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The experiments were carried out to evaluate the comparative study for salt stress among seed, root 
stock and direct regenerated violet (Viola odorata L.) seedlings. Violet seedlings propagated through 
tissue culture (direct regeneration) had significantly higher salicylic acid (SA) concentrations from seed 
and rootstock propagated plants. Random amplified polymorphic DNA (RAPD) studies prior to the salt 
treatments revealed that genetic similarity at the molecular level among seed, root stock and direct 
regenerated violet seedlings was 50.9 to 70.5%. NaCl applications (50 mol m–3) reduced plant and root 
lengths, plant fresh and dry weights in plants obtained through seeds and rootstock as compared to 
direct regenerated seedlings. Direct regenerated violet showed better plant growth significantly both in 
saline and non-saline conditions. Seedlings raised through direct regeneration strongly inhibited 
accumulation of Na+, K+, Ca2+ and Cl− and organic solute accumulations as glycinebetaine (GB) and root 
total soluble carbohydrates (TSC) but stimulated N and relative water contents (RWC). Direct 
regenerated seedlings showed an enhanced catalase (CAT), ascorbate peroxidase (APX) and guaiacol 
dependent peroxidase (GDP) activities as compared to seed and root stock propagated plants. It was 
concluded that direct regenerated plants had better performance under salt stress in relation to growth 
and ion accumulations as compared to seed and root stock propagated violet seedlings. This might be 
due to higher SA concentrations in direct regenerated seedlings which resulted from somaclonal 
variations or growth media applied during tissue culture technique. 
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INTRODUCTION 
 
The violet (Viola odorata L.) is a low growing perennial 
herb. It is propagated mainly through seed and rootstocks. 
The leaves and flowers of violet have antiseptic and 
expectorant properties (Kowalchik and Hylton, 1998). 
Internally, violet is used to cure bronchitis, mucus, cough, 
asthma, breast cancer, stomach, lungs and digestive 
tract (Ghani et al., 1997). Direct regeneration is one of 
the important techniques of plant tissue  culture  for  com- 
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mercial plant propagations. Direct regeneration involves 
morphogenesis without the intermediate callus phase 
(Jawaharlal et al., 1984). The plants derived by direct 
regeneration usually have higher concentrations of chemical 
constituent and better quality from parent plants as Vasil 
(1987) described in cereals and grasses. Direct regene-
ration is a useful tool for rapid propagation and for 
induction of somaclonal variations in plants (Snyman et 
al., 2000).  

Salinity stress disturbs the uptake and accumulation of 
essential nutrients from the soil (Greenway and Munns, 
1980; Shannon and Grieve, 1999; Zhu,  2001). Generally,  



 
 
 
 
Ca2+ and K+ are decreased in plants grown under saline 
conditions (Khan, 1993; Al-Harbi, 1995). In contrast, 
Ashraf and Rauf (2001) primed maize seeds with NaCl 
and reported significantly higher concentrations of Na+, 
K+ and Ca2+ in leaves, sheath and root of maize seedlings 
as compared to untreated plants. Alam and Naqvi (1991) 
observed that plant height and dry matter yield decreased 
in pearl millet with increase in salinity levels on 1.95, 
4.69, 9.38 and 14.06 dS m-1 NaCl. Salinity also caused 
an increase in N, P, Ca++, Na+, Fe++ and Mn++ and 
decrease in K+ contents in the leaves. 

Several studies also supported a major role of SA in 
modulating the plant response to several abiotic stresses 
including salt and water stress (Yalpani et al., 1994; 
Senaratna et al., 2000). Treating mustard seedlings with 
SA improved their thermotolerance and heat acclimation 
(Dat et al., 1998). In maize plants, pre treatment with SA 
induced the production of antioxidant enzymes, which in 
turn increased chilling and salt tolerance (Janda et al., 
1999). 

Molecular markers are useful tools for precise assess-
ment of diversity and phylogenetic relationships among 
different species and related genera. A major breakthrough 
with regard to DNA markers is the development of the 
random amplified polymorphic DNA (RAPD) technique, 
based on the use of polymerase chain reaction (PCR) to 
amplify random sequence (Williams et al., 1990). An 
advantage of the use of RAPD markers is that with a low 
technical input, a large number of markers can be 
employed. Therefore, DNA markers are often used by 
scientists to reduce labor and cost for the determination 
of genetic relationships among various cultivars (Leon et 
al., 2001; Pan et al., 2004).  

The objective of the present study is to evaluate the 
comparison for salt stress among seed, root stock and 
direct regenerated violet seedlings in relation to growth, 
ion accumulations and enzyme activities with protocol for 
tissue culturing of violet. 
 
 
MATERIALS AND METHODS  
 
Seeds and rootstocks of violet plants were sown in 36 earthen pots 
described by 12 pots of each propagated type and maintained at 3 
plants per pot. After 20 days of sowing time, the leaf tips were 
collected from the violet plants and used for this study.  

The field collected materials were washed several times with tap 
water with a few drops of liquid soap in tissue culture lab. 
Murashige and Skoog (MS) medium supplemented with different 
plant growth regulators and additives was used to compare 3-
different combinations, M1, M2 and M3, with concentrations of benzyl 
amino purine (BAP, 0.05 - 3mg/L), indole acetic acid (IAA, 1 - 2 
mg/L), kinetin (0.1- 0.3mg/L and sucrose (30000 -50000 mg/L). The 
pH of the medium was adjusted to 5.7 -5.8 and autoclaved at 121°C 
for 18 min on 15psi. The cultures were maintained initially in the 
dark for 3 to 6 weeks and thereafter all the cultures were incubated 
in the growth room at 26-28°C and 2500-3000 lux light. Regeneration 
was observed on cultured explants after 3 to 6 week culture period. 
Regenerated plants were transferred to rooting media (half MS 
media with different combination (R1, R2 and R3) of NAA (1.5-
3mg/L), IBA (2-4mg/L), IAA  (1-2mg/L)  and  sucrose  (40000-70000  
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mg/L) placed in a 12 h PAR light (photo synthetically active 
radiation) cycle at 25°C. After 4 to 6 weeks in culture, plants were 
acclimatized. Phytogel was washed-off carefully under running tap 
water and plants with good shoot and root were allowed to grow. 
 
 
Pre NaCl applications studies  
 
Isolation of salicylic acid (SA) 
 
Salicylic acid was measured before NaCl treatments in all three 
propagated types (seed, roots and direct regenerated) of violet 
plants by the method described by Meuwly and Métraux (1993). 
Violet cells were collected by filtration under vacuum through four 
layers of Miracloth, snap frozen in liquid nitrogen and kept at -80°C 
until the extraction was performed. SA was extracted from cells (0.5 
g fresh weight of frozen tissue), separated by high performance 
liquid chromatography (HPLC) and quantified by spectrofluorescence 
monitoring at 407 nm emissions. 
 
 
DNA extraction and PCR amplification  
 
DNA was extracted from 100 mg fresh tissues of violet leaves 
collected from three propagated types (seed, roots and direct 
regenerated) using cetyltrimethyl ammonium bromide (CTAB) 
method (Doyle and Doyle, 1987). Concentration of DNA was deter-
mined by spectrophotometer as well as by visualization on 1% 
agarose gel with ethidium bromide staining. 

PCR amplification conditions were optimized in a GeneAmp 2700 
thermocycler (Applied Biosystems, 850 Lincoln Centre Drive, Foster 
City, C.A., USA). Amplifications were performed in a 25 µl reaction 
mixture containing 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM 
MgCl2, 0.01% (w/v) gelatin, 50 µM each of dATP, dTTP, dGTP and 
dCTP (Fermentas Inc. 7520 Connelley Drive, Maryland 21076, 
USA), 50 p moles of each primer, 0.5 µg of template DNA and 2.5 
U of Taq DNA polymerase (Fermentas). The reactions were subjected 
to 40 amplification cycles. Initial denaturation was at 92°C for 4 min. 
Each cycle consisted of denaturation for 45 s at 92°C, annealing for 
1.5 min at 28°C and extension for 1.5 min at 72°C, with a final 
extension at 72°C for 5 min. Eight primers obtained from Bangalore 
Genei (Pvt) Ltd, India were employed.  
 
 
Data analyses 
 
Intensively stained DNA bands on agarose gel ranging from 0.2 to 
2.5 kb were recorded. The data collected after scoring Minitab 
(Minitab 13.0. USA) computer software program was used for 
RAPD coefficients dendrogram by following the method of Nei and 
Li (1979). The following equation was used for similarity and 
genetic distance calculation analysis: Coefficient analysis = (2 x 
common number of bands between genotype A and B) / Total number 
of bands genotype A and B. 

A homology tree of genotypes was constructed for understanding 
of the genetic diversity at molecular level.  
 
 
Post NaCl applications studies 
 
Salt treatments and experiment layouts 
 
Plants developed by direct regeneration, seed and rootstock were 
exposed to 0 (control) and 50 mol m–3 NaCl salinity. Each pot 
contained 7000 g river sand (particle size 1.4 - 2.0 mm). To avoid 
leaching down of salts, polyethylene bags were laid down in pots 
before filling up with sand. The sand was washed thoroughly with 
tap   water,   distilled   water   and   finally   with   Hoagland  solution  
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(Epstein, 1972). Two salt treatments 0 (control) or 50 mol m–3 NaCl 
were applied. NaCl (2.925 g NaCl/pot) was dissolved in 1 liter of 
distilled water to develop NaCl level of 50 mol m–3 per pot (pot size 
28 cm diameter and 30 cm deep) and for control, only 1 liter of 
distilled water was applied. Hoagland solution was applied every 
week regularly for 6 weeks both for control and treated plants. 
During the week, distilled water (300 - 350 cm3) was applied to 
each pot daily to keep the sand moist and hence maintain the salt 
level. The experiment was laid out in a completely randomized 
block design (CRBD) with six replicates. Plants were harvested 42 
days after NaCl treatments for data analysis. 
 
 
Morphological attributes and ion contents 
 
Plants were uprooted carefully and washed in distilled water. Plant 
and root length was measured with the help of scale meter. Shoot 
fresh weight (g) was noted by electric balance. Plant samples were 
placed in oven at 75°C. After 4 days, shoot and root dry weight 
(g/pot) was calculated with the help of electric balance.  

Dried plant material was finely ground and digested with a nitric 
perchloric mixture. In leaves and roots, ion contents of Na+ and K+ 
were determined by emission spectrophotometry and Ca2+ by 
atomic absorption spectrophotometry (Allan, 1969). Total nitrogen 
was estimated by Kjeldhal procedure (Bremner 1965). Chloride was 
extracted by stirring ground dried samples with 0.1 M NaNO3 for 30 
min. After extract clarification with activated coal, 13.2 mM HG 
(SCN)2 in methanol and 20.2% (w/v) Fe(NO3)3 (4 + 1) was added 
and the absorbance was determined at 460 nm (Gaines et al., 
1984).  
 
 
Leaf relative water contents (%) 
 
The leaf relative water contents (RWC) were calculated according 
to Beadle et al. (1993) using the equation: 
 
RWC (%) =  [(FW - DW)/(TW - DW)] x 100 
 
Where, FW is fresh weight, DW is dry weight and TW is turgid 
weight. 
 
 
Glycinebetaine, proline and total soluble carbohydrates 
contents (µg g–1 DW)  
 
Glycinebetaine was extracted by stirring finely ground dried 
samples with demineralized water at 100°C for 1 h. Glycinebetaine 
contents were determined spectrophotometrically after reaction with 
KI-I2 at 365 nm (Grieve and Grattan, 1983). Proline was also deter-
mined spectrophotometrically following the ninhydrin method 
described by Bates et al. (1973) using L-proline as a standard. 
Approximately, 300 mg of dry tissue was homogenized in 10 mL of 
3% (w/v) aqueous sulphosalicylic acid and filtered. In 2 mL of the 
filtrate, 2 mL of acid ninhydrin was added, followed by the addition 
of 2 mL of glacial acetic acid and boiled for 60 min. The mixture was 
extracted with toluene and the free proline was quantified 
spectrophotometrically at 520 nm from the organic phase using a 
Shimadzu spectrophotometer (Duisburg, Germany).  

Total soluble carbohydrates (TSC) concentrations were determined 
according to Brun (1978). Samples of 100 mg were homogenized 
with 10 mL of extracting solution (glacial acetic acid: methanol: 
water, 1: 4: 5, v/v/v). The homogenate was centrifuged for 10 min at 
3,000 rpm and the supernatant was decanted. The residue was 
resuspended in 10 mL of extracting solution and centrifuged 
another 5 min at 3,000 rpm. The supernatant was decanted, 
combined with the original extract and made up to 50 mL with 
water. For measurement of TSC, a  phenolsulfuric  acid  assay  was  

 
 
 
 
used as described by Dubois et al. (1956). A volume of 0.5 mL of 
5% (v/v) phenol solution and 2.5 mL of concentrated sulfuric acid 
were added to 0.5 mL aliquots. The mixture was shaken, heated in 
a boiling water bath for 20 min and cooled to room temperature. 
The absorption was then determined by spectrophotometry at 490 
nm (Shimadzu spectrophotometer, Duisburg, Germany). 
 
 
Antioxidant and defense enzymes 
 
Roots equivalent to 100 mg fresh weights of violet were homo-
genized in 1 mL of HEPES/KOH buffer (pH 7.5) using mortar and 
pestle. The homogenate was spun at 10,000g at 4°C for 10 min. 
The supernatant was used for the enzyme assays. Catalase (CAT) 
activity was determined by measuring the rate of H2O2 conversion 
to O2

 at room temperature using an O2 electrode (Dat et al., 1998). 

Ascorbate peroxidase (APX) activity was measured in the presence 
of 0.25 mM ascorbic acid and 0.5 mM H2O2 by monitoring the 
decrease in absorption at 290 nm (Janda et al., 1999). Peroxidase 
activity was determined according to Adam et al. (1995). The assay 
contained 1.5 mL of 100 mM sodium acetate buffer (pH 5.5), 1 mL 
of 1 mM guaiacol, 10 µL of tissue extract and 190 µL of water. The 
reaction was started by addition of 300 µL of 1.3 mM H2O2. The 
increase in absorption was recorded at 470 nm. Chitinase activity 
was measured using the substrate carboxy methyl chitin remazol 
brilliant violet (CM-chitin RBV, Blue Substrates, Göttingen, Germany) 
according to the method described by Wirth and Wolf (1990). 
 
 
Statistical analysis  
 
Analysis of variance (ANOVA) was employed for carrying out 
statistical analysis of data collected (Steel and Torie, 1980). The 
means values were compared with least significant difference (LSD) 
test following Snedecor and Cochran (1980). 
 
 
RESUTS AND DISCUSSION 
 
Pre NaCl applications studies 
 
Development of plant through direct regeneration  
 
Composition of different media used for regeneration in 
violet is given in Table 1. The explants placed on M2 
media showed good shoot formation and on R2 media 
showed good root formation.  
 
 
Salicylic acid (µg g–1 FW) 
 
Salicylic acid (SA) was isolated before NaCl applications 
from three propagated types of violet seedlings (Figure 
1). It was noted that direct regenerated plants had 
significantly higher SA contents in roots and leaves as 
compared to seed and rootstock propagated plants. Both 
seed and rootstock had almost equal concentrations of 
SA, while plants propagated through direct regeneration 
had higher concentration of SA. The increased content of 
SA might be due to somaclonal variations or impact of 
hormones used during regeneration. Khanum et al. 
(2006) stated that direct regeneration could be a useful 
tool to induce somaclonal variations  in  plants  especially  
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Table 1. Composition of different media used for regeneration and root 
formation in violet. 
 

Regeneration media (mg/L) 
Composition 

M1 M2 M3 
Benzyl amino purine (BAP) 0.05 1.5 3 
Indoleaceticacid (IAA) 1 1 2 
Kinetin 0.2 0.1 0.3 
Sucrose 40000 30000 50000 
Rooting media (mg/L) R1 R2 R3 
Naphthalene acetic acid (NAA) 2 3 1.5 
Indole butyric acid (IBA) 3 4 2 
Indole acetic acid (IAA) 1 1.5 2 
Sucrose 40000 60000 70000 
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Figure 1. Salicylic acid (SA) (µg g–1 FW ) in violet in three types of plants before NaCl 
treatments. 

 
 
 
for concentrations of hormones. A number of similar 
studies showed that adventitious regeneration caused 
somaclonal variations in plants, in garlic (Sata et al., 
2000), minor millet (Vikrant and Rashid, 2001) and rice 
(Sahasrabudhe et al., 2000). 
 
 
Detection of genetic diversity  
 

Primer wise detail of DNA polymorphism detected in 
violet is elaborated in Table 2. Each of the random 
primers produced distinct polymorphic banding patterns 
in all three types of plants in violet. The level of 
polymorphism was different with different primers among 
different propagated seedlings. Results obtained from 10 
experiments with 5 fragments through gel electrophoresis 
system are shown in Figure 2A. A homology tree was 

constructed by an unweighted pair group method with 
arithmetic averages clustering algorithm from the pair 
wise matrix of genetic similarity among sugarcane geno-
types (Figure 2B). The results indicated that plants 
regenerated by direct regeneration had higher genetic 
heterogeneity as compared to seed and root stock 
propagated seedlings. Genetic similarity among the violet 
plants at molecular level was 50.9 to 70.5% among seed, 
root and direct regenerated violet plants. Trend of genetic 
diversity among violet plants suggested that differences 
observed in morphological traits might be the result of 
somaclonal variations or growth media applied during 
tissue culture technique. 

Similarly, genetic homology coefficient ranging from 
60.5 to 88.5% has earlier been reported by Pan et al. 
(2004). 
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Table 2. Primer used for polymorphism in violet. 
 

S/N Primer code Sequence Total bases 
1. BT61.F 5�--GGTGAGAACTCTCGAGGGTCGGGA--3� 24 
2. BT61.R 5�--GCCCCGATCCGACACCCGAGC--3� 21 
3 BT101.F 5�--CCCTCACTCCTCGAGAATATG--3� 21 
4. BT91.F 5�--CTATTTACTTCTCTCACCGCGG--3� 22 
5. BT811.F 5�--TTTGTAAACACGGAGGGGGC--3� 20 
6. BT811.R 5�--ACAAACCCACGATTGGATTGGGC--3� 23 
7. BT71.F 5�--TTGTAAACACAGAGGAGGG--3� 19 
8. BT71.R 5�--CACGATTGGATTACACGC--3� 18 

 
 
 

M          1           2          3 

 

24 bp 

18 bp 
 

 
Figure 2A. RAPD DNA fragments of 3-types of violet plants 
propagated by different methods (M = marker, Lane 1 = direct 
regenerated, Lane 2 = seed propagated and Lane 3 = rootstock 
propagated). 
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Figure 2B. Homology tree constructed by an un-weighted pair group method with arithmetic averages clustering 
algorithm from the pair wise matrix of genetic similarity amongst different propagated violet plants. 
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Figure 3. Effect of NaCl on: (A) Relative water contents (%); (B) glycinebetaine (µg g–1 DW); (C) 
proline (µg g–1 DW); (D) total soluble carbohydrates concentration in violet. 

 
 
 
regarding RWC (Figure 3A). 
 
 
Glycinebetaine (µg g–1 DW) 
 
Glycinebetaine (GB) accumulations increased in response 
to salinity among seed and rootstock propagated plants. 
On the other hand, GB accumulation deceased in direct 
regenerated plants under salt stress (Figure 3B). 
Accumulation of GB represents a major biochemical 
adaptation in several bacteria and plants under stresses 
(Rhodes and Hanson, 1993). It has been demonstrated 
that the biosynthesis of GB is stress inducible (Sakamoto 
and Murata, 2002) and that the level of  accumulated  GB  

is correlated with the degree of salt tolerance (Saneoka 
et al., 1995). Moreover, an exogenous supply of GB also 
increases the salt tolerance of some plants that are 
otherwise unable to accumulate GB (Hayashi et al., 1998). 
 
 
Proline (µg g–1 DW) 
 
Effect of salt stress was non-significant on proline accu-
mulation among all three propagated types of violet 
plants (Figure 3C). Ashraf (1989), Lutts et al. (1996) and 
Meloni et al. (2001) reported that proline was not involved 
in the osmotic adjustment of black gram, sorghum and 
cotton cultivars, respectively.  
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Figure 4. Effect of NaCl on: (A) CAT (µ mg-1 protein); (B) APX (µ mg-1 protein); (C) GDP (µ mg-1 protein); (D) Chitinase µ mg-1 
protein in violet. 

 
 
 
Root total soluble carbohydrates (µg g–1 DW) 
 
Root total soluble carbohydrates (TSC) concentrations 
increased sharply under salt stress intensity in seed and 
rootstock propagated plants, while TSC concentrations 
were unchanged in direct regenerated plants (Figure 3D). 
This probably reflects the maintenance or even induction 
of root elongation at low water potentials, which can be 
considered as an adaptive response to salinity (Balibrea 
et al., 2000).  
 
 
Antioxidant and defense enzymes 
 
CAT and APX detoxify H2O2 in peroxisomes, cytosol and 
chloroplasts, respectively. Their activities were measured 
as representative enzymes involved in antioxidant meta-
bolism. CAT activity of direct regenerated plants increased 
under NaCl stress. In a converse manner, APX activity 
was decreased in direct regenerated plants (Figures 4A 

and B). The response pattern of seed and rootstock 
propagated plants was in opposite for both enzymes as 
compared to direct regenerated plants. Whereas CAT 
activity dropped in seed and rootstock propagated plants 
while APX activity increased in these plants, guaiacol 
dependent peroxidase (GDP) and chitinase activities 
were slightly increased in seed and rootstock propagated 
plants and were stimulated under NaCl treatments, but 
unaffected in direct regenerated plants (Figures 4C and 
D).  

Salt (NaCl) stress is among the factors most limiting to 
plant productivity. Plants exposed to salt stress adapt 
their metabolism in order to cope with the changed 
environment. Survival under these stressful conditions 
depends on the plant’s ability to perceive the stimulus, 
generate and transmit signals and instigate biochemical 
changes that adjust the metabolism accordingly (Hasegawa 
et al., 2000). It was clear from results of the present 
experiments that the only difference among the three 
propagated types of seedlings was the accumulations of  
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SA that might helped violet seedlings to cop with the 
effect of salt stress. Snyman et al. (2000) described that 
direct regeneration is a useful tool for rapid propagation 
and for induction of somaclonal variations in plants. 
Salicylic acid (SA) plays an important role in the defense 
response to stresses (salts, water) in many plant species 
(Shirasu et al., 1997). SA constituted the principle 
mechanisms employed to avoid salt stress by controlling 
the activities of guaiacol dependent peroxidase and 
chitinase. In maize plants, pre treatment with SA induced 
the production of antioxidant enzymes, which in turn 
increased chilling tolerance (Janda et al., 1999). Activities 
of antioxidant enzymes confirmed the positive SA effect 
under salt stress. SA constituted the principle mecha-
nisms employed to avoid salt stress by controlling the 
activities of guaiacol-dependent peroxidase and chitinase 
in direct regenerated plants (Stevens et al., 2006).  
 
 
Conclusion 
 
It was concluded that direct regenerated plants had better 
performance under salt stress in relation to growth and 
ion accumulations as compared to seed and root stock 
propagated violet seedlings. It might be due to higher SA 
concentrations in direct regenerated seedlings resulting 
from somaclonal variations or growth media applied 
during tissue culture technique. 

We suggest that further studies for somaclonal varia-
tions with different levels of NaCl should be carried out. It 
could be that 50 mol m–3 NaCl is low level of salt stress 
for violet.  
 
 
Abbreviations 
 
SA, Salicylic acid; RAPD, random amplified polymorphic 
DNA; GB, glycinebetaine; TCS, root total soluble 
carbohydrates; RWC, relative water contents; GDP, 
guaiacol dependent peroxidase; MS, Murashige and 
Skoog; BAP, benzyl amino purine; IAA, indole acetic 
acid; PAR, photo active radiation; CTAB, cetyltrimethyl 
ammonium bromide; HPLC, high performance liquid 
chromatography; CRBD, completely randomized block 
design; TSC, total soluble carbohydrates; ANOVA, 
analysis of variance; LSD, least significant difference; 
CAT, catalase; APX, ascorbate peroxidase; PCR, 
polymerase chain reaction. 
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