybug Beetle Optimization Algorithm for Optimizing the 

CapsNet Network 

In this work, the Ladybug Beetle Optimization Algorithm 

(LBOA) is utilized to enhance the performance of 

Convolutional Capsule Neural Networks (CapsNet) for skin 

cancer detection. Inspired by the foraging behavior of ladybug 

beetles, it enhances exploration and exploitation capabilities 

within the model's parameter space. LBOA offers several 

advantages compared to other optimization algorithms as it 

efficiently navigates complex search spaces through its unique 

strategy. It exhibits strong convergence properties, so it 

provides quicker and more accurate solutions while effectively 

avoiding local optima. The adaptability of LBOA allows it to 

perform well across various optimization problems, and it 

requires fewer tuning parameters than traditional methods. This 

balanced approach improves the training process of CapsNet, 

leading to better accuracy and reliability in clinical applications. 

The Ladybug Beetle Optimization Algorithm (LBOA) is a bio-

inspired metaheuristic algorithm modeled on the coordinated 

movement of ladybug beetles as they search for the warmest 

locations [29]. This optimization technique effectively balances 

exploration and exploitation in the search space to find optimal 

solutions. The pseudocode of Ladybug Beetle Optimization 

Algorithm (LBOA) for Optimizing CapsNet Network is given 

in Algorithm 1. Below is the step-by-step procedure for the 

LBOA to optimize the CapsNet network, 

 

Step 1: Initialization 

The initial population of 𝐿(0) ladybug Beetles represent 

potential solutions (candidate hyperparameters and weights) for 

the CapsNet network. These ladybug Beetles are randomly 

distributed in the search space. Each ladybug Beetle's position 

corresponds to a unique configuration of CapsNet parameters. 

The objective function is evaluated for each ladybug Beetles 

representing the accuracy of CapsNet on the validation set. The 

population is sorted based on the objective function values. 

 

Step 2: Fitness Function 

The fitness function is designed to maximize CapsNet’s 

performance, which is inversely related to the classification 

error. The fitness value 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑏𝑥) for each ladybug Beetles 

𝑏𝑥  is calculated using equation (17) 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑏𝑥) =
1

1+𝐸𝑅(𝑏𝑥)
                                                    (17) 

 

In this formulation, 𝐸𝑅(𝑏𝑥) represents the classification error of 

the CapsNet network for the 𝑥𝑡ℎ ladybug Beetle’s 

configuration. This fitness function ensures that configurations 

with lower errors have higher fitness values. 

 

Step 3: Population Update 

The position of each ladybug Beetles is updated based on 

neighboring solutions to explore better CapsNet configurations. 

The updated position for ladybug Beetles 𝑏𝑥 in iteration 𝑧 + 1 is 

computed using equation (18) 

𝑏𝑥(𝑧 + 1) = 𝑏𝑥(𝑧) + 𝑅 × [𝑏𝑦(𝑧) − 𝑏𝑥(𝑧)] + 𝑅 × [𝑏𝑦(𝑧) −

𝑏𝑦−1(𝑧)] + 𝑅 × |𝐶𝑜𝑠𝑡𝑥|
−

𝑧

𝐿(𝑧) × 𝑏𝑥(𝑧)       (18) 
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where 𝐶𝑜𝑠𝑡𝑥 is the ratio of the fitness value 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑏𝑥) to the 

total fitness of all ladybug Beetles. 𝑅 depicts the random number 

the values lie between 0 and 1. Roulette-wheel selection is 

applied to choose 𝑦, favoring solutions with better fitness 

values. 

 

Step 4: Mutation Process 

Here, mutation step is applied to maintain diversity and avoid 

premature convergence. The mutation affects a fraction of the 

hyperparameters or weights, with the number of mutated 

variables 𝑚𝑛 is calculated by equation (19) 

𝑚𝑛 = 𝑟𝑜𝑢𝑛𝑑(𝑚 × 𝜗𝑛)                                                         (19) 

 

where 𝑚 is the number of decision variables (parameters), and 

𝜗𝑛 is the mutation rate. The mutated values are replaced with 

new random values within the feasible CapsNet parameter 

range. 

 

 

 

 

Step 5: Population Size Update 

The population of ladybug Beetles reduces gradually over 

iterations, that mimics the natural decline in ladybug Beetles 

numbers. The updated population size is calculated based on the 

following equation (20) 

𝐿(𝑧 + 1) = 𝑚𝑎𝑥 {0.25 × 𝐿(0), 𝑟𝑜𝑢𝑛𝑑 [𝐿(𝑧) − 𝑅 × 𝐿(𝑧) ×

[
𝑧

𝑧𝑚𝑎𝑥
]]}                                         (20) 

Where 𝐿(0) is the initial population size, 𝐿(𝑧) is the population 

size at the current iteration 𝑧, 𝑧𝑚𝑎𝑥  is the maximum number of 

iterations. This reduction prevents over-exploration in later 

stages of optimization. 

 

Step 6: Termination 

The LBO algorithm terminates once the maximum number of 

iterations or the maximum number of fitness evaluations is 

reached. The ladybug Beetles with the highest fitness value that 

is lowest CapsNet classification error is selected as the best 

solution, which provides the optimized hyperparameters and 

weights for the CapsNet network. 

 

Algorithm 1: Pseudocode of Ladybug Beetles Optimization Algorithm (LBOA) for Optimizing CapsNet Network 

Initialize population 𝐿(0) with random CapsNet configurations and evaluate the objective function. 

Calculate fitness for each ladybug Beetles using equation (17). 

Update each ladybug Beetles position by exploring neighboring solutions and improving configurations based on fitness values 

using equation (18) 

Apply mutation to some parameters that introduces randomness to maintain diversity and prevent premature convergence using 

equation (19) 

Gradually reduce the population size over iterations to focus the search using equation (20) and terminate when the best solution is 

found or iterations are complete. 

 

Integration of Explainable AI using Grad-CAM++ in 

LOCapsNet 

Explainable Artificial Intelligence (XAI) is essential in medical 

applications particularly in skin cancer classification as it 

enhances the transparency and accountability of AI systems. By 

providing clear explanations for model predictions XAI fosters 

trust among healthcare professionals and aids in clinical 

decision-making. One effective technique for achieving 

explainability in LOCapsNet networks is Grad-CAM++ [18]. 

Grad-CAM++ addresses limitations of the original Grad-CAM 

method by delivering refined visual explanations of the model’s 

predictions. While Grad-CAM highlights significant regions in 

the input image it produces coarse heatmaps that do not capture 

fine details. Grad-CAM++ addresses this limitation by 

incorporating guided backpropagation to create more detailed 

feature maps allowing for the preservation of spatial 

information. This advancement is particularly valuable in multi-

class scenarios where distinct visualizations for different classes 

enhance interpretability. 

Grad-CAM++ offers several advantages in skin cancer 

classification that significantly enhance its utility in medical 

applications. By generating detailed heatmaps, Grad-CAM++ 

provides clinicians with precise visualizations of the critical 

areas influencing the model's predictions, thereby it improves 

the diagnostic accuracy. It has the capability to effectively 

handle multiple classes and allows for the differentiation of 

various skin cancer types that facilitates more accurate 

diagnoses. Additionally, Grad-CAM++ enhances the model's 

transparency, which promotes clinician confidence in AI-

assisted diagnoses. The insights gained from Grad-CAM++ 

visualizations also serve as valuable tools for guiding the 

debugging and refinement of the model, that leads to improved 

performance overall. 

The implementation of Grad-CAM++ within the Ladybug 

Beetles Optimized Convolutional Capsule Neural Networks 

(LOCapsNet) framework is executed into three key steps. The 

detailed explanation is given below, 

 

Step 1: Gradient Calculation 

In this step, the gradient of the output score 𝐺𝑠 with respect to 

the feature map activations 𝛢𝑝 from the last convolutional layer 

is calculated. For instance, if 𝐺𝑠 corresponds to the score for a 

specific class the gradients are expressed mathematically by the 

equation (21) 
𝜕𝐺𝑠

𝜕𝛢𝑝
=

𝜕𝐺𝑠

𝜕𝛢1
+

𝜕𝐺𝑠

𝜕𝛢2
+

𝜕𝐺𝑠

𝜕𝛢3
      (21) 

 

Step 2: Deriving Alpha Values 
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This step involves obtaining the neuron importance weights 

ℵ𝑝
𝑠  by averaging the gradients over the spatial dimensions of the 

feature maps. It is represented in the equation (22) 

ℵ𝑝
𝑠 =

1

𝐸
× ∑ ⬚⬚

𝑢 ∑ ⬚⬚
𝑣

𝜕𝐺𝑠

𝜕𝐴𝑝
𝑢𝑣                                     (22) 

Here, 𝐸 denotes the total number of pixels in the feature map. 𝑢 

and 𝑣 represent the spatial dimensions (width and height) of the 

feature map. The averaged gradient values for each feature map 

are calculated in the following equation (23-25) 
𝜕𝐺𝑠

𝜕𝛢1
= 𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔[ℵ𝑝=1

𝑠 ]                                               (23) 

𝜕𝐺𝑠

𝜕𝛢2
= 𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔[ℵ𝑝=2

𝑠 ]                                               (24) 

𝜕𝐺𝑠

𝜕𝛢3
= 𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔[ℵ𝑝=3

𝑠 ]                                               (25) 

 

Step 3: Generating the Final Heatmap 

In this step, final Grad-CAM++ heatmap is generated using a 

weighted combination of the feature map activations, where the 

weights are derived from the calculated alpha values. It is 

mathematically represented in the following equation (26) 

𝐿𝑠
𝐺𝑟𝑎𝑑−𝐶𝐴𝑀++ = 𝑅𝑒𝐿𝑈 ∑ ⬚⬚

𝑝 ℵ𝑝
𝑠 × 𝛢𝑝                 (26) 

 

This equation (26) expresses the final heatmap as a combination 

of weighted feature maps, highlighting the region’s most 

influential in the skin cancer classification decision. Integrating 

Grad-CAM++ into the LOCapsNet framework significantly 

enhances interpretability in skin cancer classification. By 

providing clear insights into model predictions, Grad-CAM++ 

builds confidence among clinicians and supports informed 

decision-making. Furthermore, the deployment of Grad-

CAM++ aids in understanding model behavior and facilitates 

continuous improvement, which is crucial in medical 

applications where precision is paramount. 

 

RESULTS AND DISCUSSION 

This section outlines the performance evaluation of the 

LOCapsNet-XAI framework, designed for skin cancer 

classification using dermography images. The LOCapsNet-XAI 

framework was implemented in Python, and experiments were 

conducted using NVIDIA GeForce GTX 1650 GPUs on a 

personal computer equipped with an Intel Core i5 processor 

operating at 3.2 GHz and 16 GB of RAM. Rigorous testing was 

performed to evaluate the framework's effectiveness in 

identifying and classifying different types of skin cancer. The 

dataset was divided into training (70%), validation (15%), and 

testing (15%) sets, facilitating a comprehensive assessment of 

model performance. Various performance metrics including 

accuracy, precision, recall, F1 score, specificity, ROC, and 

computation time were calculated to provide an extensive 

evaluation of the model's capabilities. Experimental results 

indicated that the LOCapsNet-XAI framework outperformed 

conventional methods including ResNet-18-XAI, 

EfficientNetV2S, XceptionNet-XAI, and CNN-Adam-

RMSprop-XAI. The hyperparameter settings for the proposed 

LOCapsNet-XAI framework are detailed in Table 1. The 

Visualization of output results from the LOCapsNet-XAI 

method is given in Figure 3. 

 

Table 1: Hyperparameter Settings for the Proposed LOCapsNet-XAI Framework 

Hyperparameter Value 

Learning Rate 0.001 

Batch Size 64 

Epochs 1000 

Optimizer Ladybug Beetle Optimization Algorithm (LBOA) 

Dropout Rate 0.2 

Activation Function ReLU 

Initial Learning Rate 0.001 

Decay Rate 0.9 

Minimum Learning Rate 1𝑒−5 

Momentum 0.9 

Kernel Size (Convolutional Layers) 3 × 3 

Number of Filters (Convolutional Layers) 32, 64, 128, 256 

Capsule Dimensions 8 

Routing Iterations 3 

Primary Capsule Length 16 

Input dermography Image Size 224 × 224 

Feature Attention Block Sigmoid 

Residual Block Leaky ReLU 

LBOA Population Size 50 

LBOA Maximum Iterations 100 

LBOA Mutation Rate 0.1 
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Figure 3: Visualization of output results from the LOCapsNet-XAI method 

 

Performance Metrics 

This section delineates the performance metrics employed to 

evaluate the Convolutional Capsule Neural Network optimized 

with the Ladybug Beetle Optimization algorithm, integrated 

with explainable AI for multi-center clinical application in skin 

cancer detection. 

 

Accuracy 

Accuracy measures the proportion of correctly classified 

instances among the total instances in the dataset. The relevant 

expressions are articulated in Equation (27). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                          (27) 

Where True Positive (𝑇𝑃) refers to cases where skin cancer is 

correctly identified by the model as malignant lesions; True 

Negative (𝑇𝑁) represents instances where non-cancerous 

lesions are correctly classified as benign by the model; False 

Positive (𝐹𝑃) indicates cases where benign lesions are 

mistakenly classified as malignant by the model; False Negative 

(𝐹𝑁) refers to instances where actual malignant lesions are 

incorrectly identified as benign by the model. 

 

Precision 

Precision evaluates the accuracy of the positive predictions 

made by the model. It indicates the proportion of true positive 

results in all positive predictions. The relevant expressions are 

articulated in Equation (28) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                                                       (28) 

 

 

 

Recall 

Sensitivity is also known as recall, that quantifies the ability of 

the model to correctly identify positive instances. It reflects the 

proportion of actual positives that are correctly identified.  The 

relevant expressions are articulated in Equation (29) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                                                               (29) 

 

F1 Score 

The F-score is the harmonic mean of precision and recall. The 

relevant expressions are articulated in Equation (30) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
                                 (30) 

 

Specificity 

Specificity measures the proportion of actual negatives that are 

correctly identified. It indicates how well the model avoids false 

positives. The relevant expressions are articulated in Equation 

(31) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
                                                 (31) 

 

Computation time 

Computation time refers to the total time taken by the model to 

process the input data, perform inference, and output the results. 

It is typically measured in seconds or milliseconds. 

 

4.2 Performance Analysis 

The figure 4-10 offers a comparative analysis of the proposed 

LOCapsNet-XAI framework outperformed traditional methods, 

such as ResNet-18-XAI [16], EfficientNetV2S and 

XceptionNet-XAI [17] and CNN-Adam-RMSprop-XAI [18] 

respectively. 
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Figure 4: Accuracy Analysis for Skin Cancer Classification 

 

Figure 4 depicts the accuracy analysis for skin cancer 

classification using the proposed LOCapsNet-XAI method 

illustrating its superior performance compared to established 

models. The proposed LOCapsNet-XAI method attains 6.31%, 

13.03% and 26.47% high accuracy at iteration 200; 7.12%, 

8.59% and 21.11% high accuracy at iteration 400; 6.12%, 

8.97% and 24.3% high accuracy at iteration 600; 7.101%, 

11.21% and 16.36% high accuracy at iteration 800; 5.13%, 

8.08% and 18.301% high accuracy at iteration 1000 when 

compared to existing methods such as ResNet-18-XAI, 

EfficientNetV2S, XceptionNet-XAI, and CNN-Adam-

RMSprop-XAI. These results indicate that the LOCapsNet-XAI 

model not only enhances accuracy but also exhibits significant 

stability across varying iteration counts. As a result, it 

demonstrates its capability in the realm of skin cancer detection. 

By leveraging CapsNet, the method effectively captures spatial 

relationships within dermoscopic images, that are crucial for 

discerning subtle differences between malignant and benign 

lesions. Furthermore, the integration of explainable AI within 

LOCapsNet-XAI provides transparency in the decision-making 

process, which enhances the clinician’s confidence and 

understanding of the model’s outputs. 

 

 
Figure 5: Precision Analysis for Skin Cancer Classification 
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Figure 5 illustrates the precision analysis for skin cancer 

classification using the proposed LOCapsNet-XAI method. At 

iteration 200, the model achieves precision levels of 10.03%, 

12.17%, and 36.84%. Precision improves at iteration 400, 

yielding results of 6.202%, 8.24%, and 23.04%. Further 

enhancement is observed at iteration 600, where precision 

reaches 6.63%, 18.93%, and 31.58%. At iteration 800, precision 

metrics are recorded at 8.402%, 13.21%, and 38.39%. Finally, 

at iteration 1000, precision values are noted at 5.008%, 8.42%, 

and 19.09%. The precision values recorded for the LOCapsNet-

XAI method highlight its superiority over established 

techniques such as ResNet-18-XAI, EfficientNetV2S, 

XceptionNet-XAI, and CNN-Adam-RMSprop-XAI. The 

observed precision values reflect the model's capability to 

minimize false positive rates, which is crucial for maintaining 

the reliability of skin cancer detection systems. High precision 

is particularly important in clinical settings where false positives 

lead to unnecessary anxiety and additional invasive procedures 

for patients. The proposed CapsNet architecture's ability to 

capture spatial hierarchies and relationships within dermoscopic 

images allows for a nuanced understanding of lesion 

characteristics. This spatial awareness is vital in differentiating 

subtle distinctions between malignant and benign lesions. 

Furthermore, the incorporation of explainable AI in the 

LOCapsNet-XAI framework provides transparency regarding 

the process of predictions, that enables the clinicians to 

understand the basis for the model's decisions. This 

understanding is crucial for enhancing clinician trust in 

automated systems and promoting collaborative decision-

making in patient care. The multi-center validation of the 

LOCapsNet-XAI method confirms its robustness and 

applicability across varied patient demographics. This 

adaptability is essential for real-world implementation in 

dermatology, where variations in skin types and lesion 

presentations are common. Overall, the findings from the 

precision analysis of LOCapsNet-XAI emphasize its potential 

to improve clinical practices in skin cancer classification 

significantly. By providing a reliable and transparent tool, this 

model enhances diagnostic accuracy and contribute to better 

patient outcomes. It highlights the critical need for precise 

diagnostic tools in the healthcare system. 

 

 
Figure 6: Recall Analysis for Skin Cancer Classification 

 

Figure 6 illustrates the Recall Analysis for the skin cancer 

classification task of the proposed LOCapsNet-XAI method 

compared to existing models including ResNet-18-XAI, 

EfficientNetV2S, XceptionNet-XAI, and CNN-Adam-

RMSprop-XAI. The results demonstrate that the LOCapsNet-

XAI method consistently achieves superior Recall rates across 

various iterations, that showcases its effectiveness in detecting 

skin cancer lesions. At iteration 200, the LOCapsNet-XAI 

method achieves Recall values of 6.38%, 10.25%, and 24.84%, 

that indicates its capability to identify different categories of 

skin cancer effectively. As the training progresses to iteration 

400, the Recall performance remains competitive with values of 

12.34%, 5.36%, and 23.09%. This suggests that the model is not 

only maintaining but also improving its sensitivity to various 

skin cancer types over successive iterations. At iteration 600, 

the Recall performance remains competitive with values of 

4.13%, 22.81%, and 12.45%. Moving to iteration 800, the 

LOCapsNet-XAI method exhibits a noteworthy improvement 

with Recall rates of 5.25%, 8.33%, and 26.34%. This 

enhancement indicates effective learning from the training data, 

as the model fine-tunes its parameters and improves its 

predictive capabilities. Finally, at iteration 1000, the model 
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achieves Recall values of 4.52%, 6.15%, and 20.04%. Overall, 

it shows that the proposed LOCapsNet-XAI method maintains 

a high level of Recall throughout the training process compared 

with the existing methods like ResNet-18-XAI, 

EfficientNetV2S, XceptionNet-XAI, and CNN-Adam-

RMSprop-XAI. This comparison underscores the effectiveness 

of the LOCapsNet-XAI method as a reliable tool for skin cancer 

classification. 

 

 
Figure 7: F1-Score Analysis for Skin Cancer Classification 

 

Figure 7 depicts the F1-Score Analysis for Skin Cancer 

Classification. The proposed LOCapsNet-XAI method attains 

8.209%, 11.21% and 30.84% high F1-Score at iteration 200; 

9.27%, 6.805% and 23.07% high F1-Score at iteration 400; 

5.38%, 20.87% and 22.01% high F1-Score at iteration 600; 

6.82%, 10.77% and 32.37% high F1-Score at iteration 800; 

4.76%, 7.29% and 19.56% high F1-Score at iteration 1000 

compared with existing methods like ResNet-18-XAI, 

EfficientNetV2S and XceptionNet-XAI and CNN-Adam-

RMSprop-XAI respectively. The results highlight the superior 

performance of the LOCapsNet-XAI method in skin cancer 

classification, that showcases its effectiveness in recognizing 

and distinguishing various skin cancer types using dermography 

images. This performance positions LOCapsNet-XAI as a 

reliable tool for enhancing diagnostic accuracy with significant 

implications for clinical practice and patient care. The 

incorporation of explainable AI further ensures that clinicians 

interpret the model's predictions, that fosters trust in its 

applicability for real-time decision-making in dermatological 

assessments.

 

 
Figure 8: Specificity Analysis for Skin Cancer Classification 
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Figure 8 depicts the Specificity Analysis for Skin Cancer 

Classification. The proposed LOCapsNet-XAI method attains 

4.58%, 8.67% and 26.55% high Specificity at iteration 200; 

12.35%, 12.35% and 20.48% high Specificity at iteration 400; 

3.06%, 6.35% and 12.32% high Specificity at iteration 600; 

12.48%, 14.94% and 35.13% high Specificity at iteration 800; 

8.68%, 12.34% and 20.46% high Specificity at iteration 1000 

compared with existing methods like ResNet-18-XAI, 

EfficientNetV2S and XceptionNet-XAI and CNN-Adam-

RMSprop-XAI respectively. These results indicate a strong 

potential for the model to reduce false positives while 

maintaining accurate cancer detections. By this, it emphasizes 

the precision and reliability of the LOCapsNet-XAI method in 

detecting skin cancer. 

 

 
Figure 9: Computation time Analysis for Skin Cancer Classification 

 

Figure 9 depicts the Computation time Analysis for Skin Cancer 

Classification. The proposed LOCapsNet-XAI method attains 

86.79%, 97.46% and 96.907% low Computation time compared 

with existing methods like ResNet-18-XAI, EfficientNetV2S 

and XceptionNet-XAI and CNN-Adam-RMSprop-XAI 

respectively. This reduction in computation time is attributed to 

several factors inherent to the LOCapsNet-XAI architecture. 

Firstly, the model's lightweight design incorporates a novel 

CapsNet framework, which facilitates more efficient feature 

extraction and reduces the complexity associated with 

traditional convolutional neural networks. Furthermore, the 

integration of explainable artificial intelligence (XAI) 

mechanisms within LOCapsNet-XAI enhances interpretability 

while maintaining low computational overhead. This is crucial 

in medical applications, where understanding model decisions 

is essential for gaining trust from clinicians and ensuring patient 

safety. The implications of these findings are significant for 

clinical settings. The reduced computation time not only 

accelerates the diagnostic process but also allows for the 

implementation of real-time skin cancer detection systems. This 

efficiency led to timely interventions and improved patient 

outcomes particularly in high-throughput environments where 

rapid decision-making is paramount. Overall, the computation 

time analysis highlights the advantages of the LOCapsNet-XAI 

method in the domain of skin cancer classification. 

 

 
Figure 10: RoC analysis for Skin Cancer Classification 
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Figure 10 illustrates the Receiver Operating Characteristic 

(RoC) analysis for Skin Cancer Classification. The proposed 

LOCapsNet-XAI framework demonstrates notable 

improvements in the Area Under the Curve (AUC) values, 

achieving increases of 6.45%, 13.79% and 32% compared to the 

existing methods, including ResNet-18-XAI, EfficientNetV2S 

and XceptionNet-XAI and CNN-Adam-RMSprop-XAI 

respectively. The RoC curve illustrates the trade-off between 

sensitivity (true positive rate) and specificity (false positive rate) 

across various threshold settings. A higher AUC value indicates 

better model performance in distinguishing between positive 

and negative cases of skin cancer. The notable increases in AUC 

values for LOCapsNet-XAI highlight its superior capability in 

accurately identifying skin lesions, which is critical in clinical 

diagnostics.  These advancements in AUC values not only 

signify the efficacy of the LOCapsNet-XAI framework in 

detecting skin cancer but also underscore its potential to 

improve diagnostic accuracy in real-world applications. This 

enhanced performance in AUC metrics is essential for building 

clinician confidence in automated systems, that facilitates 

quicker and more reliable decision-making in patient care. 

Overall, the RoC analysis for LOCapsNet-XAI illustrates its 

competitive edge over established methods, that paves the way 

for advancements in skin cancer detection and contributing to 

more effective and efficient healthcare solutions. 

 

Discussion 

The results presented in Figures 4 to 10 highlight the robust 

performance of the proposed LOCapsNet-XAI framework for 

skin cancer classification, that demonstrates significant 

advancements over traditional models such as ResNet-18-XAI, 

EfficientNetV2S and XceptionNet-XAI and CNN-Adam-

RMSprop-XAI. The accuracy analysis indicates that the 

LOCapsNet-XAI consistently achieves higher accuracy levels 

across various iterations. This superior performance is attributed 

to the architecture's unique ability to capture spatial 

relationships in dermoscopic images through LOCapsNet, that 

enhances the model's capability to differentiate between 

malignant and benign lesions. 

Precision is a critical metric in medical diagnostics, as it reflects 

the proportion of true positive results in the context of predicted 

positives. The precision analysis demonstrates that LOCapsNet-

XAI maintains high precision across iterations, that 

significantly reduces the risk of false positives. This finding is 

particularly important in clinical settings, where unnecessary 

anxiety and invasive procedures due to misdiagnosis adversely 

affect patient outcomes. The model's ability to sustain high 

precision values across iterations indicates its reliability and 

potential for real-world application in dermatology. Recall or 

sensitivity is another vital metric in the context of skin cancer 

detection, where the aim is to identify as many positive cases as 

possible. The recall rates achieved by LOCapsNet-XAI are 

indicative of its effectiveness in detecting various types of skin 

cancer lesions, that highlights its potential to minimize missed 

diagnoses. High recall values suggest that the model captures a 

broad spectrum of skin cancer types, which is essential for 

improving early detection and treatment outcomes. 

The F1-score, which balances precision and recall further 

substantiates the strength of the LOCapsNet-XAI framework. 

The consistently high F1-scores across iterations reinforce the 

model's reliability and effectiveness in providing accurate 

classifications. This balance between precision and recall is 

crucial for ensuring that the diagnostic process is both sensitive 

and specific, ultimately enhancing clinical decision-making. 

Specificity analysis indicates that LOCapsNet-XAI also excels 

in accurately identifying negative cases, thus reducing the 

likelihood of false negatives. This aspect of performance is 

particularly important in avoiding unnecessary follow-up 

procedures for patients who do not have skin cancer. The 

model's ability to achieve high specificity rates emphasizes its 

potential for practical application in dermatological 

assessments, that enables the clinicians to make informed 

decisions with greater confidence. 

The integration of explainable AI (XAI) within the LOCapsNet-

XAI framework adds an additional layer of value, which 

provides insights into the decision-making processes of the 

model. By elucidating the model's prediction processes, XAI 

enhances clinician trust and facilitates a collaborative approach 

to patient care. This transparency is critical in medical 

applications, as understanding the rationale behind a diagnosis 

significantly influence treatment pathways. Overall, the 

LOCapsNet-XAI framework represents a promising 

advancement in the field of skin cancer classification. 

 

Table 2: Overall performance metrics for skin cancer detection 

 

ResNet-

18-XAI 

EfficientNetV2S and 

XceptionNet-XAI 

CNN-Adam-

RMSprop-XAI 

LOCapsNet-XAI 

(Proposed) 

Accuracy (%) 94.01 90.94 82.5 99.99 

Precision (%) 93.25 89.22 77.3 99.99 

Specificity (%) 92.5 90.2 81.6 99.98 

Recall (%) 93.93 90.7 82.53 99.99 

F1 Score 93.56 89.94 79.75 99.99 

Computation 

time (ms) 689 3594 2943 91 

RoC 0.93 0.87 0.75 0.99 

 

Table 2 presents the overall performance metrics for skin cancer 

detection, that showcases the proposed LOCapsNet-XAI 

framework's notable improvements. The framework achieves 

increases of 6.35%, 9.98%, and 21.31% in accuracy; 7.25%, 

12.19%, and 29.79% in precision; 8.23%, 10.93%, and 22.99% 

in specificity; 6.52%, 10.58%, and 21.35% in recall; and 6.89%, 

11.39%, and 25.57% in F1-Score compared to existing models, 

including ResNet-18-XAI, EfficientNetV2S, and XceptionNet-
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XAI, as well as CNN-Adam-RMSprop-XAI. Furthermore, the 

LOCapsNet-XAI framework demonstrates substantial 

reductions in computation time by 86.79%, 97.46%, and 

96.907%, while also achieving improvements in AUC by 

6.45%, 13.79%, and 32%. Its enhanced performance in key 

metrics positions it as a valuable tool for clinicians, especially 

given its efficiency for real-world applications. The integration 

of explainable AI also boosts its trustworthiness and 

applicability. 

Looking ahead, future research will focus on further enhancing 

the diagnostic capabilities of LOCapsNet-XAI through 

integration with traditional diagnostic tools such as 

dermatoscopy and histopathology. This multimodal approach 

aims to provide a comprehensive assessment of skin lesions by 

leveraging visual insights from dermoscopy and cellular-level 

details from histopathological analysis. Combining the 

strengths of LOCapsNet-XAI in deep learning-based image 

classification with established methodologies of dermatoscopy 

and histopathology aims to improve diagnostic accuracy and 

facilitate earlier detection of skin cancer. This integrated 

framework broadens the scope of diagnostic evaluation and 

paves the way for personalized treatment plans. Ultimately this 

contributes to improved patient outcomes in dermatology. 

 

CONCLUSION 

The proposed LOCapsNet-XAI framework effectively 

integrated Convolutional Capsule Neural Networks optimized 

with the Ladybug Beetle Optimization algorithm (LOCapsNet) 

and Explainable AI (XAI) to enhance skin cancer classification 

using dermoscopic images. The systematic approach began with 

the collection of diverse multi-center clinical data to create a 

representative training dataset. Image preprocessing techniques 

such as Anisotropic Diffusion and Kuwahara Filtering enhanced 

image clarity by reducing noise while preserving important 

features. Feature extraction and skin cancer detection utilized 

the Convolutional Capsule Neural Network architecture to 

capture complex patterns and spatial relationships. The model's 

parameters were optimized using the Ladybug Beetle 

Optimization Algorithm to improve classification performance. 

Explainable AI methodologies including Grad-CAM++ 

provided visual insights into the model's decision-making 

processes, that fosters the clinician trust. The workflow 

culminated in the accurate classification of skin lesions as 

benign or malignant, that facilitates informed clinical decision-

making. The framework achieved remarkable metrics, including 

increases of 6.35%, 9.98%, and 21.31% in accuracy; 7.25%, 

12.19%, and 29.79% in precision; 8.23%, 10.93%, and 22.99% 

in specificity; 6.52%, 10.58%, and 21.35% in recall; and 6.89%, 

11.39%, and 25.57% in F1-Score compared to existing models, 

including ResNet-18-XAI, EfficientNetV2S, and XceptionNet-

XAI, as well as CNN-Adam-RMSprop-XAI. Furthermore, the 

LOCapsNet-XAI framework demonstrated substantial 

reductions in computation time by 86.79%, 97.46%, and 

96.907%, while also achieving improvements in AUC by 

6.45%, 13.79%, and 32%. The LOCapsNet-XAI framework not 

only enhanced diagnostic accuracy but also reduced the 

likelihood of false positives and negatives, thereby minimizing 

unnecessary procedures and anxiety for patients. The provision 

of real-time insights into the model's predictions further 

empowered clinicians to make informed decisions regarding 

patient care. Looking ahead, the framework will be enriched 

through the integration of traditional diagnostic modalities, such 

as dermatoscopy and histopathology to provide a 

comprehensive assessment of skin lesions. Overall, the 

LOCapsNet-XAI framework represented a significant 

advancement in the realm of skin cancer classification, that 

paves the way for more effective, reliable, and patient-centered 

diagnostic solutions. 
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