Main Article Content
Vegetation indices as indicators of damage by the sunn pest (Hemiptera: Scutelleridae) to field grown wheat
Abstract
The sunn pest, Eurygaster integriceps Put. (Hemiptera: Scutelleridae), also known as sting or cereal pest, is one of the most economically important pests of wheat in the world. In this study, a collapsible
nylon cloth cage experiments were conducted to determine the feasibility of using remote sensing techniques to detect stress in wheat caused by the density of sunn pests. The results show we can
detect the amount of stress in wheat caused by different life stages of sunn pest with a hand-held radiometer. Normalized difference vegetation index (NDVI) based indices; NDVIsg, NDVId, NDVIr, and
structure insensitive pigment index (SIPI) were chosen out of 19 indices initially tested. The NDVI based vegetation indices derived from hyperspectral data, recorded by a hand held spectroradiometer, were used to determine the predicted indices using the initial number of Sunn Pest (NOSP). Overall, r2 values of all predicted indices calculated for 3rd instars were lower than those of 4th and adult stage. When r2
was considered separately, predicted NDVIr index value (87.4) was the highest and predicted SIPI index value is lowest (80.7) in 3rd instars. The highest r2 value was obtained in adult stage of sunn pest is
NDVIsg (96.9) compare with NDVId (95.5), NDVIr (92.4) and SIPI (94.2). It was also concluded that remote sensing could detect not only the different stages pest damage on wheat, but also the number of sunn
pest stages density affect in controlled experiments.
nylon cloth cage experiments were conducted to determine the feasibility of using remote sensing techniques to detect stress in wheat caused by the density of sunn pests. The results show we can
detect the amount of stress in wheat caused by different life stages of sunn pest with a hand-held radiometer. Normalized difference vegetation index (NDVI) based indices; NDVIsg, NDVId, NDVIr, and
structure insensitive pigment index (SIPI) were chosen out of 19 indices initially tested. The NDVI based vegetation indices derived from hyperspectral data, recorded by a hand held spectroradiometer, were used to determine the predicted indices using the initial number of Sunn Pest (NOSP). Overall, r2 values of all predicted indices calculated for 3rd instars were lower than those of 4th and adult stage. When r2
was considered separately, predicted NDVIr index value (87.4) was the highest and predicted SIPI index value is lowest (80.7) in 3rd instars. The highest r2 value was obtained in adult stage of sunn pest is
NDVIsg (96.9) compare with NDVId (95.5), NDVIr (92.4) and SIPI (94.2). It was also concluded that remote sensing could detect not only the different stages pest damage on wheat, but also the number of sunn
pest stages density affect in controlled experiments.