Main Article Content
The energy cost of kidney proton dialysis in sickle cell anaemia
Abstract
concentration gradient, thereby doing significant extra work. The mean blood and urine pHs measured for the four discrete sickle cell states (42 subjects with approximately equal numbers of males and
females per group, to minimise sex bias) are: HbAA = 7.39 ± 0.07 and 6.54 ± 0.15, HbAS = 7.35 ± 0.09 and 6.44 ± 0. 15, HbSS = 7.32 ± 0.08 and 5.89 ± 0. 39, HbSS-crisis = 7.15 ± 0.12 and 4.75 ± 0.46, respectively. From these data, the estimated enthalpies of dialysis, DHd, for each of the four states are: HbAA = 1.96RT 4.94 kJ, HbAS = 2.10RT 5.29 kJ, HbSS =3.29RT 8.29 kJ, and HbSS-crisis = 5.53RT 13.93 kJ. The estimated entropies of dialysis, TDSd, compared to the normal HbAA state are: HbAA = 0.00RT 0.00 kJ;
HbAS = 0.14RT 0.35 kJ, HbSS = 1.34RT 3.38 kJ and HbSS-crisis = 3.57RT 8.99 kJ (R = 8.31J-mol-1 K-1
and T = 303K). The conclusion from this work is that sickle cell disease is very energy costly to the kidney as most of the energy for proton dialysis is wasted as a result of high entropy.