Main Article Content
QTL mapping for controlling anthesis-silking interval based on RIL population in maize
Abstract
Nitrogen (N) deficiency will severely affect many metabolic pathways and physiological progresses during maize (Zea mays L.) growth and change of anthesis-silking interval (ASI) is one of the most serious consequences. To realize the genetic basis of ASI, a recombinant inbred line (RIL) population consisting of 239 RILs, derived from the cross between Mo17 and Huangzao4, was used to identify the quantitative trait loci (QTLs) controlling ASI under different N environments. As a result, 6 QTLs were detected under high N environment on chromosome 3, 6, 7 and 8 and could explain total 53.67% of phenotypic variance. While, under low N environment, only 3 QTLs were identified on chromosome 6, 7 and 8, and they could account for total 31.87% of phenotypic variance. The two QTLs Qasihn6-1 and Qasihn3-1, identified under high N environment, were quite near to their linked marker Phi077 and Bnlg197, respectively, with less than 1 cM of genetic distance. These results are beneficial for understanding the genetic basis of ASI in maize.