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Callus tissue of Hydrocotyle bonariensis was initiated from the leaf of H. bonariensis treated with 2 
mg/l of 2,4-dichlorophenoxyacetic acid (2,4-D) and 1 mg/l kinetin. The culture was kept at 25°C, under 
light (cool white fluorescent tubes, 1200 lux). To optimize the precursors to increase the production of 
flavonoid, different precursors were used. The data showed that 4 mg/l proline produced the highest 
flavonoid yield (10.77 ± 0.25 mg/g DW). The increase in proline concentration did not significantly 
increase the production of flavonoid. The highest flavonoid yield (10.59 ± 0.18 mg/g DW) was produced 
in 1 mg/l of glutamine. No significant increase was attained in the flavonoid yield in callus treated with 
2, 3 mg/l compared with the control. Phenylalanine at the concentration of 3 mg/l, successfully 
triggered the production of flavonoid (11.43 ± 0.12 mg/g DW), which was 23% higher than the control. 
The highest flavonoid production was attained in calluses treated with 4 mg/l of naringenin; and it was 
19.72% higher compared with the control. 
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INTRODUCTION 
 
Hydrocotyle bonariensis is widely used for the treatment 
of tuberculosis, relieving the pain of rheumatism and 
arthritis, to increase brain capacity and for longevity 
(Vimala et al., 2003). Hydrocotyle bonariensis Comm. ex 
Lam (Apiacae), locally known as Pegaga Embun, is a 
perennial prostrate herb and found mostly in tropical and 
subtropical region of the world (Reed, 2007). Flavonoids 
are a large group of polyphenolic compounds and 
remarkable plant metabolites that occur commonly in 
plants (Nikolova and Gevrenova, 2006). Flavonoid-
derived natural products evolved in parallel with plants 
and their role in every day plant life is to protect them 
from environmental biotic and abiotic stresses. It is long 
known that these natural gifts are also beneficial for 
human health, either as direct medicines or indirectly as 
nutritional supplements (Ververidis et al., 2007). It has 
been reported that, the leaves of this plant contain 
alkaloids, flavonoids, tannins, phenolic compounds and 
saponins as bioactive components (Ajani et al., 2009). 
Plant flavonoids are important in the diet because of their  
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beneficial effects on human health (Gebhardt et al., 
2005). Cell-culture-derived flavonoids can be more easily 
separated in an intact polymeric form than flavonoids 
within complex plant tissues and overall the 
concentrations can be significantly enhanced in callus 
cultures through micro environmental control and 
precursor feeding to provoke metabolite production (Lila 
et al., 2005). In order to enhance the synthesis of 
secondary metabolites, several organic compounds can 
be added to the culture medium (Namdeo et al., 2007). 
The concept is based on the idea that any compound, 
which is an intermediate in or at the beginning of a 
secondary metabolite biosynthetic route, stands a good 
chance of increasing the yield of the final product (Rao 
and Ravishankar, 2002). The regulation of amino acids 
pathway under some stress condition dominated by the 
need for secondary metabolite derived from the pathway 
(Zia et al., 2007). Isoflavones and flavonoids originated 
from phenylalanine, an upstream metabolic precursor 
through phenylpropanoid pathway. Supplementation of 
phenylalanine is expected to increase elevated level of 
target compound (Shinde et al., 2009). In this work callus 
of H. bonariensis was established and grown in DKW 
(Driver and Kuniyuki, 1998) medium. The main objective 
of this study was to  optimize  precursor  concentration  to  
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obtain the optimum callus growth and flavonoids 
production of H. bonariensis. 

 
 
MATERIALS AND METHODS 

 
Plant materials 

 
Hydrocotyle bonariensis was collected from greenhouse at 
University Putra Malaysia and surface disinfected using 70%(v/v) of 
ethanol for 1 min, followed by 15% aqueous sodium hypochlorite 
solution for 20 min, then rinsed three times in sterile distilled water. 
Leaves of H. bonariensis were cut into small pieces (0.5 cm × 0.5 
cm) and aseptically placed on MS medium (Murashige and Skoog, 
1962) supplemented with B5 vitamins, gelrite (2.75% w/v), 3% 
sucrose and supplemented with 2 mg/l of 2,4-
dichlorophenoxyacetic acid (2,4-D) and 1 mg/l kinetin (Figure 9). 
The pH of the medium was adjusted to 5.7 with NaOH or HCl 
before autoclaving at 121°C for 15 min. The explants were 
incubated under 16 h photoperiod of 1200 lux at 25 ± 2°C until 
callus was induced. The callus tissues formed from the leaf 
explants were subcultured onto fresh medium every three weeks.  
 
 
Effect of phenylalanine 

 
A stock solution of 1 mg/ml (w/v) of concentration was prepared by 
dissolving 10 mg of phenylalanine separately with 10 ml of water. 
Phenylalanine studied was microfilter sterilized using 0.2 µm of 
polyethersulfone membrane (Whatman, UK) because it is heat 
sensitive. Hence, autoclave process is inappropriate.  

 
 
Effect of proline 

 
Proline stock solution of 1 mg/ml (w/v) of concentration was 
prepared by dissolving 10 mg of precursor separately with 10 ml of 
distilled water and microfilter sterilized using 0.2 µm of 
polyethersulfone membrane (Whatman, UK). 
 
 
Effect of glutamine  

 
Glutamine stock solution of 1 mg/ml (w/v) of concentration was 
prepared by dissolving 10 mg of glutamine separately with 10 ml of 
distilled water and microfilter sterilized using 0.2 µm of 
polyethersulfone membrane (Whatman, UK). 
 
 
Effect of naringenin 

 
For naringenin, a stock solution was dissolved in ethanol and 
subsequent dilution up to 100 times was made up with distilled 
water. Microfilter sterilized using 0.2 µm of polyethersulfone 
membrane (Whatman, UK) because naringenin is heat sensitive. 
Hence, autoclave process is inappropriate. The corresponding 
concentrations of naringenin were then added directly to the 
autoclaved culture media. 
 
 
Extraction and determination of flavonoids  

 
Extraction of flavonoids from the dried callus, were performed as 
described by Jia et al. (1999). Quantitative determination of 
flavonoids was  achieved  with  Al(NO3)3  reagent  as  described  by  

 
 
 
 
Zhang et al. (1992) and Liu et al. (2002). The absorbance was read 
at 510 nm using quercetin as the standard. Each treatment was 
replicated three times.  
 
 
Statistical analysis 

 
The experiments were independently repeated three times under 
the same conditions and the concentrations and all analyses were 
performed in triplicates. Results are expressed as the g FW (fresh 
weight) for biomass and mg DW (dry weight) for flavonoid 
accumulation in treated in vitro cultures compared with untreated 
samples. The Graphs show the flavonoid accumulation using 
Microsoft

®
 Excel. Error bars of graphs show the standard error of 

mean value (±S.E.M.). The data were analyzed using one-way 
ANOVA followed by Duncan’s multiple range test for mean 
comparison at P = 0.05. 

 
 
RESULTS AND DISCUSSION 

 
Influence of phenylalanine on biomass and flavonoid 
production 

 
Figure 1 demonstrated the effects of phenylalanine on 
callus growth in H. bonariensis. Data showed that, the 
supplementation of phenylalanine at the range of 2 to 5 
mg/l did not significantly (p > 0.05) cause variation on the 
callus biomass. Phenylalanine (2 mg/l) produced 
maximum biomass (3.14 ± 0.11 g FW/culture) followed by 
3, 4, 5 mg/l and control. The lowest growth was observed 
in 1 mg/l phenylalanine (2.3 ± 0.09 g FW/culture). 
Phenylalanine enhanced the biomass accumulation by 
12.71% with supplementation of 2 mg/l.  

Flavonoid production by phenylalanine is shown in 
Figure 2. The data revealed that, the most suitable 
concentration for the highest flavonoid production was 3 
mg/l, with flavonoid production of 11.43 ± 0.12 mg/g DW, 
which was 23% higher than the control. Higher 
concentration of flavonoid seemed to be unsuitable for 
flavonoid production and the minimum flavonoid 
accumulation was obtained in 5 mg/l phenylalanine (9.06 
± 0.13 mg/g DW). 

The optimized concentration of phenylalanine for 
paclitaxel (Taxol) production from Taxus chinensis was 
15 mg/l (Luo and He, 2004) and this concentration is 5 
times higher than optimum concentration for flavonoid 
production. Khosroushahi et al. (2006) reported that, in 
Taxus baccata, addition of phenylalanine increased the 
Taxol amount. The effect of precursor feeding 
(phenylalanine) on the production of isoflavones in 
Psoralea corylifolia hairy root culture demonstrated that, 
phenylalanine at 2 mM concentration increased the 
production of daidzein and genistein by 1.3 fold 
compared with the control. Daidzein and genistein levels 
were greatly inhibited when concentration of 
phenylalanine was increased to 10 mM (Shinde et al., 
2009). Artemisinin was detected in Artemisia absinthium 
callus culture by  adding  12.5 mg/l  phenylalanine  to  the  
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Figure 1. Effects of the phenylalanine on the fresh weight of H. bonariensis callus culture in basal DKW medium 
supplemented with 2,4D: kinetin (2:1mg/l) incubated at 25 ± 2°C. Values are mean ± S.E.M. of three experiments. 
Means with the same letter are not significantly different by Duncan's multiple range test (P = 0.05).  
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Figure 2. Total flavonoids accumulation in H. bonariensis callus culture on phenylalanine in basal DKW medium 
supplemented with 2,4-D: kinetin (2:1mg/l) incubated at 25 ± 2°C. Values are means ± S.E.M. of three experiments. Means 
with the same letter are not significantly different by Duncan's multiple range test (P = 0.05). 

 
 
 
medium (Zia et al., 2007). Phenylalanine at low 
concentration (< 33 mg/l) showed a negative effect on the 
cell growth and a significant positive (p < 0.05) effect on 

phenylethanoid glycosides biosynthesis. After 20 days 
culture, the cell biomass and phenylethanoid glycosides 
content   decreased  with  the  increase  of  phenylalanine  
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Figure 3. Effects of the proline on the fresh weight of H. bonariensis callus culture in basal DKW medium supplemented with 2,4D: 

kinetin (2:1mg/l) incubated at 25 ± 2°C. Values are mean ± S.E.M. of three experiments. Means with the same letter are not 
significantly different by Duncan's multiple range test (P = 0.05). 

 
 
 
concentration when the precursor concentration was over 
33 mg/l (Ouyang et al., 2005). Flavonoid originated from 
phenylalanine, an upstream metabolic precursor through 
phenylpropanoid pathway. Considering this 
phenylalanine supplementation which is expected to 
increase the metabolic flux through phenyl-propanoid 
biosynthetic pathway and elevate the level of targeted 
compound. Phenylalanine supplementation has been 
reported to enhance secondary metabolite production in 
plant cell cultures (Shinde et al., 2009). 
 
 
Effects of proline on biomass and flavonoid 
production 
 
Figure 3 demonstrated the effect of proline on callus 
growth. Maximum growth was observed at 5 mg/l proline 
(3.76 ± 0.29 g FW/culture and 0.088 g DW/culture). With 
increasing proline concentration, cell growth was 
enhanced. All treatment containing proline produced 
growth higher than the control. Proline compared with 
glutamine and phenylalanine was used in higher 
concentration. However, increasing growth was not 
detected in callus with concentrations higher than 5 mg/l. 
In terms of flavonoid production by proline (Figure 4), the 
data showed that 4 mg/l proline produced the highest 
flavonoid yield (10.77 ± 0.25 mg/g DW). Increasing the 
proline concentration did not significantly increase (p > 
0.05) the flavonoid production. The result demonstrated 
that, concentration higher than 4 mg/l proline inhibited the 

flavonoid production. Based on the data obtained, there 
was no significant difference (p > 0.05) between the 
control and proline (1 and 2 mg/l), and also no increase 
was detected in flavonoid treated with 5 to 6 mg/l proline.  
Alkaloid accumulation by Catharanthus roseus was 
enhanced by the addition of amino acid L-tryptophan, 
however, it did not affect the culture growth (Whitmer et 
al., 2002). This result is in agreement with the effect of 
proline in flavonoid production. In addition, proline was 
able to increase the biomass in H. bonariensis. In 
contrast, the supplementation of L-valine or L-leucine at 
the final concentrations of 0 to 5 mM, which had no 
significant stimulating effects (p > 0.05) on the production 
of adhyperforin or hyperforin in Hypericum perforatum 
shoot cultures. This implies that, although we showed 
that L-valine is a precursor for hyperforin, the 
concentration of valine seems not to be the limiting factor 
in the biosynthesis of hyperforin in H. perforatum shoot 
cultures (Karppinen et al., 2007). Addition of cystine and 
leucine (12.5 mg/l each) in the medium of A. absinthium 
callus resulted in the production of 2.8 and 0.58 µg/g DW 
artemisinin, respectively. However, artemisinin was found 
in callus cultured on MS medium containing 12.5 mg/l of 
valine (Zia et al., 2007). Low concentrations (<18 mg/l) of 
L-tyrosine had positive effects on both cell growth and 
phenylethanoid glycosides biosynthesis. In all the 
concentrations tested, tyrosine at 36 mg/l gave the 
highest biomass, at 0.1 mmol/l gave the highest 
phenylethanoid glycosides production (Ouyang et al., 
2005). 
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Figure 4. Total flavonoids accumulation in H. bonariensis callus culture on proline in basal DKW medium 
supplemented with 2,4-D: kinetin (2:1mg/l) incubated at 25 ± 2°C. Values are means ± S.E.M. of three experiments. 
Means with the same letter are not significantly different by Duncan's multiple range test (P = 0.05). 

 
 
 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.0 1.0 2.0 3.0 4.0 5.0

Concentrations of glutamine  (mg/L)

F
r
e
sh

 w
e
ig

h
t 

(g
/c

u
lt

u
r
e
) c c 

ab 

b 

ab a 

 
 
Figure 5. Effects of the glutamine on the fresh weight of H. bonariensis callus culture in basal DKW medium 
supplemented with 2,4D: kinetin (2:1mg/l) incubated at 25 ± 2°C. Values are mean ± S.E.M. of three experiments. 
Means with the same letter are not significantly different by Duncan's multiple range test (P = 0.05). 

 
 
 

Effect of glutamine on cell growth and flavonoid 
accumulation 
 
The effects of glutamine on  callus  growth  are  shown  in  

Figure 5. Cells treated with 3 mg/l of glutamine showed 
the highest biomass yield (3.95 ± 0.25 g FW/culture and 
0.083 g DW/culture). Glutamine (1 mg/l) produced the 
lowest cell growth and there was no significant difference  
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Figure 6. Total flavonoids accumulation in H. bonariensis callus culture on glutamine in basal DKW medium supplemented 
with 2,4-D: kinetin (2:1mg/l) incubated at 25 ± 2°C. Values are means ± S.E.M. of three experiments. Means with the same 
letter are not significantly different by Duncan's multiple range test (P = 0.05). 

 
 
 

(p > 0.05) compared with control. The data revealed that, 
an increase in glutamine concentration resulted to an 
increase in cell growth. 

Flavonoid yield was not significantly altered (p > 0.05) 
by applied glutamine except 1 mg/l glutamine (Figure 6). 
The highest flavonoid yield (10.59 ± 0.18 mg/g DW) was 
produced in 1 mg/l of glutamine. No significant increase 
(p > 0.05) was attained in the flavonoid yield in callus 
treated with 2 and 3 mg/l compared with the control. The 
concentrations higher than 1 mg/l, seem to be suitable in 
flavonoid production except all these concentrations 
increase the biomass growth to considerable level. 

Treatment with L-threonine, as precursor, stimulated 
the production of adhyperforin in H. perforatum shoot 
cultures. The adhyperforin concentration (0.68 ± 0.11 
mg/g DW) was significantly higher (p < 0.05) than that of 
the control cultures (0.35 ± 0.04 mg/ g DW) when 3 mM 
of L-threonine was supplied. Concentrations higher than 
3 mM were not equally effective in the stimulation of 
adhyperforin production. The high concentrations of L-
threonine could have caused inhibition in the 
adhyperforin biosynthetic pathway leading to inefficient 
biotransformation. The hyperforin concentration in shoot 
cultures of H. perforatum was not significantly affected (p 
> 0.05) by treatment with L-threonine (Karppinen et al., 
2007). 

Callus of A. absinthium showed the presence of 
artemisinin by the addition of 12.5 mg/l glutamine as 
precursor  (Zia   et   al.,   2007).   Coniferyl   alcohol  as  a  

precursor used in suspension culture of S. marianum 
showed the changes in silymarin complex production. 
Silydianin was detected mainly in the control samples of 
cultivated cells. A significant increase (p < 0.05) of 
silydianin was observed only after 72 h of the application 
of 46 µM coniferyl alcohol. But a significant increase (p < 
0.05) accumulation of taxifolin (flavanole) in nutrient 
medium was observed after 72 h of treatment with 92 µM 
of coniferyl alcohol (Tumova et al., 2006). 
 

 
Influence of the naringenin on the biomass and 
flavonoid accumulation 
 
Precursor feeding at appropriate concentrations can 
promote the accumulation of secondary metabolites 
(Ouyang et al., 2005). Naringenin is one of the flavonoids 
produced in the beginning of the flavonoid pathway, so it 
can be used as other flavonoid precursors. Figure 7 
exhibited the effects of naringenin supplementation and 
their controls. None of the concentrations tested 
managed to achieve cell growth higher than the control. 
At 4 mg/l, the biomass was 2.52 ± 0.06 g FW/culture 
and0.070 g DW/culture, which was 6.62% lower than the 
control. Comparable observation was also detected in 
callus culture of Rhodiola rosea treated with cinnamyl 
alcohol; the feeding precursor did not increase the cell 
biomass more than the control (György et al., 2004). 
Figure   8   demonstrated   the   effect   of   naringenin  on
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Figure 7. Effects of the naringenin on the fresh weight of H .bonariensis callus culture in basal DKW medium supplemented with 
2,4D: kinetin (2:1mg/l) incubated at 25 ± 2°C. Values are mean ± S.E.M. of three experiments. Means with the same letter are not 
significantly different by Duncan's multiple range test (P = 0.05). 
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Figure 8. Total flavonoids accumulation in H. bonariensis callus culture on naringenin in basal DKW medium supplemented 
with 2,4-D: kinetin (2:1mg/l) incubated at 25 ± 2°C. Values are means ± S.E.M. of three experiments. Means with the same 
letter are not significantly different by Duncan's multiple range test (P = 0.05). 

 
 
 

flavonoid production in callus cultures of H. bonariensis. 
The highest flavonoid production was attained in calluses 

treated with 4 mg/l of naringenin. The result shows no 
significant difference (p > 0.05) in the content of flavonoids 
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Figure 9. Callus culture of H. bonariensis on DKW medium supplemented 
with 2 mg/l 2,4-D and 1 mg/l kinetin incubated at 25 ± 2°C. Bar 1 cm. 

 
 
 
with the application of 3 and 4 mg/l naringenin, but 4 mg/l 
naringenin induced the highest amount of flavonoid. 
Moreover, the yield of flavonoid was 19.72% higher 
compared with the control. At 2 mg/l, the content of 
flavonoid was the lowest among the treated cell by 
naringenin (9.21%). Higher concentration of naringenin (5 
mg/l) supplementation was found to decrease flavonoid 
production. 

Stimulation of secondary metabolites by precursor 
feeding was also observed in Ipomoea batatas cell 
suspension. In this culture, cell growth was decreased, 
but acylated anthocyanins increased and non-acylated 
anthocyanins decreased with increasing precursor p-
coumaric (0 to 2 mM). In addition, feeding of the 
hydroxyl-cinnamic acid to those cultures resulted in 
increased accumulation of acylated anthocyanins, both 
mono and di-acylated (Konczaka et al., 2005). Excess 
precursors may cause feedback inhibition to the 
metabolic pathway. It is very important therefore to 
determine the appropriate precursor concentration in the 
precursor-feeding test (Ouyang et al., 2005). It was 
reported that, addition of mevalonates to the culture 
medium did not alter shikonin production by cultured 
Lithospermum erythrorhizon cells, whereas the addition 
of p-hydroxybenzoic acid strongly increased shikonin 
formation. So, the content of p-hydroxybenzoic acid was 
much higher in shikonin-producing cells than in shikonin-
free cells and exogenous addition of p-hydroxybenzoate 
increased shikonin production (Bulgakov et al., 2001). 
The effect of naringenin on flavonoid production in H. 
bonariensis was comparable to that of other precursors 
such as loganin or secologanin, which showed 
improvement  on   alkaloid   accumulation   by   C. roseus  

(Whitmer et al., 2002). 
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