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Ammoniacal nitrogen in domestic wastewater treatment plants has recently been added as the 
monitoring parameter by the Department of Environment, Malaysia. It is necessary to obtain a suitable 
model for the simulation of ammonical nitrogen in the effluent stream of sewage treatment plant in 
order to meet the new environmental laws. Therefore, this study explores the robust capability of 
artificial neural network in solving complex problems, which are similar to physical, chemical and 
biological conditions of wastewater treatment plant. Data obtained from Bandar Tun Razak Sewage 
Treatment plant was used for the model design. The simulation of ammoniacal nitrogen in the effluent 
stream by model shows a satisfactory result because the mean square error and correlation 
coefficients were 0.1591 and 0.7980, respectively. 
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INTRODUCTION 
 
The amount of ammoniacal nitrogen (NH3-N) discharged 
by domestic and industrial sewage treatment plants has a 
huge contribution in polluting rivers and subsequent 
impairment to ecological system of the water bodies. 
Eutrophication of lakes, rivers and estuaries caused by 
the discharge of nutrients such as nitrates and phos-
phates through fertilizers and/or sewages contributes to 
the growth of phytoplankton that depletes water bodies’ 
oxygen; fish and other oxygen dependent organisms are 
suffocated and killed. In extreme cases, an anaerobic 
condition is favoured; it promotes the growth of micro-
organisms such as Clostridium botulinum that produces 
toxins deadly to birds and mammals. These rivers 
provide the main source of drinking water (about 98%) 
and will remain for a long time (Liew, U.S Department of 
Commerce, 2007). 

Biological nitrogen removal in sewage treatment plants 
consists of nitrification and denitrification processes. 
Nitrification is a two-step process: Initially, Nitrosomas 
sp., bacteria oxidize  ammonia to  nitrite  and  then  Nitro- 
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bacter sp., catalyze the nitrite to nitrate under aerobic 
conditions (Silver et al., 2002). In the denitrification 
process, heterotrophic bacteria convert the nitrate to 
molecular nitrogen under anoxic condition. A sound 
strategy is required for simultaneous removal of organic 
and nitrogen compounds from the treatment systems; 
such as appropriate placement of nitrification/ 
denitrification processes and proper control of reactor 
variables such as hydraulic retention time, temperature, 
waste activated sludge (WAS), return activated sludge 
(RAS) and organic-microorganisms ratio (F/M). Pollutants 
removal optimization is necessary in order to meet the 
current effluent permit and minimum operation cost. 

The task of industrial and domestic treatment systems 
frequently expand in view of the emerging chemicals and 
pharmaceutical products that end up in the wastewater 
streams. These are the fundamental causes of incessant 
addition of new components to the common effluent 
requirements of present wastewater treatment plants 
(WWTPs). Recently, NH3-N and nitrate-nitrogen (NO3-N) 
were included as effluent quality parameters under the 
amended Environment Quality (Sewage) Regulations 
(2009) of Malaysian Environmental Quality Act 1974 as 
presented in Table 1 (Environmental Quality (Sewage) 
Regulations, 2009).  To  withstand  the  effluent  standard 
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Table 1. Acceptable conditions for nitrogen compounds for effluents discharge of WWTP standard A and B 
(Malaysia). 
 

Standard (mg/L) 
Parameter 

A B  
Ammoniacal nitrogen (enclosed water bodies) 5.5 5.0 
Ammoniacal nitrogen (river) 10.0 20.0 
Nitrate-nitrogen (river) 20.0 50.0 
Nitrate-nitrogen (enclosed water body) 10.0 10.0 

 

Malaysia Department of Environment {Environmental Quality (Sewage Regulations, 2009)}. 
 
 
 

Table 2. Design influent and effluent quality for Bandar Tun Razak (STP). 
 
Items Influent concentration (mg/L) Effluent concentration (mg/L) 
BOD5 220 20 
Suspended solids (SS) 270 40 
Total nitrogen (T-N) 40 10 

 

BOD, Biochemical oxygen demand. 
 
 
 
regulated by the environmental agencies is very challeng-
ing due to the complex nature of WWTP that integrates 
the physical, chemical and biological conditions. 
Maintaining effluent quality of any WWTP is possible by 
developing a model to simulate the plant performance 
using the important parameters of the system (Mjalli et 
al., 2007) for process control. Recently, many authors 
acknowledged the benefits of multilayer feedforward 
neural network (MFNN) for simulation of ecological 
systems, such as WWTP parameters (Hamoda et al., 
1999; Hamed et al., 2004; Côté et al, 1995). 

Models for prediction of nitrogen removal performance 
such as ammoniacal nitrogen were not given much 
attention because Department of Environment in the 
earlier years have not set an effluent discharge limit. 
Therefore, as nitrogen compounds were included in the 
effluent discharge limit, there is a need to have a model 
that represent the ideal situation of both nitrification and 
denitrification. This study explored the advantage of 
artificial neural network (ANN) to develop a model for the 
prediction of NH3-N in the final effluent of sewage 
treatment plant located in Kuala Lumpur, Malaysia. 
 
 
MATERIALS AND METHODS 
 
A case study 
 
Bandar Tun Razak Sewage Treatment Plant (STP) is among the 
treatment plant managed by Indah water konsotium (IWK), located 
at Jalan 11/118B, Desa Tun Razak, southeast of Federal Territory 
of Kuala Lumpur, Malaysia. The plant occupied an area of ten acres 
with about six acres reserved area. Initially, the plant was an 
oxidation pond with two pump stations that handle the population 
equivalent (P.E) of 35,000. Later, it was modified by equipping the 
ponds with surface aerators. Finally, the sequential batch reactor 
(SBR) plant was built to overcome the situation of raw sewage 

overflow. The current system was designed to serve a population 
equivalent of 200,000 and daily design influent of 50,000 m3/day. 
The present average inflow of raw sewage to the plant is 14,500 
m3/day. Table 2 represents the design quality of influent and 
effluent parameters. 
 
 
Sequential batch reactor (SBR) 
 
As stated earlier, the plant is a mechanized sequential batch 
reactor for biological removal of carbonaceous and nitrogen 
compounds. The usage of SBR in wastewater treatments is 
receiving remarkable attention because of the additional benefits 
accompanying its application. SBR is a modified technology of 
activated sludge treatment process that operates in time series 
rather than space sequence. Apart from the preliminary treatment, 
all the remaining processes were taking place in a single tank 
reactor in contrast with the conventional activated sludge system. 
Feeding, reaction (aerobic, anoxic and anaerobic), sedimentation 
and discharge carried out in a single tank are illustrated in Figure 1.  
The SBR has been widely accepted due to its ability to 
accommodate varying flow rates with optimum pollutants removal. 
According to de Sousa et al. (2008), an adequately designed SBR 
may reach higher removal of carbonaceous matter and suspended 
solids as well as better nitrification. Activated sludge system initially 
designed by Arden and Lockett (1914) was actually a variable-
volume reactor (fill and draw batch reactor), but it was later modified 
to continuous stirred tank reactor (CSTR) for steady flow 
wastewater treatment (Mahvi et al., 2008; Wilderer et al., 2001). 
The variable-volume suspended growth activated sludge system 
was restored in 1970s when Irvine named his variable-volume 
reactor the SBR in 1967 (Wilderer et al., 2001). 
 
 
Data collection 
 
The data obtained from Bandar Tun Razak STP as earlier stated 
was used for the development of the model. About four years data 
was collected from the plant database, which comprises the 
influent/effluent parameters namely: BOD, COD, SS, NH3-N, pH 
and influent flow rate (Q). There is no possibility of varying the sam-  
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Figure 1. Typical phases of SBR operation. 

 
 
 
ple locations because the plant sample points were authorized by 
the Department of Environment (DOE) on the weekly sampling for 
laboratory analysis to ensure that the plant meet the DOE 
requirement. Although, it might not affect the outcome of the model 
because Hamed et al. (2004) varied the sample locations and found 
that models with higher coefficient of determination were those in 
which the samples points were at the preliminary settling tank (PST) 
and final clarifier tank (FCT) as inputs and outputs parameters, 
respectively. The fortunate thing about this current research is the 
size of the data and the period in which they were collected when 
compared with the previous studies. The advantage of this study is 
the volume of data collected when compared with other previous 
researchers. They often complain on insufficient data and its 
consequences on decreasing model performance. The line plot of 
influent/effluent parameters: NH3-N, BOD and SS for the opera-
tional period of the plant are illustrated in Figure 2. The figure 
demonstrates some seasonal pattern in the influent strength of all 
the parameters apart from a particular day where both BOD and SS 
concentrations were extremely high above the expected level. The 
removal rate of BOD and SS revealed in Figure 2 shows a cyclic 
behaviour throughout the plant operation time. The only exception 
was that of NH3-N removal performance towards end of the data 
sequence with minimal or totally no removal of ammonical nitrogen. 
Inappropriate timing between anoxic and oxic stages in the 
biological reactor might be responsible for the instability  on  the  re- 

moval rate of ammoniacal nitrogen. 
 
 
Model development  
 
Artificial neural network modelling requires trial and error procedure 
to obtain an optimum network structure. However, prior to training 
commencement, the data were pre-processed to remove any 
possible error. 
 
 
Data pre-processing 
 
The errors in the data may be in form of outliers or missing data 
points. A code was drafted in an M-file format of Matlab® and 
executed to remove sample points that were not within the range of 
±3�. In order for the network to able to learn fast, the data were 
standardized to have a zero mean and unit standard deviation 
using Equation 1: 
 

 
Where, y is the scaled data point; x is the initial data point; x is 
the mean of the sample and � is the standard deviation of the 
sample.  
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Figure 2. Raw data of influent and eflluent parameters of Bandar Tun Razak STP. 

 
 
 
Network training 
 
The topology of the network is the general multi-layer feedback 
neural networks (FBNN) because it is the most used structure. 
Therefore, the trial and error techniques were used to search for an 
optimum structure of the network architecture. Sensitivity analysis 
of the input parameters was the first study performed in order to 
optimize the structure of the network. It was performed using 
combination of the six input parameters until 41 combinations were 
trained, and each of the combination was tried ten times. The 
performance of the networks was measured using the mean square 
error and correlation coefficient for each training. The activation 
functions in the hidden and output layers of the network also affect 
the performance of the network. The sigmoidal functions such as 
logsig and tansig were the most common activation functions used 
in the hidden layer, while the linear activation function in the output 
layer (Haykin, 1999). 

The number of neurons in the hidden layer also played an 
important role in determining the network performance in order to 
overcome overfitting and underfitting of the network. The former 
has been the condition of perfect training and poor generalization 
and may occur when the complex network try to fit the noise and 
the latter condition occurs when non-complex network fails to detect 
difficult situation in the data set (Mjalli et al., 2007). In this study, 
early stopping technique was utilized to prevent the occurrence of 
overfitting. Underfitting normally has been solved by providing large 
data for training and validation. Using the early stopping criteria, the 
data are divided into three sets: training, validation and testing. The 
training and validation data are used simultaneously during training, 
while the testing data is used for generalization. The training and 
validation error at the beginning of the training reduces but when 
the network start overfitting, the training error continues to decrease 
while the validation error begins to rise. Therefore, few iterations 
were chosen in order to stop the training (default six) when the 
validation error starts increasing.  

RESULTS AND DISCUSSION 
 
The sensitivity analysis of six input variables: BODinf 
(influent BOD), CODinf (influent COD), SSinf (influent SS), 
NH3-Ninf (influent NH3-N), pHinf (influent pH) and Qinf 
(influent Q) established that only four parameters (BODinf, 
NH3-Ninf, pHinf and Qinf) have major significance on the 
output, that is, NH3-Neff (effluent NH3-N). The combina-
tions have the least mean square error (mse) and 
maximum coefficient of determination (R).  

The results for the activation functions combination 
between the hidden layer and output layer of the network 
shows that both the sigmoidal (logsig) and the hyperbole 
tangent (tansig) in the hidden layer performed well when 
the linear (purelin) was the output transfer function. The 
plot of the optimization results of the transfer function 
combinations in the hidden and output layer are illu-
strated in Figure 3. The tansig-purelin and logsig-purelin 
has the best result of R = 0.9190, mse = 8.7 and R = 
0.9221 and mse = 8.8, respectively. They are the two 
most common combinations used in neural network 
training (Mjalli et al., 2007; Hamed et al., 2004). 

From Figure 4, it was clearly shown that 15 numbers of 
neurons in the hidden layer outperformed others for both 
the training and testing performance of the networks. The 
mean square error and correlation coefficient for the 
training is mse = 0.3532 and R = 0.7545, whereas it was 
mse = 0.3937 and R = 0.7212 for testing. The correlation 
coefficient of training and testing differ only by 4.41%, 
while that of mean square error is 10.29%. 
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Figure 3. The optimized transfer functions in the hidden and output layer. 

 
 
 

 
 
Figure 4. Plot of an optimum number of hidden neurons in the hidden layer. 
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Figure 5. The structure of the best neural network. 

 
 
 
After the entire critical functions of the neural network 

were optimized, the optimum functions of all the network 
components were assembled together for real model 
development. Figure 5 illustrates the structure of the best 
network structure that comprises the elements earlier 
optimized. The architecture consists of four input 
variables (BODinf, NH3-Ninf, pHinf and Qinf) and one output 
variable (NH3-Neff). The hidden layer contains 15 neurons 
with log-sigmoid transfer function for each of the neurons. 
The transfer function for the output layer is purelin. Figure 
6 shows the fitting result of the developed model, 
whereby the model output fit the target data very well for 
the training and testing data. The regression plot between 
the target and output for training and testing of the model 
is shown in Figures 7 and 8, respectively. The correlation 
coefficient (R) was 0.8283 and 0.7980 for the training and 
testing of the model. The mean square error of the 
trained model was 0.1274 and the model was simulated 
with a new set of data and the mean square error 
obtained was 0.1591. The model simulated about 79.80% 
of ammoniacal nitrogen characteristics in the sewage 
treatment plant and the result was satisfactorily due to 
the nature of the system complexity. 

BOD has  represented  the  amount  of  organic  matter 

characterized by BOD, COD, and SS, thereby eliminating 
the redundancy within the input variables to the network. 
The influent ammoniacal nitrogen represents the nutrient 
required by the microorganisms to metabolize the organic 
matter. The pH and wastewater flow rate (Q) characterize 
the physical parameters that have high influence in 
varying other parameters strength, directly affect the 
symbiotic of the microbes and the system, and 
consequently disturb the performance of the wastewater 
treatment system. The proper balance among the 
numerous input variables make it essential for the 
success of the model simulation. The model result was 
excellent when compared to the work of Tezel and Sinan 
(2010). They found a correlation coefficient for NH4-N 
between the simulated and actual output to be -0.02, and 
a mean square error of 10.65 and 12.48 for training and 
testing, respectively. 
 
 
Conclusion 
 
Wastewater treatment plant influent and effluent data 
were collected and analysed using multilayer feedforward 
artificial   neural   network. During  the  study  time,  many  
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Figure 6. Plot of target and output for training and testing data samples. 

 
 
 

 
 
Figure 7. Regression plot between the target and output for network training. 

 
 
 
important investigations were performed. The sensitivity 
analysis of input variables prior to network development 
was important for the final performance of the model. The 
sensitivity analysis was able to detect the response of the 
model based on the cause and effect of each parameter 
and its combinations with other parameters.  

Similarly, many other factors contribute to the perfor-
mance of neural network model and needs to be 
optimized before commencement of the actual network 
creation. These factors include: Transfer function in the 
hidden and output layers, number of neurons in the 
hidden layer, training function and the learning function.  
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Figure 8. Regression plot between the target and output for the model testing. 

 
 
 

Several iterations are essential in performing the 
optimization which requires patience and determination. 

The model was built after all the necessary preliminary 
refining of the raw data such as, data pre-processing, 
standardization and optimum neural network structure 
evaluation. The model gave a brilliant simulation of 
ammoniacal nitrogen concentration of sewage treatment 
plant effluent. The model has the capability of explaining 
up to 79.80% of the wastewater treatment plant process 
for the purpose of simulation of NH3-N performance in the 
effluent stream with only 0.1591 mean square error. 
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