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The cellulolytic and xylanolytic activity of a pathogenic Myrothecium roridum Tode (IMI 394934) and 
non-pathogenic Fusarium solani and Curvularia pallescence Boedjin isolates from water hyacinth were 
investigated. The mycelial plugs of each isolate was grown in submerged cultures of Czapeck Dox 
broth containing the appropriate carbon source (carboxymethylcellulose, sawdust and homogenized 
dry water hyacinth leaf) at 25°C for 16 days. The enzyme activity assay was carried out on the culture 
filtrates obtained. This was measured as micromole sugar released per min. The result obtained 
showed that the enzyme activity (U/ml) for ββββ-1,4-exoglucanase, ββββ-1,4-endoglucanase and xylanase was 
maximum 3.70 ±±±± 0.43, 0.95 ±±±± 0.03 and 2.32 ±±±± 0.10, respectively, in C. pallescens Boedjin grown on 
carboxymethylcellulose and minimum 0.12 ± 0.02, 0.13 ± 0.03 and 0.34 ± 0.01 respectively, in M. roridum 
grown on homogenized dry water hyacinth leaf. The ββββ-glucosidase activity (U/ml) was highest, 1.74 ±±±± 
0.06 in M. roridum grown on sawdust and least, 0.08 ± 0.00 in C. pallescens Boedjin grown on 
homogenized water hyacinth leaf broth. The maximum (324.00 ± 19.51 µµµµg/ml) and minimum (130.00 ± 
5.83 µµµµg/ml) total extracellular protein was produced in M. roridum grown on homogenized dry water 
hyacinth leaf and carboxymethylcellulose, respectively. This study showed that the phytopathogenic 
strain of M. roridum is capable of producing cellulases and xylanase enzyme in submerged cultures but 
to a lesser degree compared to F. solani and C. pallescence Boedjin. 
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INTRODUCTION 
 
Plant biomass is made up of mostly polysaccharides. The 
most abundant organic polysaccharide in the biosphere is 
cellulose (Murai et al., 1998; Hong et al., 2001; Narasimha 
et al., 2006) and is the major polysaccharide found in the 
plant cell wall giving the structural rigidity and strength to 
plants. Cellulose is an unbranched glucose polymer com-
posed of β-1,4-glucose units linked by a β-1,4-D-
glycosidic bond (Gielkens et al., 1999; Han et al., 1995).  

A number of plant pathogenic organisms are capable of 
producing multiple groups of enzymes,  called  cellulases, 
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that act to hydrolyze the β-1,4-D-glycosidic bonds within 
the cellulose molecules (Riou et al., 1991; Akiba et al., 
1995; Baer and Gudmestad, 1995; Zaldivar et al., 2001; 
Moreira et al., 2005). 
The cellulases are classified into three types: (i) endo-
glucanases or carboxymethyl cellulases (CMCases) [1,4-
β-D-glucan-4-glucanohydrolases (EC 3.2.1.4)] (Lee et al., 
2002), (ii) exoglucanases, including 1,4-β-D-glucan 
glucanohydrolases (also known as cellodextrinases) (EC 
3.2.1.74) and 1,4-β-Dglucan cellobiohydrolases (cello-
biohydrolases)     (EC 3.2.1.91)        and       (iii)    β- or β-
glucoside glucohydrolases (EC 3.2.1.21) (Gielkens et al., 
1999; Kang et al., 1999; Parry et al., 1983; Lee et al., 
2002).  



 

 
 
 
 

Endoglucanases cut at random at internal amorphous 
sites in the cellulose polysaccharide chain, generating 
oligosaccharides of various lengths and consequently 
new chain ends (Siddiqui et al., 1999). Exoglucanases 
act by hydrolyzing the reducing or nonreducing ends of 
cellulose polysaccharide chains, liberating either glucose 
(glucanohydrolases) or cellobiose (cellobiohydrolase) as 
major products (Akiba et al., 1995; Han et al., 1995; 
Teeri, 1997; Lee et al., 2002). β-Glucosidases hydrolyze 
soluble cellodextrins and cellobiose to glucose (Lee et al., 
2002). 

The potential biotechnological applications of these 
enzymes in food and pharmaceutical industries, essential 
oils, pulp and paper industries, biomass conversion of 
agricultural and industrial wastes to chemical feedstock, 
biofuels, animal feeds and pollution control are well 
documented (Viikari et al., 1994; Christov et al., 1999; 
Zaldiva, 2001; Ikram-ul-Haq et al., 2006; Tarek and 
Nagwa, 2007; Acharya et al., 2008). 

Cellulases and hemicellulases (such as xylanase) are 
produced by a wide range of microorganisms particularly 
fungi (Jorgensen et al., 2003). 

A recent report showed the isolation of three fungal 
isolates (Fusarium solani, Curvularia pallescence Boedjin 
and Myrothecium roridum Tode) from water hyacinth. Of 
the three isolates, only the strain of M. roridum (IMI 
394934) was pathogenic to water hyacinth and produced 
a phytotoxic metabolite which induced similar disease 
symptoms as the fungus on water hyacinth (Okunowo et 
al., 2008 a,b). The aim of the present study is to 
investigate the ability of these isolates to produce 
cellulolytic enzymes. 
 
 
MATERIALS AND METHODS 
 
Fungal isolate 
 
The fungal isolates, M. roridum (IMI 394934), C. pallescens Boedijn 
and F. solani used in this study were obtained from water hyacinth 
in our previous study. The lyophilized sample of the organisms were 
reactivated and produced on potato dextrose agar (Okunowo and 
Ogunkanmi, 2009). 
 
 
Media formulation and growth of isolates for enzyme 
production 
 
Cellulolytic enzymes production in submerged cultures by the 
fungal strains was determined using three carbon sources; 
carboxymethylcellulose (substitution degree 0.7, Sigma), sawdust 
of Abora wood (Mitragyna ciliata) collected from sawmills at 
Ikorodu, Lagos, Nigeria and water hyacinth leaf (Eichhornia cras-
sipes) collected from the University of Lagos Lagoon. The sawdust 
and water hyacinth leaf were washed in distilled water, dried at 
70°C in an oven (SD 93114624, Gallenkamp, United Kingdom) and 
then pulverized using Marlex Exceller grinder (Mumbai, India). The 
pulverized samples were sieved through a mesh of 0.05 mm pore 
size to obtain a fine powder. Czapeck Dox broth (sodium nitrate 2 
g, potassium nitrate 1 g, potassium chloride 0.5 g, magnesium 
sulphate   0.5 g,   ferrous   sulphate   0.01 g,    sucrose   30 g)   was  
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formulated such that its sucrose was substituted with equivalent 
amount (30 g/L of distilled water) of the appropriate carbon source. 
Four mycelial plugs of 10 mm diameter cork borer were grown on 
the formulated Czapeck Dox broth and incubated at 25°C for 16 
days. Aliquots were centrifuged at 12,000 x g to obtain supernatant 
for enzyme assay. The enzyme activity (Unit) was measured as 
micromole sugar released per min. 
  
  
ββββββββ--11,,44--EEnnddoogglluuccaannaassee  aaccttiivviittyy   
 
The β-1,4-endoglucanase activity was determined according to 
Zaldivar et al. (2001), using carboxymethylcellulose as substrate 
and the formation of reducing sugars was measured by reaction 
with dinitrosalicylic acid (DNS). The reaction mixtures containing 10 
mg CMC (Carboxymethyl cellulose) in 1 ml of 0.05 M sodium 
acetate buffer (pH 5.0) and 1 ml culture supernatant were incubated 
at 50°C for 30 min. The reducing sugar formed was measured with 
dinitrosalicyclic acid (DNS). One milliliter (1 ml) of DNS reagent was 
added to 3 ml of the test sample. The colour was developed by 
boiling the mixture in water bath for 5 min. Absorbance was read at 
540 nm using spectrophotometer (SG8 072218, Spectronic 
GENESYS 8, England). Reducing sugar concentration was 
obtained from a standard glucose concentration curve.  
 
 
ββββ-1,4-Exoglucanase activity  
 
The β-1,4-exoglucanase activity was assayed as above using 
microcrystalline cellulose (Avicel) as substrate.  
 
 
ββββ-Glucosidase activity  
 
The β-glucosidase activity was assayed by incubating 0.1 ml of the 
culture filtrate with 0.5 ml of 0.05 M acetate buffer (pH 5.0) 
containing 2.5 mg cellobiose at 50°C for 10 min (Zaldivar et al., 
2001). 10 µL of the glucose released was added to 1 ml glucose 
oxidase peroxidase reagent (Sigma) and allowed to stand for 10 
min at room temperature before the optical density was read at 546 
nm. The concentration of the glucose released (mg/ml) was 
measured as OD sample/ OD standard x concentration of standard. 
 
 
Xylanase activity 
 
Xylanase activity was determined by measuring the release of 
reducing sugars from a solution of water soluble birch wood xylan 
(Fluka BioChemika, 95588) using the dinitrosalicylic acid (DNS) 
method (Gawande and Kamat, 1999). The reaction mixtures 
containing 10 mg Xylan (Fluka BioChemika, 95588) in 1 ml of 0.05 
M sodium acetate buffer (pH 5.0) and 1 ml culture supernatant were 
incubated at 50°C for 30 min. The xylose formed was measured 
with dinitrosalicyclic acid (DNS). 
 
 
Total extracellular protein 
 
The total extracellular protein was determined by Lowry’s method 
using bovine serum albumin (BSA) as standard (Lowry et al., 1951). 
Five milliliter (5 ml) of alkaline solution was added to the protein 
sample solution. This was mixed thoroughly and allowed to stand at 
room temperature for 10 min. Folin-Ciocalteau reagent (0.5 ml) was 
added and mixed. After 30 min, the  absorbance  was  read  against 
reagent blank at 750 nm. The protein concentration in the test 
sample was estimated from the standard protein concentration plot. 



 

1076         Afr. J. Biotechnol. 
 
 
 

Table 1. Effect of carboxymethylcellulose on cellulase activity in fungal isolates. 
 

Isolates Total protein 
(µµµµg/ml) 

Enzyme Activity (U/ml) 
Exoglucanasea Endoglucanaseb ββββ-glucosidasec Xylanased 

Curvularia pallescens 195.00 ± 12.94 3.70 ± 0.43 0.95 ± 0.03 0.99 ± 0.04 2.32 ± 0.10 
Fusarium solani 190.63 ± 16.25 2.87 ± 0.07 0.92 ± 0.03 0.60 ± 0.04 1.53 ± 0.02 
Myrothecium roridum  130.00 ± 5.83 0.40 ± 0.02 0.36 ± 0.03 1.46 ± 0.32 0.78 ± 0.01 

 

The cultures were grown at 120 rpm and 25 ± 2oC for 16 days. Values are Mean ± SEM of Triplicate Results from independent experiment. 
aExoglucanase is expressed in terms of units. One unit is the amount of enzyme releasing 1 µmole of reducing sugar from microcrystalline 
cellulose per min. bEndoglucanase (CMCase) is expressed in terms of units. One unit is the amount of enzyme releasing 1 µmole of 
reducing sugar from carboxymethyl cellulose per min. cOne unit of β-glucosidase activity is defined as the amount of enzyme liberating 1 
µmole of glucose from cellobiose per min. dOne unit of xylanase activity is defined as the amount of enzyme liberating 1 µmole of xylose 
from xylan per min. 

 
 
 

Table 2. Effect of sawdust on cellulase activity in fungal isolates. 
 

Isolates Total protein 
(µµµµg/ml) 

Enzyme Activity (U/ml) 
Exoglucanasea Endoglucanaseb ββββ-glucosidasec Xylanased 

Curvularia pallescens 195.36 ± 9.82 2.35 ± 0.16 0.84 ± 0.04 1.41 ± 0.04 1.06 ± 0.03 
Fusarium solani 270.00 ± 23.45 1.77 ± 0.17 0.48 ± 0.02 0.24 ± 0.02 1.58 ± 0.05 
Myrothecium roridum  220.00 ± 13.96 0.43 ± 0.06 0.39 ± 0.02 1.74 ± 0.06 1.03 ± 0.01 

 

The cultures were grown at 120 rpm and 25 ± 2oC for 16 days. Values are Mean ± SEM of Triplicate Results from independent experiment. 
aExoglucanase is expressed in terms of units. One unit is the amount of enzyme releasing 1 µmole of reducing sugar from microcrystalline 
cellulose per min. bEndoglucanase (CMCase) is expressed in terms of units. One unit is the amount of enzyme releasing 1 µmole of reducing 
sugar from carboxymethyl cellulose per min. cOne unit of β-glucosidase activity is defined as the amount of enzyme liberating 1 µmole of glucose 
from cellobiose per min. dOne unit of xylanase activity is defined as the amount of enzyme liberating 1 µmole of xylose from xylan per min. 

 
 
 
RESULTS 
 
Determination of the cellulolytic activity of the 
isolates 
 
The organisms used in this study were able to grow in the 
various carbon sources employed. This is an indication 
that cellulolytic enzymes were secreted by the isolates to 
depolymerize the carbon sources to simple sugars for 
growth. The result obtained showed that the fungi C. 
pallescens Boedjin, F. solani and M. roridum (IMI 
394934) produced cellulase and xylanase activity during 
the fermentation period in submerged cultures (Tables 1 - 
3).  

Table 1 shows the enzyme production by the isolates in 
carboxymethylcellulose. The enzyme production was 
maximum with C. pallescens and minimum with M. 
roridum. 

Similarly, C. pallescens and M. roridum produced the 
highest and lowest amount of cellulase enzyme respect-
tively, in submerged culture containing sawdust as 
carbon source (Table 2). However, the enzyme activity by 
the organisms on sawdust was lower when compared to 
that produced in carboxymethylcellulose. A similar trend 
in enzyme production was also obtained when the 
isolates were grown in submerged culture containing 
water hyacinth as the carbon source. However, this 
medium gave the least amount of enzyme induction in 

the isolates (Table 3). The results in this study showed 
that the only pathogenic organism to water hyacinth, M. 
roridum (IMI 394934) is the poorest cellulase and xylanase 
enzyme producer (Tables 1 - 3). The results also indi-
cates that carboxymethylcellulose (CMC) is the best 
carbon source in cellulase and xylanase enzyme 
induction in the isolates employed in this work (Tables 1 - 
3). 
 
 
DISCUSSION 
 
Cellulase activity of phytopathogens 
 
Literatures have shown that Curvularia sp. (Banerjee, 
1990; Nitharwal et al., 1991; Banerjee and Chakrabarti, 
1992), F. solani (Wood, 1971; Wood and McCrae, 1977; 
Gupta et al., 2009) and Myrothecium sp. (Singh and 
Shukla, 1985; Filho et al., 1994; Moreira et al., 2005) are 
capable of producing cellulase, β-glucosidase and 
xylanase enzyme in submerged cultures of lignocellulosic 
materials. However, in this present study, the enzyme 
production capacities of the three new strains of 
organisms (water hyacinth isolates) on three different 
carbon sources (carboxymethylcellulose, sawdust and 
water hyacinth) under the same cultural conditions were 
comparatively examined. Cellulase enzymes were produced 
by the three fungal  isolates  on  the  different  substrates. 
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Table 3. Effect of water hyacinth on cellulase activity in fungal isolates. 
 

Isolates Total protein (µµµµg/ml) 
Enzyme Activity (U/ml) 

Exoglucanasea Endoglucanaseb ββββ-glucosidasec Xylanased 
Curvularia pallescens 225.39 ± 15.36 0.28 ± 0.01 0.12 ± 0.01 0.08 ± 0.00 0.30 ± 0.00 
Fusarium solani 264.24 ± 12.23 0.32 ± 0.00 0.11 ± 0.00 0.13 ± 0.01 0.34 ± 0.01 
Myrothecium roridum  324.00 ± 19.51 0.12 ± 0.02 0.13 ± 0.03 1.43 ± 0.02 0.34 ± 0.01 

 

The cultures were grown at 120 rpm and 25 ± 2°C for 16 days. Values are Mean ± SEM of Triplicate Results from independent experiment. 
aExoglucanase is expressed in terms of units. One unit is the amount of enzyme releasing 1 µmole of reducing sugar from microcrystalline 
cellulose per min. bEndoglucanase (CMCase) is expressed in terms of units. One unit is the amount of enzyme releasing 1 µmole of reducing 
sugar from carboxymethyl cellulose per min. cOne unit of β-glucosidase activity is defined as the amount of enzyme liberating 1 µmole of glucose 
from cellobiose per min. dOne unit of xylanase activity is defined as the amount of enzyme liberating 1 µmole of xylose from xylan per min. 

 
 
 
The enzyme production was highest with C. pallescens, 
followed by F. solani and least with M. roridum (IMI 
394934). The cellulase enzyme production by the three 
organisms was most favoured on the medium containing 
carboxymethylcellulose as the sole carbon source. This 
suggests that carboxymethylcellulose is a good carbon 
source for the induction of the enzyme in fungal species.  
More so, studies have shown that cellulase production 
was higher upon growth of Trichoderma harzianum (Mes-
Hartree et al., 1988), Humicola fuscoatra (Rajendran et 
al. 1994) and A. niger (Hanif et al., 2004) on cellulosic 
substrates. 
Volvariella diplasia produced cellulolytic enzymes when 
grown in shake culture containing 0.5% cellulose powder 
(Puntambekar, 1995). 

These observations are well in agreement with the 
results of the present study. It is therefore evident that the 
presence of cellulose of carboxymethylcellulose is 
responsible for the highest support for enzyme production 
by the isolates. 

The use of carboxymethylcellulose for a large scale 
enzyme production may be uneconomical. One of the 
cheaply available agricultural lignocellulosic waste (saw-
dust) used in this study also induced a favourable amount 
of enzymes in the organisms. The activities of β-
glucosidase and xylanase were also appreciable in 
culture filtrate of the isolates grown on sawdust. This 
carbon source has been reported as a good inducer of 
cellulase in fungi, particularly when it is pretreated (Lo et 
al., 2005; Narasimha et al., 2006; Mohammed and 
Obasola, 2007; Milala et al., 2009).  

In this study, the water hyacinth leaf appeared the 
poorest carbon source for enzyme induction in the three 
isolates. This suggests that the level of cellulose in the 
water hyacinth leaf was too small to induce enzyme 
synthesis or that there could be some enzyme inhibitors 
or proteinases in the water hyacinth leaf which represses 
the synthesis of cellulases and hemicellulases in the 
organisms. Plant proteinases have been implicated in the 
inhibiton of enzyme production by a plant pathogenic 
fungus (Moreira et al., 2005). 

The production of β-glucosidase was highest by the 
water hyacinth pathogenic fungus when compared to  the  

non-pathogenic isolates. The β-glucosidase enzyme 
production was highest when compared to the endoglu-
canase, exoglunase and xylanase enzyme from the same 
pathogenic isolate. A related species, Myrothecium 
verucarria has been shown to produce a similar trend in 
result with β-glucosidase, endoglucanase, exoglunase 
and xylanase when different carbon sources were used 
(Moreira et al., 2005).  

The enzymes produced by M. roridum (IMI 394934) 
may be seen as pathogenic in the penetration of the plant 
material rather than the virulence factor since the 
avirulent isolates were able to produce higher amount of 
these enzymes.  
Finally, this study shows that the phytopathogenic strain 
of M. roridum is capable of inducing cellulases and xyla-
nase enzyme in submerged cultures but to a lesser 
degree compared to F. solani and C. pallescence 
Boedjin. Many research works has been focused on the 
optimization of enzyme production in fungi due to the 
myriads and continued demand for biotechnological and 
industrial application of enzymes. Therefore, further 
studies will also involve the development of mutant 
strains of these organisms with enhanced production of 
lytic enzyme for lignocellulosic waste decomposition.  
 
 
Conclusion 
 
In this study, it has been shown that M. roridum was 
capable of producing cellulase and xylanase in 
submerged cultures containing different carbon sources. 
However, these enzymes were better induced in F. solani 
and C. pallescence Boedjin which were non phytopatho-
genic when compared to water hyacinth. 
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