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Abstract: 

Pharmaceuticals, particularly antibiotics, have been increasingly detected in surface and groundwater in recent years. Antibiotics 

are a contaminant of emerging concern (CEC) due to their role in inducing antibiotic resistance in several bacterial species. This 

analysis examines the effective elimination of antibiotics via algae-based technologies. The primary ways for eliminating antibiotics 

using microalgae are bioaccumulation, biodegradation, and bioadsorption. By optimizing the process and including other treatments 

like UV irradiation, enhanced oxidation, and co-cultivation with bacteria/fungi, a practical antibiotic elimination strategy can be 

developed. This article discusses the main factors that affect algal bioremediation of antibiotics and explores innovative methods 

to enhance removal effectiveness, such as hybrid systems combining microalgae-based technology with classic activated sludge 

and AOPs. Microalgae have shown the ability to biodegrade many classes of antibiotics. The review emphasizes the necessity for 

more research focused on enhancing microalgae-based technology, particularly in terms of performance improvement, capacity 

scaling, field implementation, environmental sustainability, and economic viability. This paper addresses the advanced microalgae-

based technology for antibiotic elimination and suggests prospective areas for future research. 
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Introduction 

Ubiquitous antibiotic use in various mammalian 

pharmaceuticals, as well as for promoting aquaculture, has 

increased in recent years (W. hai Xu et al., 2007). Antibiotics 

may possibly represent a harm to aquatic environments owing 

to their long-term use and bioaccumulation (Araújo et al., 

2021). Antibiotics are harmful to aquatic creatures (Polianciuc 

et al., 2020; Rodriguez-Mozaz et al., 2020). Antibiotics in the 

environment have led to antibiotic resistance in bacterial 

populations, which may harm human health. It is not possible 

to remove antibiotics from wastewater using conventional 

treatment methods. (Ashfaq et al., 2017; W. Sun et al., 2016; L. 

Wang et al., 2018). 

Current activated sludge technologies in wastewater treatment 

facilities don't degrade or remove antibiotics efficiently (Kim & 

Aga, 2007; Park et al., 2020). Physical and chemical treatment 

techniques have large energy consumption, high operational 

costs, and secondary contamination (Jiao et al., 2008). 

According to the findings of several studies, the products of the 

Fenton oxidation reaction or ultraviolet light are often more 

hazardous than the precursor (Du, Zhang, et al., 2015; Elmolla 

& Chaudhuri, 2011; Y. Liu et al., 2017a; Yuan et al., 2011). 

Activated sludge methods have become increasingly popular 
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among biological treatments (Gulkowska et al., 2008). 

Antibiotics can cut down on biological activity directly, which 

means that they may slow down the biodegradation of 

contaminants. Because of this, activated sludge technologies 

used in modern wastewater treatment facilities (WWTPs) are 

not intended to remove antibiotics. Antibiotic residues and 

other chemicals found in wastewater treatment plants 

(WWTPs) also have the potential to create antibiotic-resistant 

bacteria (ARB) and genes (ARG) (Galvin et al., 2010; 

Łuczkiewicz et al., 2010). 

Microalgae are unicellular and common in most aquatic 

environments (Coogan et al., 2007). Microalgae may remove 

organic contaminants and heavy metals effectively (R. Guo & 

Chen, 2015; Usha et al., 2016; X. S. Wang et al., 2009). 

Chlorella vulgaris may remove Antibiotics like tetracycline and 

norfloxacin (de Godos et al., 2012a; J. Zhang et al., 2012) 

whereas M. aeruginosa can remove 30% of spiramycin (R. Liu 

et al., 2021). Algae cells that are left can be used to produce 

biofuels, fix carbon, and manufacture various biochemical 

products, therefore preventing further pollution (R. Guo & 

Chen, 2015; Nozzi et al., 2013; Rosgaard et al., 2012). Studies 

have shown that microalgae may eliminate third generation 

cephalosporins and amino penicillins (Du, Feng, et al., 2015; 

Du, Zhang, et al., 2015; R. Guo & Chen, 2015; H. Li et al., 

2015a; Y. Liu et al., 2017a). In addition, the algal treatment did 

not increase the antibiotic's toxicity (Du et al., 2018; Yu et al., 

2017). 

This review focuses on microalgae-based antibiotics removal 

efficiency, processes, hybrid systems, and the influence on 

antibiotic resistance genes. 

 

Mechanism of removal of antibiotics by microalgae-based 

treatment system 

Microalgae remove antibiotics primarily by biosorption, 

(triggering bioaccumulation) followed by biodegradation 

mechanisms (Hena et al., 2021; Leng et al., 2020; J. Q. Xiong 

et al., 2018a). When there are microalgae present, several 

antibiotics are eliminated through photo-oxidation, which is 

followed by volatilization (Sutherland & Ralph, 2019a). 

Photodegradation and volatilization are uncommon and 

frequently considered insignificant (H. T. Nguyen et al., 2021). 

This review also investigates the mechanisms of the processes 

bioadsorption, bioaccumulation, and biodegradation (Fig. 1). 

The elimination steps are: 1) Rapid and passive adsorption 

through physicochemical interactions between contaminants 

and the cell surface. 2) Slow diffusion of chemicals through the 

cell membrane, 3) Cell membrane accumulation of substances 

through bioaccumulation and/or biotransformation (Yu et al., 

2017). 

 

Bioadsorption and bioaccumulation of antibiotics by 

microalgae 

Bioadsorption occurs when antibiotics attach to microalgae cell 

walls or extracellular polymeric substances (EPS)  (Sutherland 

& Ralph, 2019b; J. Q. Xiong et al., 2018a). EPS are 

biopolymers produced by bacteria with up to 90% organic 

content, including polysaccharides, enzymes, proteins, lipids, 

and other substituents. Microalgal biomass adsorbs antibiotics 

through hydrogen bonding, electrostatic interaction, 

distribution/partitioning, and hydrophobic effect (Tan et al., 

2015). The elimination of 7-ACA by three microalgae, 

Chlorella sp. Cha-01, Chlamydomonas sp. Tai-03, and 

Mychonastes sp. YL-02, involved adsorption as one of the 

primary processes (W. Q. Guo et al., 2016). After 24 hours of 

incubation, the residual concentrations of 7-ACA were 23.8 mg 

L-1, 35.1 mg L-1, and 30.7 mg L-1, about 30% lower than the 

abiotic control (initial concentration = 100 mg L-1). In the first 

10 minutes, the adsorption was relatively quick, 4.74 mg g-1, 

3.09 mg g-1, and 2.95 mg g-1 for the dried Chlorella sp. Cha-01, 

Chlamydomonas sp. Tai-03, and Mychonastes sp. YL-02 

biomass, respectively (W. Q. Guo et al., 2016). According to 

researchers, the kinetics of biosorption of 7-ACA fitted the 

Langmuir adsorption isotherm better than the Freundlich 

isotherm. The Langmuir model suggests monolayer adsorption 

happens at uniform locations on the adsorbent's surface, but this 

is not entirely accurate (Balarak & Chandrika, 2019; W. C. Li 

& Wong, 2015; Wu et al., 2015; Xie et al., 2020a). 

Adsorption is also a major TC removal mechanism in High Rate 

Algal Ponds (de Godos et al., 2012b; Norvill et al., 2017). 

Lipid-depleted Chlorella sp. biomass has the potential to be a 

bioadsorbent for Cephalexin (Angulo et al., 2018). Equilibrium 

needed 2 hours of interaction time. Findings fit the Freundlich 

model (qmax = 63.29 mg/g of bioadsorbent) (Angulo et al., 

2018). Scenedesmus quadricauda and Tetraselmis suecica can 

remove 295 mg g-1 and 56.25 mg g-1 of tetracycline from water, 

respectively (Daneshvar et al., 2018). These results showed that 

the  surface chemistry and effective surface area, greatly 

influenced their bioadsorption capacities. (Norvill et al., 2016). 

Presence of functional groups such as hydroxyl, carboxyl, and 

phosphoryl, impart negative charge on the EPA and microalgal 

cell walls. (Sheng et al., 2010; J. Q. Xiong et al., 2019). 

Microalgae's ability to adsorb substances depends greatly on the 

species' structure and the surrounding environment (Norvill et 

al., 2016). Hydrophilic compounds are more durable in growth 

medium and have low affinity for bioadsorption (Sutherland 

and Ralph, 2019; Xiong et al., 2019). Log Kow may be used to 

measure the lipophilicity or hydrophobicity of a material, with 

a larger log Kow value suggesting increased adsorption of 

antibiotics on the microorganism surface/solid phase (Avdeef, 

1996). Higher log Kow values (>5) also suggest that these 

antibiotics are more readily absorbed than low log Kow values 

(<2.5) antibiotics (Tiwari et al., 2017). The antibiotic removal 

efficiency of Chlorella vulgaris and Chlorella ovalisporum 

followed this pattern: enrofloxacin (ENR) > sulfamethazine 

(SM2) > sulfadiazine (SD) > norfloxacin (NOR). For C. 

vulgaris and C. ovalisporum, the efficacy of ENR removal was 

the highest, around 53%-73% and 58%-79%, respectively (S. 

Chen et al., 2020). 

 

Factors affecting bioadsorption 

Process parameters influencing the bioadsorption process are 

bioadsorbent loading, initial concentration of adsorbate, time 

span of adsorption, pH, temperature, and excretions of 

extracellular polymeric substances (Sutherland and Ralph, 

2019). Cephalexin removal underwent a reduction when initial 

antibiotic concentration was increased to 482.92 mg L-1 from 

49.17 mg L-1 for both live Chlorella sp. (82.8% to 45.6%) and 

lipid extracted Chlorella sp. (71.2% to 24.7%) (Angulo et al., 
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2018). Chlorella vulgaris's efficacy in removing metronidazole 

decreased as the initial concentration of antibiotics rose (Hena 

et al., 2020). Daneshvar et al. (2018) studied the influence of 

initial substrate concentration (tertracycline) on the 

bioadsorption of both Scenedesmus quadricauda and 

Tetraselmis suecica biomass (Daneshvar et al., 2018). Linear 

increase in bioadsorption efficacy was observed when the initial 

TC concentration was increased from 2.5 mg L-1  to 80 mg L-1 

for both algal biomasses, but decreased for T. suecica biomass 

as initial TC concentration increased from 80 mg L-1 to 300 mg 

L-1. The elimination efficiency of TC increases as the initial 

concentration rises (till 80 mg L-1) which may be connected to 

the concentration gradient's driving force (Crini & Badot, 

2008). 

In addition, pH of the medium regulates antibiotic 

bioadsorption onto the biomass (Daneshvar et al., 2018). pH 

affects antibiotics' aggregation, hydrophobicity, electrostatic 

attraction, and repulsion (Zambrano et al., 2021). As log Kow 

increases, lipophilicity also increases. pKa influences the 

lipophilicity and protein-binding capacity of a substance, and in 

turn, increasing lipophilicity reduces pKa (Besha et al., 2020; S. 

Chen et al., 2020; Manallack, 2007). Temperature fluctuations 

impact the speed at which antibiotics are absorbed by 

microalgal cells in bioadsorption (Zeraatkar et al., 2016,.Sheng 

et al., 2010). 

Unlike bioadsorption, bioaccumulation is an intracellular, 

active, energy-intensive process (Bai & Acharya, 2017; Davis 

et al., 2003). Algal cell membranes may absorb some drugs. 

Sonication and dichloromethane/methanol extraction may 

remove intracellular antibiotics (Kiki et al., 2020; J. Q. Xiong 

et al., 2016). Algae allegedly eliminates drugs including 

trimethoprim, sulfamethoxazole, and doxycycline (Bai & 

Acharya, 2017; Prata et al., 2018). Reactive oxygen species 

(ROS), crucial for controlling cellular metabolism, can lead to 

significant cell damage or death when present in excess, and 

may be triggered by specific antibiotics (J. Q. Xiong et al., 

2018a). Sulfamethazine antibiotic bioaccumulated in C. 

pyrenoidosa and was subsequently removed. (M. Sun et al., 

2017). C. vulgaris also eliminated levofloxacin by 

accumulation, followed by a further process of intracellular 

biodegradation (J. Q. Xiong, Kurade, & Jeon, 2017a).

 

 
Fig. 1: Removal mechanism of antibiotics by algae 

 

Biodegradation of antibiotics by microalgae 

Biotransformation was identified as the primary step in the 

elimination of florfenicol by Chlorella sp. L38, as opposed to 

bioaccumulation and bioadsorption, (Song et al., 2019). As 

initial amoxicillin concentrations varied from 10 mg L-1, 50 mg 

L-1, and 150 mg L-1, Amoxicillin (AMX) removal efficiencies 

of greater than 99.9%, 99.9±0.006% and 99.4±0.01% 

respectively were observed (Shi et al., 2018). Chlorella sp 

showed considerable AMX removal activity during the first 2 

hours for all three doses of AMX, resulting in maximal 

degradation. Moreover, Xie et al. (2020) revealed that 

Chlamydomonas sp. was 100% effective in removing 

ciprofloxacin (Xie et al., 2020a). Biodegradation contributed 

65.05% of the elimination of Tai-03. Similar observation was 

reported by X. Li et al., 2020 (X. Li et al., 2020). Between 

18.81% and 27.16% of the initial substrate (ROX) was removed 

through photolysis after 21 days of exposure. In contrast, 

biodegradation destroyed 45.99% to 53.30% of ROX at 

concentrations ranging from 0.1 mg L-1 to 1.0 mg L-1. Kiki et 

al. (2020) studied the capacity of Haematococcus pluvialis, 

Selenastrum capricornutum, Scenedesmus quadricauda, and 

Chlorella vulgaris, and concluded that between 23% and 99% 

of the removal efficacy of ten antibiotics came from 

biodegradation (Kiki et al., 2020). 
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Fig. 2a. Pathway of degradation of Ciprofloxacin (Xie et al., 2020b) 

 

 
Fig. 2b. Pathway of degradation of Sulfadiazine (Xie et al., 2020b) 
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Fig. 2c. Pathway of degradation of Sulfamethazine (J. Q. Xiong et al., 2018b) 

 

 
Fig. 2d. Pathway of degradation of Enrofloxacin (R. Liu et al., 2021) 

 

 
Fig. 2e. Pathway of degradation of Levofloxacin(J. Q. Xiong, Kurade, & Jeon, 2017b) 
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Biodegradation is defines as the breakdown of organic 

compounds through biotransformation, yielding metabolic 

intermediates,(Achermann et al., 2018; J. Q. Xiong et al., 2019; 

Q. Xiong et al., 2020), or using either pure or mixed microbial 

cultures for full conversion into CO2 and H2O (Alvarino et al., 

2016; Helene et al., 2012). There are two biodegradation 

pathways: (1) where the antibiotic is the only source of carbon 

or a redox reactant for microalgae during biotransformation; 

and (2) Co-metabolism involves metabolism of more than one 

substrates simultaneously, where several substrates initiate 

synthesis of algal biomass because they are serving as the 

electron donor (Leng et al., 2020; Tiwari et al., 2017; Tran et 

al., 2016). Microalgae often engage in antibiotic biodegradation 

through both extracellular and intracellular biotransformation, 

or through both the processes (Tiwari et al., 2017; J. Q. Xiong 

et al., 2018a). EPS may operate as a surfactant, emulsifier, or 

external digestion system to improve antibiotic bioavailability 

(Xiao & Zheng, 2016). 

Microalgae can degrade antibiotics by a two-phase enzymatic 

catalysis method (Leng et al., 2020; Y. Wang et al., 2017). First, 

oxidation, reduction, or hydrolysis introduce reactive functional 

groups (phase I). Microsomal monooxygenases, such as 

cytochrome P-450, catalyze these processes (Torres et al., 

2008). Phase I activities include hydroxylation, 

dihydroxylation, methylation, demethylation, carboxylation, 

decarboxylation, oxidation, and ring breakage (Stravs et al., 

2017; S. Wang et al., 2018; Xie et al., 2020a; J. Q. Xiong et al., 

2017, 2019; Q. Xiong et al., 2020). Phase I metabolites enhance 

the polarity, which in turn increases the hydrophilic nature of 

the converted products, which increases the possibility of 

excretion as aqueous solution (Torres et al., 2008). Phase II 

processes involve combining xenobiotics (or phase I 

metabolites) with bulky, polar compounds like sugars and 

amino acids (Dudley et al., 2018; Pflugmacher et al., 1999; 

Torres et al., 2008). 

 

Table 1 : 

Antibiotic 

Group 

Antibiotic Name Algal Species %Removal of 

antibiotic, Initial 

concentration 

and incubation 

time 

Mechanisms Reference 

Beta lactum Amoxicillin Microcystis 

aeruginosa 

30.5-33.6%, 50 ng 

L-1 - 500 ng L-1 , 

7d 

Biodegradatio

n 

(Y. Liu et 

al., 2012) 

Microcystis 

aeruginosa 

18.5-30.5%, 200-

500 ng L-1 , 7d 

Biodegradatio

n 

(Y. Liu et 

al., 2015) 

Cefalexin Chlorella sp. 

(lipid extracted 

dry biomass) 

71.2 ± 38.9%, 

49.17 ± 0.20 mg 

L-1 , 20d 

Biosorption (Angulo et 

al., 2018) 

 

7-amino 

cephalosporanic 

acid 

Chlorella 

pyrenoidosa 

96.07%, 40 mg L-

1 , 6h 

Bioadsorption 

and 

biodegradatio

n 

(Yu et al., 

2017) 

Chlorella sp. Cha-

01 

4.74 mg g-1  of 

biomass 

Bioadsorption (R. Guo & 

Chen, 2015) 

  Chlamydomonas 

sp. Tai-03 

3.09 mg g-1  of 

biomass 

Bioadsorption 

  Mychonastes sp. 

YL-02 

2.95 mg g-1  of 

biomass 

Bioadsorption 

Tetracycline

s 

 

 

 

 

 

Tetracycline 

Chlamydomonas 

sp. Tai-03 

 

10 mg L-1 , 100%, 

8d 

Biodegradatio

n, photolysis 

and hydrolysis 

(Xie et al., 

2020a) 

Scenedesmus 

quadricauda 

(lipid extracted 

dry biomass) 

48.84 ± 1.4%, 400 

mg L-1 , pH 8 

Biosorption (Daneshvar 

et al., 2018) 

Tetraselmis 

suecica (lipid 

extracted dry 

biomass) 

36.71 ± 2.1%, 400 

mg L-1 , pH 8, 12d 

Biosorption (Daneshvar 

et al., 2018) 

Spirogyra sp. 89±2%, 200 µg L-

1 , 20d 

Photodegradat

ion 

(Garcia-

Rodríguez 

et al., 2013) 
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Oxytetracycline Spirogyra sp. 93±2%, 200 µg L-

1 , 20d 

photodegradat

ion, 

biodegradatio

n and 

hydrolysis 

(Garcia-

Rodríguez 

et al., 2013) 

Sulphonami

des 

sulfadiazine Chlorella vulgaris 11-24%, 1- 50 mg 

L-1 , 16d 

Not discussed (S. Chen et 

al., 2020) 

Chlorella 

ovalisporum 

10-20%, 1- 50 mg 

L-1 , 16d 

Not discussed (S. Chen et 

al., 2020) 

Chlamydomonas 

sp. Tai-03 

35.6% , 80 mg L-1 

, 9d 

Photolysis and 

biodegradatio

n 

(Xie et al., 

2020a) 

sulfamethazine Scenedesmus 

obliquus 

0.025-0.25 mg L-

1, 31.4- 62.3%, 12 

d 

Not discussed (J. Q. Xiong 

et al., 2019) 

sulfamethoxazole Chlamydomonas 

sp. Tai-03 

20%, 1 mg L-1 , 8d Biodegradatio

n 

(Xie et al., 

2019) 

Scenedesmus 

obliquus 

27.7- 46.8%, 

0.025-0.25 mg L-

1, 12 d 

Not discussed (J. Q. Xiong 

et al., 2019) 

 Nannochloris sp. 32%, 10 µg L-1 , 

14d 

Algae-

mediated 

photolysis 

(Bai & 

Acharya, 

2016) 

Nannochloris sp. 11%, 360 ng L-1 , 

14d 

Algae-

mediated 

photolysis 

(Bai & 

Acharya, 

2017) 

Chlorella 

pyrenoidosa 

48.5-69.9%, 2-8 

mg L-1 , 13d 

Accumulation 

and 

biodegradatio

n 

(P. Sun et 

al., 2018) 

Macrolides Erythromycin Scenedesmus 

obliquus 

94.18%, 80.59%, 

and 

49.60% for 1, 10, 

100 µg L-1  

respectively, 5 d 

Biodegradatio

n, hydrolysis, 

and photolysis 

(X. Wang et 

al., 2021) 

 Roxithromycin Chlorella 

pyrenoidosa 

80.45%, 76.35% 

and 64.81%, 0.1, 

0.25 and 1.0 mg L-

1 respectively, 21d 

Photodegradat

ion and 

biodegradatio

n 

(J. Li et al., 

2020) 

 

 

 

 

 

 

 

 

Quinolones 

 

 

 

 

Ciprofloxacin 

Scenedesmus 

dimorphus 

93%, 25 µg L-1, 

144 h 

Bioadsorption 

and 

biotransformat

ion 

(Grimes et 

al., 2019) 

Chlamydomonas 

mexicana 

13%, 2 mg L-1 , 

11d 

Biodegradatio

n, 

bioaccumulati

on and 

bioadsorption 

(J. Q. Xiong 

et al., 2017) 

Chlamydomonas 

sp. Tai-03 

65.05%, 10 mg L-

1 , 9d 

Biodegradatio

n 

(Xie et al., 

2019) 

Enrofloxacin Scenedesmus 

obliquus 

23%, 1 mg L-1 , 

11d 

Biodegradatio

n, 

bioaccumulati

on and 

bioadsorption 

(J. Q. 

Xiong, 

Kurade, & 

Jeon, 

2017a) 

Chlamydomonas 

mexicana 

25%, 1 mg L-1 , 

11d 

Cholera vulgaris 26%, 1 mg L-1  , 

11 d 

Ourococcus 

multisporus 

18%, 1 mg L-1 , 

11d 



Removal of Antibiotics by Algae: Elucidating the Removal Mechanisms, Treatment Systems and Post-Treatment Antibiotic 
Resistance 

797  Afr. J. Biomed. Res. Vol. 27, No.3 (October) 2024  Dr. Indrani Ghosh et al. 

Micractinium 

resseri 

20%, 1 mg L-1 , 

11d 

Chlorella vulgaris 53-73%, 1-50 mg 

L-1 , 16 d 

Bioadsorption 

and 

biodegrdaatio

n 

(S. Chen et 

al., 2020) 

Chlorella 

ovalisporum 

58-79%, 1-50 mg 

L-1 , 16 d 

Bioadsorption 

and 

biodegrdaatio

n 

Norfloaxacin Chlorella vulgaris 36.9%, 30 min Algae-

mediated 

photodegradat

ion 

(J. Zhang et 

al., 2012) 

 

Algae-based treatment system for removal of antibiotics 

from wastewater 

Conventional treatment systems using microalgae: open and 

closed systems with suspended or immobilized cultures 

For the large-scale development of microalgae, open systems 

such as circular ponds, tanks, and high-rate algal ponds 

(HRAPs) are commonly used. Prior studies have shown that 

HRAPs are just as efficient at getting rid of antibiotics as 

activated sludge (H. T. Nguyen et al., 2021; Villar-Navarro et 

al., 2018). The elimination of ciprofloxacin and tetracycline 

from HRAP was successfully accomplished by algal cells (de 

Godos et al., 2012b; Hom-Diaz et al., 2017). An efficient use of 

time and energy is immobilized microalgae culture as an 

alternative to suspended culture (He & Xue, 2010; Pires et al., 

2013). 

 

Algae based composite treatment systems for removal of 

antibiotics 

Microalgae have stronger tolerance to contaminants, including 

antibiotics, than bacteria. Antibiotics are toxic to microalgae, 

inhibiting their growth (Carusso et al., 2018; R. X. Guo & Chen, 

2012; Halling-Sørensen, 2000; Kolar et al., 2014). 

 

Combination of microalgae with activated sludge system 

Microalgae and bacteria collaborate to remove nutrients, heavy 

metals, and other micropollutants (Gonçalves et al., 2017; 

Perera et al., 2019; Quijano et al., 2017; B. Zhang et al., 2020). 

Guo and Chen (2015) eliminated cephalosporins with a 

combined method of both activated sludge and microalgae (R. 

Guo & Chen, 2015). Ji et al. (2020) developed an experiment 

using a novel microalgae/bacteria granular sludge system to 

remediate urban sewage. Analysing the parameters like 

stoichiometry, microbial diversity, and functional genes has 

demonstrated the effectiveness of these systems (Ji et al., 2020). 

Bioaccumulation, covalent bonding, physisorption, and 

biodegradation are the processes behind removal of 

micropollutants (B. Zhang et al., 2020). The efficiency of 

eliminating micropollutants in the hybrid microalgae-activated 

sludge system depends on different factors, including the 

inoculum ratio of the activated sludge  (T. T. D. Nguyen et al., 

2020), cultivation practices, the concentration and 

physicochemical characteristics of contaminants, and the 

inoculum dose of microalgae (B. Zhang et al., 2020). 

 

Combination of microalgae with advanced oxidation system 

Advanced Oxidation Processes (AOPs) include photocatalysis, 

ultrasonication, ozonation,  and Fenton/photo-Fenton/sono-

Fenton reactions (Y. di Chen et al., 2021). AOP systems are 

expensive and energy-intensive, especially when mineralizing 

organic pollutants (S. Li et al., 2021). AOP technologies create 

hydroxyl radicals, which attack target compounds (Anjali & 

Shanthakumar, 2019). Recently, AOPs have been used to 

enhance the biodegradability (algal) of antibiotic effluent, 

especially when the resultant intermediates are readily 

eliminated by later biological treatments (Almaguer et al., 

2021). Although the overall effectiveness of removing the 

target antibiotic increased, reducing the loading of oxidant i.e. 

Fenton’s reagent (H2O2 and Fe(II)) did not impact the 

contribution of the Fenton treatment (H. Li et al., 2015). UV 

radiation can be simultaneously employed with biological 

degradation processes (Y. Liu et al., 2017b). Researchers found 

a potential increase in the breakdown of contaminants in a UV-

irradiated media due to algae, suggesting that rapid degradation 

could be caused by the production of hydroxyl radicals by the 

algae (Peng et al., 2006). Algae breakdown was suggested to 

play a vital function in decreasing the effluent's overall toxicity 

(Du et al., 2015). With S. obliquus and UV-irradiation at 365 

nm, Yang et al. successfully achieved a 99.84% removal 

efficacy (Yang et al., 2017). UV radiation at 185 nm removed 

antibiotic substrate by 97.26%, at wavelengths over 280 nm the 

removal effectiveness was up to 97.15%, and at wavelengths 

exceeding 365 nm, the removal efficiency was just 8.52% (Y. 

Liu et al., 2017a). Despite the common use of UV irradiation in 

biological wastewater treatment, limited research has been done 

on the ability of algae and UV radiation to break down 

antibiotics (Tamer et al., 2006). 

 

Photodegradation of antibiotics caused by algae 

Photodegradation is a crucial mechanism for decomposing 

residual antibiotics in natural water settings, particularly in 

surface layers (Dabić et al., 2019; Doll & Frimmel, 2003). 

Several antibiotics are extremely light-sensitive (Baena-

Nogueras et al., 2017; Bonvin et al., 2013; Tian, Zou, et al., 

2019). Antibiotics can rapidly break down or fragment upon 

exposure to light; this is referred to as direct photodegradation 

(Tian, Zou, et al., 2019; Wammer et al., 2013; Zepp & Cline, 

1977). Chemical species mediated photodegradation depends 

on the particular reactive oxidizing species (e.g., hydroxyl 
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radicals (·OH), singlet oxygen (1O2), superoxide (O2
-·), 

hydrogen peroxide (H2O2), peroxyl radicals (·OOR)) which are 

produced when added photosensitizers are irradiated with UV 

light (S. Li & Hu, 2016; Tian, Zou, et al., 2019). Indirect 

photolysis has a significantly higher reaction rate compared to 

direct photolysis, making it a crucial factor in the organic 

micropollutants degradation (Tian, Zou, et al., 2019; H. Xu et 

al., 2011). Algae in naturally occurring bodies of water are good 

photosensitizers and may produce reactive oxygen species 

when irradiated (Zepp & Schlotzhauer, 1983). Tian et al. (2018) 

discovered that Chlorella vulgaris when irradiated resulted in 

an over 96% chlortetracycline clearance rate, which is likely 

due to algae-induced photodegradation, as no further chemicals 

were used (Tian, Zou, et al., 2019). To complement these, Tian 

et al. (2019) reported that the algae C. vulgaris, Microcystis 

aeruginosa, and Scenedesmus sp. increase the rate of 

photodegradation of chlortetracycline, whereas Zhang et al. 

(2012) reported that the rate of degradation of norfloxacin in a 

suspension of C. vulgaris under UV irradiation is thrice than in 

the absence of algae (Tian, Wei, et al., 2019; J. Zhang et al., 

2012). Guo and Chen (2015) have achieved exceptional results 

in the elimination of residual antibiotics and sludge inactivation 

using the alga-activated sludge combination method. (R. Guo 

& Chen, 2015). Microalgae treatment of pharmaceuticals 

outperformed activated sludge (>70%). Wastewater treatment 

with algae is feasible. (Villar-Navarro et al., 2018). 

 

Extracellular organic matter containing proteins, 

polysaccharides, and humic-like compounds is the main 

contributor to photodegradation by producing active species 

upon exposure to light (L. Li et al., 2012; Tenorio et al., 2017; 

Tian, Wei, et al., 2019; Tian, Zou, et al., 2019). Algal EOMs 

produce ROS to photodegrade antibiotics. Several investigators 

have studied the photodegradation of two fluoroquinolone 

medications by Platymonas subcordiformis and Isochrysis 

galbana, specifically ciprofloxacin hydrochloride and 

enrofloxacin (Ge & Deng, 2015). Both algae contributed to the 

photodegradation of the two medicines. P. subcordiformis, 

however, increased the average rate of photolysis to 76.1%, but 

in case of I. galbana, it was only 68.7%. Tian et al. (2019) 

examined the efficacy of three distinct algal species' indirect 

photolysis on CTC: M. aeruginosa, Scenedesmus meyen, and C. 

vulgaris. All retrieved photosensitizers encouraged the 

decomposition of CTC to differing degrees, the highest being 

for C. vulgaris (Tian, Wei, et al., 2019). Under UV light, 

Chlamydomonas reinhardtii had a removal rate of 100% for 

cefradine (CED), whereas Chlorella pyrenoidosa had a rate of 

77.99% (Du, Feng, et al., 2015; Jiang et al., 2019). 

 

 

Antibiotic resistance genes after algae-based treatment for 

antibiotic removal 

The gathered biomass should be thermochemically treated to 

eliminate any antibiotics (Leng & Huang, 2018; Zhuang et al., 

2019). A microalgae-bacteria consortium successfully removed 

sulfamethoxazole (~54%), according to Rodrigues et al (da 

Silva Rodrigues et al., 2020). 

This collaboration effectively removed (>90%) the antibiotics 

cephalexin and erythromycin. These findings demonstrate that 

even low concentrations of antibiotics in water, results in the 

spread of ARBs and ARGs. Cheng et al. (2020) showed that the 

use of Galdieria sulphuraria in an algae-based wastewater 

treatment system reduced the amount of ARBs and the relative 

abundance of ARGs (qnrA, qnrS, and tetW) in bacterial strains 

that survived the process (Cheng et al., 2020). 

 

Conclusion: 

This review focuses on the use of algae-based technologies for 

efficient antibiotic elimination. Bioaccumulation, 

biodegradation, and bioadsorption have been identified as the 

primary microalgal antibiotic elimination strategies (Hena et 

al., 2021; Leng et al., 2020; J. Q. Xiong et al., 2018a). This 

study investigated the involvement of bacteriophages in the 

transmission of antibiotic resistance genes (ARGs) by 

identifying ARGs in phages and comparing them to the quantity 

of ARGs in bacteria that survived. Four out of the five genes 

identified in the bacteriophage algal system exhibited a notable 

drop, indicating that the transmission of antibiotic resistance 

genes by phages in algal therapy is infrequent. This study 

identified numerous advantages of the algal wastewater 

treatment system over secondary wastewater treatment for 

managing ARG and ARB. 
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