Main Article Content
Temporal variability of available P, microbial P and some phosphomonoesterase activities in a sewage sludge treated soil: The effect of soil water potential
Abstract
Available P and enzyme activities strongly depend on the soil water potential. The objective of this study was to test the effects of water potential on soil available P, microbial biomass P(MBP) and some
phosphomonoesterase activities. A semiarid soil classified as Calcic Haploxerept was treated with raw sewage sludge at a rate of 20 g kg-1. Four levels of irrigation (deionized water) were established for 90
days of incubation. Constant water potentials used for soil incubation were: saturation (SA, 0 bar), field capacity (FC, -0.3 bar), and permanent wilting point (PWP, -15 bar) in three treatments. An irrigation treatment was also drying-rewetting cycle (DWC) between -0.3 to -15 bars. After 0, 20, 60 and 90 days of incubation, soils were sampled for analysis. The addition of sewage sludge decreased soil pH and increased soil EC, organic C, total N, organic P, available P, MBP contents and phytase, alkaline and acid phosphatases activities significantly. The effects of soil moisture, incubation time and their interaction on soil available P, MBP and phosphomonoesterase activities were significant at different levels. During 20 days of incubation, available P and phosphatase activities decreased, whereas microbial P and phytase activity increased significantly. Thereafter, only available P increased and phytase activities decreased continuously, but microbial P, alkaline and acid phosphatase activities fluctuated during incubation. Soils incubated in DWC and FC compared to soils incubated in SA and PWP had higher available P contents. Microbial P and phosphomonoesterase activities increased with increasing soil water potentials significantly. The highest (38.7 mg kg-1) and lowest (28.9 mg kg-1) microbial P was measured in soil incubated in SA and PWP respectively. Correlation coefficient between available and microbial P was negative and significant. The activities of alkaline phosphatase,
acid phosphatase and phytase were higher and lower in soils incubated in SA and PWP, respectively.
phosphomonoesterase activities. A semiarid soil classified as Calcic Haploxerept was treated with raw sewage sludge at a rate of 20 g kg-1. Four levels of irrigation (deionized water) were established for 90
days of incubation. Constant water potentials used for soil incubation were: saturation (SA, 0 bar), field capacity (FC, -0.3 bar), and permanent wilting point (PWP, -15 bar) in three treatments. An irrigation treatment was also drying-rewetting cycle (DWC) between -0.3 to -15 bars. After 0, 20, 60 and 90 days of incubation, soils were sampled for analysis. The addition of sewage sludge decreased soil pH and increased soil EC, organic C, total N, organic P, available P, MBP contents and phytase, alkaline and acid phosphatases activities significantly. The effects of soil moisture, incubation time and their interaction on soil available P, MBP and phosphomonoesterase activities were significant at different levels. During 20 days of incubation, available P and phosphatase activities decreased, whereas microbial P and phytase activity increased significantly. Thereafter, only available P increased and phytase activities decreased continuously, but microbial P, alkaline and acid phosphatase activities fluctuated during incubation. Soils incubated in DWC and FC compared to soils incubated in SA and PWP had higher available P contents. Microbial P and phosphomonoesterase activities increased with increasing soil water potentials significantly. The highest (38.7 mg kg-1) and lowest (28.9 mg kg-1) microbial P was measured in soil incubated in SA and PWP respectively. Correlation coefficient between available and microbial P was negative and significant. The activities of alkaline phosphatase,
acid phosphatase and phytase were higher and lower in soils incubated in SA and PWP, respectively.