Main Article Content
Characterization of upstream sequences from the 8S globulin gene of Vigna radiata
Abstract
Seeds rich in protein in nature, are ideal bioreactors for economic production and storage of valueadded recombinant proteins and enzymes for industries. The upstream region of the seed storage protein gene is able to provide an attractive promoter for seed-specific expression of heterologous genes. Our previous research showed that 8S globulin occupied the majority of total soluble protein stored in seeds of mung bean (Vigna radiata), a rich source of protein, indicating that the promoter of this gene could be a seed-specific promoter with high activity. To improve the expression of heterologous proteins in plants to act as a bioreactor, the putative seed-specific promoter of 8S globulin gene was characterized in this study. Hence, this potential promoter of beta subunit gene of 8S globulin (8SGb) was isolated by genome walking. Analysis with various promoter prediction softwares showed that the promoter sequence possessed many common motifs related to gene transcription in the seed (such as W-box, ABRE element, E-box, etc.). The putative promoter was subsequently cloned into the binary vector pBI121-GFP by replacing the CaMV 35S promoter. The resultant construct designated as pBI-8SGb-GFP was transformed to mung bean cotyledon mesophyll protoplasts. Reporter gene GFP was expressed high in cotyledon protoplasts, which was detected by confocal microscopy, demonstrating the specific activity of 8SGb promoter in driving gene expression. This study also proved that the 8SGb promoter is an efficient regulatory element for plant seeds to act as a bioreactor.
Key words: Seed-specific, promoter, genome walking, Vigna radiata.