Main Article Content
Superabsorbent polymers (SAP) enhance efficient and eco-friendly production of corn (Zea mays L.) in drought affected areas of northern China
Abstract
In arid and semiarid regions of northern China, there is an increasing interest in using reduced rate of chemical fertilizer along with water-saving superabsorbent polymer (SAP) for field crop production. The objective was to evaluate the effectiveness of different rates of SAP (low, 0.75; medium, 11.3 and high, 15.0 kg ha-1) against half amount of conventional standard rate of chemical fertilizer for summer corn (Zea mays L.) production in a drought-affected field of northern China. Corn yield increased following SAP application by 11.2% under low 18.8% under medium and 29.2% under high rate with only half amount (150 kg ha-1) of fertilizer compared with control plants, which received conventional standard fertilizer rate (300 kg ha-1). At the same time plant height, stem diameter, leaf area, biomass accumulation and relative water content as well as protein and sugar contents in the grain also increased significantly following SAP treatments. The optimum application of SAP in the study area would be 15 kg ha-1 as it brings progressive increase in corn growth and also maintain proper nutrients balance in the soil after harvest. Other rates are not sufficient to maintain proper plant growth or soil nutrient balance against half fertilizer. We suggest that, the application of SAP at 15 kg ha-1 plus only half the amount of conventional fertilizer rate (150 kg ha-1) would be a more appropriate practice for sustainable corn production under arid and semiarid conditions of northern China or the areas with similar ecologies.
Key words: Corn, drought stress, fertilizer use efficiency, northern China, superabsorbent polymer.