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The purpose of mixing legume and cereals in the cropping systems is to optimise the use of spatial, 
temporal, and physical resources both above- and below ground, by maximising positive interactions 
(facilitation) and minimising negative ones (competition) among the components. The complex inter-
actions in legume/cereal cropping systems such as those used by traditional farmers have received 
little research attention. Information from such studies is likely to provide an understanding of plant 
survival strategies when subjected to stress in mixtures. Current knowledge on how plants in mixtures 
change their biological and chemical environments and the potential benefits associated with such 
processes are assessed in this review. 
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INTRODUCTION 
 
Mixed culture (or intercropping) of legumes and cereals is 
an old practice in tropical agriculture that dates back to 
ancient civilization. The main objective of intercropping 
has been to maximise use of resources such as space, 
light and nutrients (Willey, 1990; Morris and Garrity, 
1993; Li et al., 2003b), as well as to improve crop quality 
and quantity (Nel, 1975; Izaurralde et al., 1990; Mpairwe 
et al., 2002). Other benefits include water quality control 
through minimal use of inorganic nitrogen fertilisers that 
pollute the environment (Crew and Peoples, 2004). The 
current trend in global agriculture is to search for highly 
productive, sustainable and environmentally friendly 
cropping systems (Crew and Peoples, 2004). This has 
resulted into renewed interest in cropping systems 
research (Vandermeer, 1989). 

When two crops are planted together, interspecific 
competition or facilitation between plants may occur 
(Vandermeer, 1989; Zhang et al., 2003). For example,  
 
 
 
*Corresponding Authors E-mail: muthupriya_03@yahoo.com. 
Tel: 04144-239737. Fax: 04144-238275. 

studies have shown that mixtures of cereals and legumes 
produce higher grain yields than either crop grown alone 
(Mead and Willey, 1980; Horwith, 1984; Tariah and 
Wahua, 1985; Ofori and Stern, 1987a; Lawson and Kang, 
1990; Watiki et al., 1993; Peter and Runge-Metzger, 
1994; Skovgard and Pats, 1999; Rao and Mathuva, 2000; 
Olufemi et al., 2001; Mpairwe et al., 2002; Dapaah et al., 
2003). In such crop mixtures, the yield increases were 
not only due to improved nitrogen nutrition of the cereal 
component, but also to other unknown causes (Nel, 1975; 
Connolly et al., 2001). 

Many of the unknown and less researched processes 
occur in the rhizosphere of mixtures (Connolly et al., 
2001; Zhang et al., 2003, 2004). The rhizosphere soil is 
the narrow zone of soil surrounding the roots where soil, 
micro-organisms and roots jointly play key roles in the 
ecosystem. Compared with the bulk soil, the rhizosphere 
has different biological, physical and chemical soil 
properties. It is rich in root exudates, and, therefore, play 
a major role in nutrient mobilisation and microbial 
activities (Dakora and Phillips, 2002; Dakora, 2003). So 
far however, little attention has been paid to rhizosphere 
effects on crops grown in mixtures (Connolly et al., 2001;  



 
 
 
 
Zhang et al., 2003; 2004), where interaction between 
different organisms is maximal. 

The major management practices employed in mixed 
cultures to attain good yield includes the enhancement of 
microclimatic conditions, improved utilisation and recyc-
ling of soil nutrients, improved soil quality, provision of 
favourable habitats for plants and stabilisation of soil, 
among others (Juma et al., 1997).  These conditions are 
achieved by manipulating management practices such as 
planting patterns of the mixtures. 

Although monoculture systems involving cereals and 
legumes are well researched many of the complex mixed 
systems such as those practised by farmers in Africa 
have received little attention. For example, many planting 
patterns for legumes and cereals exist in Africa whose 
belowground interactions have received little research 
attention and hence their ecology still explored (Connolly 
et al., 2001).  

Intercropping systems are deliberately designed and 
manipulated to optimise the use of spatial, temporal, and 
physical resources both above- and belowground, by 
maximising positive interactions (facilitation) and minimi-
sing negative ones (competition) among the components 
(Willey and Osiru, 1972; Willey, 1979; Mead and Willey, 
1980; Horwith, 1985; Ofori and Stern, 1986, 1987a, b; 
Jose et al., 2000; Silwana and Lucas, 2002). An unders-
tanding of the biological and chemical processes and 
mechanisms involved in the allocation of resources in 
such systems is essential. The complex interactions in 
legume/cereal cropping systems such as those used by 
traditional farmers have received little research attention 
(Connolly et al., 2001; Zhang et al., 2004) because quan-
titative rhizosphere studies in the field involving complex 
mixtures are notoriously difficult and cumbersome. Infor-
mation from such studies is likely to provide an under-
standing of plant survival strategies when subjected to 
stress in mixtures.  
 
 
INTERACTIONS BETWEEN PLANTS IN MIXTURES 
 
Plant-to-plant interactions can occur in the above- or 
below-ground plant compartments. Interactions will occur 
in the growth process, especially when the component 
species are exploiting growth resources above-and 
below-ground (Vandermer, 1989; Willey, 1990; Ong et 
al., 1996) from the same location or at the same time. In 
crop mixtures, any species utilizing the same combination 
of resources will be in direct competition. However, based 
on differences in phenological characteristics of species 
in mixtures, the interaction among them may lead to an 
increased capture of a limiting growth resource (Willey 
and Osiru, 1972; Willey, 1979; Mead and Willey, 1980; 
Horwith, 1985; Ofori and Stern, 1986, 1987a,b; Silwana 
and Lucas, 2002) and then accrue greater total yield than 
the cumulative production of those species if they were 
grown  separately  on an equivalent land area (Mead and  
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Willey, 1980; Horwith, 1984; Tariah and Wahua, 1985; 
Ofori and Stern, 1987a; Lawson and Kang, 1990; Watiki 
et al., 1993; Peter and Runge-Metzger, 1994; Myaka, 
1995; Asafu-Agyei et al., 1997; Skovgard and Pats, 1999; 
Rao and Mathuva, 2000; Olufemi et al., 2001; Dapaah et 
al., 2003). Thus, mixed culture systems between cereals 
and legumes may experience a complex series of inter- 
and intra-specific interaction (Izaurralde et al., 1990; 
Giller and Cadisch, 1995; Evans et al., 2001; Li et al., 
2003c) guided by modifications and utilisation of light, 
water, nutrients and enzymes. More studies are needed 
to quantify such interactions in different legume/cereal 
mixtures such as those used by farmers in Africa. 
 
 
Rhizosphere interaction in legume cereal mixtures 
 
Most annual crop mixtures such as those involving 
cereals and legumes are grown almost at the same pe-
riod, and develop root systems that explore the same soil 
zone for resources (Horwith, 1984; Chang and Shibles, 
1985a,b; Reddy et al., 1994; Jensen et al., 2003). Under 
such conditions, below-ground competition for resources 
such as nutrients is most likely to occur. For example, 
research has shown that activities in mixed cropping 
systems involving maize and cowpea occur between the 
top 30 – 45 cm of soil, and their density decreased with 
depth (Maurya and Lal, 1981; McIntyre et al., 1997). 
Because of these interactions, cowpea yields can be 
reduced significantly relative to that of maize (Watiki et 
al., 1993). In contrast to some negative effects on yield, 
root systems in mixtures may provide some of the major 
favorable effects on soil and plants. These include, amo-
ngst others, carbon enrichment through carbon turnover 
(Ridder et al., 1990; Vanlauwe et al., 1997), release of 
phenolics, phytosiderophores and carboxylic acids as 
root exudates by component plants (Dakora and Phillips, 
2002; Dakora, 2003). These molecules play a major role 
in the mineral nutrition of plants. For instance, some 
studies have shown that, in P-deficient soils, pigeon pea 
roots use piscidic, malonic, and oxalic acids to solubilise 
Fe-, Ca- and Al-bound P (Ae et al., 1990). Once mobi-
lised, P and Fe then become available for uptake by the 
pigeon pea plant as well as by other associated plant 
species and micro flora in the cropping system.  

In aluminum-toxic soils, oxalate released by buckwheat 
roots forms an Al–oxalate complex that renders the Al 
non-toxic to plants and mutualistic microbes in the crop-
ping system (Ma et al., 1998). In that way, productivity of 
the cultural system is enhanced. Whether similar proces-
ses take place in legume-cereal mixtures such as those 
used in Africa, and the extent to which they affect the 
below ground activities, need to be established. This is 
due to the fact that, thus far, research efforts on mixed 
cultures has centered on the intra- and inter-specific 
competition for light and water, and research reports on 
competition  for  nutrients in legumes and cereal mixtures  
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in Africa are limited (Connolly et al., 2001; Zhang et al., 
2003, 2004). It is, therefore, of greater importance to 
explore how the rhizosphere systems of the associated 
plant species in mixtures interact under different legume-
cereal cropping systems. 
 
 
Rhizospheric pH changes in different management 
systems in legume/cereal mixtures 
 
Many plants have the ability to modify the pH of their 
rhizosphere (Hoffland et al., 1989, 1992; Raven et al., 
1990; Degenhardt et al., 1998; Muofhe and Dakora, 
2000; Dakora and Phillips, 2002) and enhance nutrient 
availability such as P, K, Ca, and Mg, which are other-
wise fixed in unavailable forms (Vandermeer, 1989; Hau-
ggaard-Nielson and Jensen, 2005). For instance, legu-
mes induce several reactions that modify the rhizosphere 
pH (Jarvis and Robson, 1983; McLay et al., 1997; Tang 
et al., 1998, 2001) and affect nutrient uptake (Brady, 
1990; Vizzatto et al., 1999). For example, Dakora et al. 
(2000) have shown that due to pH changes in the 
rhizosphere, Cyclopia genistoides, a tea-producing legu-
me indigenous to South Africa, increased nutrient 
availability in its rhizosphere by 45 – 120% for P, 108 – 
161% for K, 120 – 148% for Ca, 127 – 225% for Mg and 
117 – 250% for boron (B) compared with bulk non-rhizos-
phere soil.  Hence, legumes may take up higher amounts 
of base cations, and in the process of balancing internal 
charge, release H+ ions into the rhizosphere that results 
in soil acidification (Jarvis and Robson, 1983; McLay et 
al., 1997; Tang et al., 1998, 2001; Sas et al., 2001; 
Dakora and Phillips, 2002; Cheng et al., 2004). Other 
legumes such as alfalfa, chickpea, lupines, and cowpea 
can release considerable amounts of organic anions and 
lower their rhizospere pH (Liptone et al., 1987; Dinkelaker 
et al., 1989, 1995; Braum and Helmke, 1995; Gilbert et 
al., 1999; Neumann et al., 1999; Rao et al., 2002; Li et 
al., 2004b), a condition conducive for the hydrolysis of 
organic P and hence improving P nutrition for plants and 
micro organism in the soil. In the same context, white 
lupine (Lupinus albus) exuded organic acids anions and 
protons that lowered rhizosphere pH and recovered 
considerable amounts of P from the soil and made them 
more available to wheat than when it was grown in a 
monoculture (Horst and Waschkies, 1987; Kamh et al., 
1999). Similarly, pigeon pea increased P uptake of the 
intercropped sorghum by exuding piscidic acid anions 
that chelated Fe3+ and subsequently released P from 
FePO4 (Ae et al., 1990). In a field experiment, faba bean 
facilitated P uptake by maize (Zhang et al., 2001; Li et al., 
1999, 2003b; Zhang and Li, 2003). In another compara-
tive study, the ability of chickpea to mobilise organic P 
was shown to be greater than that of maize due to greater 
exudation of protons and organic acids by chickpea 
relative to maize (Li et al., 2004a). 

 
 
 
 

Thus, in mixed cultures, plants such as cereals, which 
do not have strong rhizosphere acidification capacity can 
benefit directly from nutrients solubilised by legume root 
exudates. What is, however, not clearly known is the 
extent of rhizosphere pH changes in mixed cultures invol-
ving nodulated legumes and cereals and their influence 
on other biological and chemical processes in the soil. 
 
 
N2 FIXATION IN LEGUMES AND THE ASSOCIATED 
BENEFITS TO THE CEREAL COMPONENT 
 
Biological nitrogen fixation by grain legume crops has 
received a lot of attention (Eaglesham et al., 1981; Giller 
et al., 1991; Izaurralde et al., 1992; Giller and Cadisch, 
1995; Peoples et al., 2002) because it is a significant N 
source in agricultural ecosystems (Heichel, 1987; Dakora 
and Keya, 1997). However, studies on N2 fixation in 
complex cereal/legume mixtures are few (Stern, 1993; 
Peoples et al., 2002). Intercropping usually includes a 
legume which fixes N2 that benefits the system, and a 
cereal component that depends heavily on nitrogen for 
maximum yield (Ofori and Stern, 1986; Cochran and 
Schlentner, 1995). Controlled studies have shown a 
significant direct transfer of fixed-N to the associated non-
legume species (Eaglesham et al., 1981; Giller et al., 
1991; Frey and Schüepp, 1993; Stern, 1993; Elgersma et 
al., 2000; Høgh-Jensen and Schjoerring, 2000; Chu et 
al., 2004). There is evidence that the mineralisation of 
decomposing legume roots in the soil can increase N 
availability to the associated crop (Dubach and Russelle, 
1994; Schroth et al., 1995; Evans et al., 2001). In mixed 
cultures, where row arrangements and the distance of the 
legume from the cereal are far, nitrogen transfer could 
decrease. Research has shown that competition between 
cereals and legumes for nitrogen may in turn stimulate N2 
fixation activity in the legumes (Fujita et al., 1990; Hardar-
son and Atkins, 2003). The cereal component effectively 
drains the soil of N, forcing the legume to fix more N2. 
Therefore it is important to manipulate and establish how 
the management practice in legume/cereal mixtures may 
influence N2 fixation and nutrition in the traditional African 
cropping systems. 
 
 
SOIL MICROBIAL BIOMASS IN LEGUME/CEREAL 
MIXTURES  
 
The microbial biomass is influenced by biological, 
chemical, and physical properties of the plant-soil 
system. Generally, soil and plant management practices 
may have greater influence on the level of soil microbial 
C (Gupta and Germida, 1988; Dick et al., 1994; Dick, 
1997; Alvey et al., 2003). For instance, soil microbial C 
tend to show the highest values in cropland and 
grassland soils and the lowest in bare cultivated soils 
(Brookes et al., 1984; Gupta and Germida, 1988).  

Monoculture systems are expected to contain reduced 
amounts  of  microbial  biomass and activities in compari- 



 
 
 
 
son to those in mixed cultures (Moore et al., 2000). 
Studies have indicated that legumes accumulated greater 
amounts of soil microbial C in the soil than cereals (Wal-
ker et al., 2003). This is attributed to lower C:N ratio of 
legume than that of cereal (Uriyo et al., 1979; Brady, 
1990).  

Microbial biomass activities could increase after the 
addition of an energy source. The stimulation of soil 
microbial biomass activity by organic amendments is 
higher than that induced by organic fertilisers (Bolton et 
al., 1985; Goyal et al., 1993; Höflich et al., 2000). Soil 
organic matter content and soil microbial activities, vital 
for the nutrient turnover and long term productivity of soil, 
are enhanced by the balanced application of nutrient 
and/or organic matter/manure (Bolton et al., 1985; Guan, 
1989; Goyal et al., 1993; Höflich et al., 2000; Kanchi-
kerimath and Singh, 2001). Under conditions of adequate 
nutrient supply such as P, the microbial biomass C will be 
increased due to improved plant growth and increased 
turnover of organic matter in the soil (Bolton et al., 1985). 
Whether the management practices in mixed cultures 
involving legumes and cereals may favour the stimulation 
of biological soil activity and, thus, result in a higher 
turnover of organic substrates in the soil that are utilised 
by micro-organisms is a good subject to be investigated. 

Although there is a lot of information that show the 
relationship between soil management and soil microbial 
activity, little is known about these effects under mixed 
cultures such as those practised by farmers in the tropical 
/ subtropical environments (Dick, 1984; Dick et al., 1988; 
Deng and Tabatabai, 1996). In this context, the measure-
ment of their activities could provide useful information 
concerning soil health, and also serve as a good index of 
biological status in different crop management systems.  
 
 
PHOSPHATASE ACTIVITY IN LEGUME/CEREAL MIX-
TURES  
 
Plants have evolved many morphological and enzymatic 
adaptations to tolerate low phosphate availability. This 
includes transcription activity of acid phosphatases, 
which tends to increase under P starvation (Tarafdar and 
Jungk, 1987; Goldstein, 1992; Duff et al., 1994; del Pozo 
et al., 1999; Haran et al., 2000; Baldwin et al., 2001; 
Miller et al., 2001; Li et al., 2002). Phosphatase enzymes 
in the soil serve several important functions, and are 
good indicators of soil fertility (Dick and Tabatai, 1992; 
Eivazi and Tabatabai, 1997; Dick et al., 2000). Under 
conditions of P deficiency, acid phosphatase secreted 
from roots is increased (Nakas et al., 1987; Chrost, 1991; 
Hayes et al., 1999; Li et al., 1997). Gilbert et al. (1999) 
found that white lupin roots from P-deficient plants had 
significantly greater acid phosphatase activity in both the 
root extracts and the root exudates than comparable 
samples from P-sufficient plants. At different stress 
levels, these enzymes release phosphate from both 
cellular (Bariola et al., 1994) and extra cellular (Duff et al.,  
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1994) organic compounds. The transcripts and activity of 
phosphate transporters are increased to optimise uptake 
and remobilisation of phosphate in P-deficient plants 
(Muchhal et al., 1996; Daram et al., 1999; Kai et al., 2002; 
Karthikeyan et al., 2002; Mudge et al., 2002; Versaw and 
Harrison, 2002). It is thought that these morphological 
and enzymatic responses to P starvation are coordinated 
by both general stress-related and P-specific signalling 
systems.  

The amount of acid phosphatase secreted by plants is 
genetically controlled, and differs with crop species and 
varieties (Izaguirre-Mayoral and Carballo, 2002) as well 
as crop management practices (Patra et al., 1990; 
Staddon et al., 1998; Wright and Reddy, 2001). Some 
studies have shown that the amount of enzymes secreted 
by legumes were 72 % higher than those from cereals 
(Yadav and Tarafdar, 2001). Li et al. (2004a) found that, 
chickpea roots were also able to secrete greater amounts 
of acid phosphatase than maize. The activity of acid 
phosphatases is expected to be higher in biologically 
managed systems because of higher quantity of organic 
C found in those systems. In fact, the activity of acid and 
alkaline phosphatase was found to correlate with organic 
matter in various studies (Guan, 1989; Jordan and 
Kremer, 1994; Aon and Colaneri, 2001).  

It is, therefore, anticipated that management practices 
in mixed cultures that induce P stress in the rhizosphere, 
may also affect the secretion of these enzymes. To date, 
there have been few studies examining the influence of 
cropping system on the phosphatase activity in the 
rhizosphere of most legumes and cereals grown in Africa. 
Understanding the dynamics of enzyme activities in these 
systems is crucial for predicting their interactions as in 
turn their activities may regulate nutrient uptake and plant 
growth in the ecosystem.  
 
 
CONCLUSION  
 
Future research should focus on manipulating the legume 
/cereal mixtures and establish different survival mecha-
nisms that are used by the plants in stressed environ-
ments. Efforts should be geared towards closing the 
existing gap in rhizosphere research in mixed cultures by 
correctly outlining the unknown factors that affects plant 
growth in mixtures. This can lead to increased production 
through improved plant nutrition, as well as genetic 
manipulation of different plant species and management 
practices in the cropping systems. 
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