Main Article Content
Twenty putative palmitoyl-acyl transferase genes with distinct expression patterns in Arabidopsis thaliana
Abstract
Palmitoylation is a reversible posttranslational addition of palmitate to cysteine residues in proteins through a thioester bond by a family of DHHC (Asp-His-His-Cys) palmitoyltransferases (PATs) involved in cellular signaling, membrane trafficking, and synaptic transmission. There are 20 genes containing DHHC domain predicted to encode putative palmitoyltransferase in Arabidopsis thaliana genome. However, little is known about their characteristics such as genetic relationship and expression profile. Here, we present an overview of the putative PAT genes in A. thaliana focusing on their phylogeny, gene structure and expression profiles in different tissues and under different stresses. Besides conserved DHHC domain, the identity of their cDNA sequences was from 30 to 60%. Temprospatial expression profile of each putative gene of the entire PAT family showed that nineteen of twenty putative PAT members differently expressed in flowers, leaves, stems, roots, seedlings, young and old siliques except At2g40990. Among these nineteen expressed putative PATs, some members expressed at very high levels in certain tissue and some exhibited more even distribution in different tissues. This is the first report on the expression patterns of all these putative PAT genes, which will provide important fundamental data for further identification of their biological functions.
Key words: Palmitoylation, palmitoyltransferase, Arabidopsis thaliana, expression pattern.