Main Article Content
Genetic loci mapping for ear axis weight using recombinant inbred line (RIL) population under different nitrogen regimes in maize
Abstract
Ear axis weight (EAW) is one of the important agronomic traits in maize (Zea mays L.), related to yield. To understand its genetic basis, a recombinant inbred line (RIL) population, derived from the cross Mo17 × Huangzao4, was used for quantitative trait locus mapping (QTL) for EAW under high and low nitrogen (N) regimes. The results showed that a total of three QTLs were mapped on chromosomes 2 (two) and 4 (one) under the two N regimes, which could explain phenotypic variances from 4.76 to 7.12%. They were near to their linked markers, with mapping interval of 0.2 to 1.0 cM. The two loci on chromosome 2 (bin 2.09) made EAW increase due to positive additive effects, while the other locus on chromosome 4 (bin 4.08) made EAW decrease to some extent, owing to negative additive effects. These results are beneficial for understanding the genetic basis of KNE and developing marker-assisted selection in maize breeding project.
Key words: Maize (Zea mays L.), ear axis weight, quantitative trait locus, recombinant inbred line, nitrogen.