Main Article Content
Bayesian dissection for genetic architecture of traits associated with nitrogen utilization efficiency in rice
Abstract
Nitrogen is one of the key important nutrients in rice production. High rice grain yield is greatly dependent upon economic nitrogen input and genetic factors. In order to locate quantitative loci for traits associated with nitrogen utilization efficiency in rice, F9 recombinant inbred lines derived from a Korean tongil type Dasanbyeo and a Chinese japonica variety TR22183 was genetically designed. The six traits of interest were observed on 155 RILs, along with 105 SSR and 103 STS markers. Bayesian model selection technique was used to dissect genetic architecture for traits of interest. A total of 28 main-effect QTLs and 23 pairs of epistatic QTLs were detected for traits associated with nitrogen utilization efficiency. The proportions of phenotypic variation explained by the detected QTLs ranged from 0.09 to 16.90% and from 0.19 to 12.76% for main-effect and epistatic QTLs, respectively. Sixteen of main-effect QTLs interacted with nitrogen level. One pleiotropic QTL was found, governing simultaneously nitrogen dry matter production efficiency and Nitrogen grain production efficiency.