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This study was conducted to compare the effectiveness for non-linear growth models designated as 
Chapman-Richards, Gompertz, Logistic and von Bertalanffy for selection of fast-growing fish strain of 
turbot Scophthalmus maximus. These models were compared using the goodness of fit (the coefficient 
of determination (R

2
) and the mean square error (MSE)) and the Akaike information criterion (AIC) and 

the growth characteristics of turbot from 3 to 27 months of age. The results in the present study 
showed that R

2 
was the highest in Chapman-Richards, but the lowest in von Bertalanffy model. The MSE 

and AIC values were the highest in Chapman-Richards followed by von Bertalanffy model, whereas 
Gompertz model is the lowest compared to other models. The Gompertz model had the lowest mean 
square error (6421.8706) and Akaike information criterion (65.1322) and the second highest coefficient 
of determination (0.9908) (almost equal to the first highest coefficient of determination), suggesting 
being the best fit model for description of turbot growth trajectories. Furthermore, the results of turbot 
growth characteristics explored by the Gompertz model revealed that the fast-growth time interval of 
turbot were (10.23, 26.78) (unit: months) and the fast-growth time interval distance was 16.55 months. 
The results of this study suggested that the Gompertz model could be the best fit model for description 
of turbot growth trajectories, whereas the deduced mathematical formulas of growth intervals could be 
used in determining the growth characteristics of other fish. 
 
Key words: Scophthalmus maximus, nonlinear models, comparison, growth characteristics. 

 
 

INTRODUCTION 
 
Turbot Scophthalmus maximus (L.) is a commercial 
flatfish inhabiting European waters (Ruan  et  al., 2011). It 

was first introduced into China in 1992 (Ruan et al., 2011; 
Liang et al., 2012).  However,  as a result of technological  
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problem-solving in the large-scale artificial breeding, the 
commercial culture of the species has been spreading 
rapidly along the coast of China (Wang et al., 2015). But, 
due to the degeneration of germplasm, it is necessary to 
carry out the selective breeding (Wang et al., 2015). 
However, the most important economic trait considered in 
an aquaculture breeding program has been growth rate 
which determine the total harvest yield (Wang et al., 
2010). In this respect, the number of research has been 
carried out in turbot breeding for growth under the 
support of Chinese Government.  

The selection for rapid growth breeding is commonly 
evaluated using the body weight collected from one 
single time point (usually in commercial-size fish), that is, 
point evaluations. But, the genes are expressed 
selectively at different growth stages in specific temporal 
and spatial patterns (Atchley and Zhu, 1997), whereas 
genetic mechanism controlling quantitative traits have 
significant changes at various developmental periods 
during ontogeny (Atchley and Zhu, 1997). This scenario 
could lead to uncertainty in determining fish growth rates 
under different space-time conditions and this could 
suggest probably that the use of point evaluations for 
determining fish growth rate could not be appropriate. 
However, the nonlinear growth models based on general 
system theory could be a good approach in solving this 
problem, that is, curve evaluations (Richards, 1959). The 
curve evaluations defined by nonlinear growth models 
has definite advantages over point evaluations. This is 
because point evaluations are based on constant ages, 
constant time periods or constant weight periods, 
whereas non-linear growth models provides parameters 
that can describe the biological growth along the entire 
lifetime (Masso et al., 2000).  

The nonlinear growth models which have been 
extensively used in fish are Chapman-Richards (Richards, 
1959), Gompertz (Gompertz, 1825), Logistic (Richards, 
1959) and von Bertalanffy (Bertalanffy, 1938) models. 
The characteristics of these models have been studied in 
detail by Fitzhugh (1976), Deniel (1990), Tsangridis and 
Filippousis (1994), Imai et al. (2002), Tsoularis and 
Wallace (2002), Katsanevakis and Maravelias (2008), Lin 
and Tzeng (2009), Helidoniotis et al. (2011), Baer et al. 
(2011), Bilgin et al. (2014), Figueiredo et al. (2014), 
Ansah and Frimpong (2015); Drew et al. (2015), and 
Lugert et al. (2016). Moreover, some relevant 
mathematical formulas reflecting biological growth 
characteristics, such as time to inflection point, weight at 
inflection point, instantaneous growth rate and relative 
growth rate were reported by various authors (Fitzhugh, 
1976; France et al., 1996; Tsoularis and Wallace, 2001; 
Koya and Goshu, 2013). However, the mathematical 
formulas of different growth intervals have not been 
previously reported. The whole growth process of fish 
can be divided into slow-growing, fast-growing and 
asymptotic period by two extreme points (starting point 
and  ending   point),  that  is,  slow-growing,  fast-growing  

 
 
 
 
and asymptotic interval. In slow-growing period, the body 
weight increased slowly as the instantaneous growth rate 
is low and increased slowly. In fast-growing period, the 
instantaneous growth rate during the period is higher 
than that during both slow-growing and asymptotic 
period; body weight, therefore, also increase quickly. In 
asymptotic period, the instantaneous growth rate 
continues declining and reduces slowly to zero. Among, 
the fast-growing period, interval has important 
significance on the study of the growth characteristics of 
fish. 

Various nonlinear growth models have been proposed 
to explain the growth pattern of individuals for a particular 
species (Bilgin et al., 2014). Growth pattern of turbot or 
other flatfish species are mainly described by von 
Bertalanffy model (Deniel, 1990), von Bertalanffy, 
Schnute, and Gompertz model (Baer et al., 2011) and 
logistic, Gompertz, von Bertalanffy, Kanis, and Schnute 
models (Lugert et al., 2016), due to goodness of fit of the 
data. And Chapman-Richards model encompasses 
Gompertz (m→1), Logistic (m = 2) and von Bertalanffy (m 
= 2/3) models for particular values of parameter m. So, 
the four nonlinear growth models including Chapman-
Richards, Gompertz, Logistic and von Bertalanffy were 
applied to turbot to obtain reliable and suitable growth 
parameters to explore the growth characteristics of 
turbot. The objective of this study was to identify 
appropriate non-linear growth model which best fit for 
determining the growth rate and establish mathematical 
formulas exploring growth intervals of rapid growing 
turbot fish strain. It is anticipated that the identified model 
and deduced mathematical formula of growth intervals 
could help in evaluating the effects of selection in the 
process of turbot breeding.  
 
 
MATERIALS AND METHODS 
 
Study area 
 
This study was carried out in China Tianyuan Aquaculture Ltd. 

 
 
Source and management experimental turbot fish strain 
 
The fast growing strain of turbot fish were obtained from China 
Tianyuan Aquaculture Ltd. The fifty fish were weighed using an 
electronic balance with a precision of 0.01 g (Table 1) at every 3-
month intervals from 3 to 27 months of age. The rearing conditions 
of experimental fish at different stages of growth periods were same 
as recommended by Wang et al. (2010). 

 
 
Analytical procedure 

 
Analysis of parameters of non-linear growth models  

 
The Chapman-Richards, Gompertz, Logistic and von Bertalanffy 
models were compared by fitting the data to model the relationship 
between  weight  and  age.  The  goodness  of  fit  was assessed by  
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Table 1. Mean body weight of turbot in different month of age (mean values ± standard deviations). 
 

Month 3 6 9 12 15 18 21 24 27 

Body weight (g) 2.09 ± 0.51 47.21 ± 10.68 162.02 ± 33.46 311.07 ± 60.94 619.85 ± 97.42 1001.07 ± 129.67 1203.59 ± 244.91 1784.54 ± 328.28 1865.48 ± 401.56 

 
 
 
using the coefficient of determination (R2) and mean 
square error (MSE) according to Gbangboche et al. (2008) 
and the lower Akaike information criterion (AIC) (Akaike, 
1974). The models parameters (A, B, k and m), the R2 and 
MSE were calculated using SAS software package (SAS 
1999). The four models used in this study are as follows:  
 
Chapman-Richards: Wt = A(1-Be-kt)1/(1-m) (Richards 1959);  
Gompertz: Wt = Ae-Bexp(-kt) (Gompertz,1825);  
Logistic: Wt = A(1+Be-kt)-1 (Richards 1959);  
von Bertalanffy:  Wt = A(1-Be-kt)3 (Bertalanffy, 1938). 
 
where Wt is the body weight at time t, t is time, A is the 
asymptote value, B is the scale parameter, k is the intrinsic 
growth rate representing growth rate per capita and m is 
the inflection parameter, which determines the shape of the 
function. 

AIC is a measure to help in the selection between 
candidate models. Using this criterion, the best model is 
the one with the lowest AIC results. AIC was calculated as 
(Bilgin et al., 2014): 
 
AIC = Nlog(WSS)+2M, 
 
where N is the number of data points, WSS is the weighted 
sum of squares of residuals, and M is the number of model 
parameters.  

 
 
Analysis for growth intervals for turbot 
 
The growth intervals of turbot were determined by deducing 
the mathematical formulas of three growth intervals of the 
four non-linear models shown subsequently. The growth 
curves of the four models had inflection points and the 
growth processes were divided into accelerated and 
decelerated periods using the point of inflection. The 
instantaneous growth rate of the four models had two 
inflection points and the growth process were divided into 
slow, fast and asymptotic periods using these two points 
(starting point and ending point).  

(1) Chapman-Richards: Wt = A(1-Be-kt)1/(1-m)  
 
The instantaneous growth rate (dW/dt) can be written as 
follows:  
 
dW/dt = kWt /(1-m)[(A/Wt)

1-m-1] 
 
Growth acceleration (d2W/dt2) can be described as follows:  
 
d2W/dt2 = g(t)·k·{m/(1-m)·(Wt /A)m-1·[1-(Wt /A)1- m]-1} 
 
where g(t) = dW/dt and d3W/dt3 = Amk3Be-kt(1-Be-kt)m-

3[m2(Be-kt)2-(3m-1) Be-kt+1] 
 
Setting d3W/dt3 = 0 produces the following equation: 
 
Amk3Be-kt(1-Be-kt)m-3[m2(Be-kt)2-(3m-1) Be-kt+1] = 0 

 
Solving this equation produces the following: 
 
t = lnX/k,  
 

where X1,2 = B(m+2± mm 4
2
 )/[2(m-1)] 

The rate of change in the instantaneous growth rate has 
two extreme values and the responding body weight Wt is 
as follows: 

 

Wt = A[1+(m-1) (m+2 mm 4
2
 )/2]1/(1-m) 

 

The time interval distance △t between the two extreme 
values can be written as follows: 
 

△t = t2-t1 = ln[(m+2+ mm 4
2
 )/( m+2- mm 4

2
 )]/k 

 
 
(2) Gompertz: Wt = Ae-Bexp(-kt)  

 
Instantaneous  growth  rate (dW/dt)   based   on  Gompertz 

model can be written as follows:  
 
dW/dt = kWt(lnA-lnWt)  
 
Growth acceleration (d2W/dt2) can be written as follows:  
 
d2W/dt2 = Bk2Wte

-kt(Be-kt-1)  
 

d3W/dt3 = ABk3

e e
kt

Bkt



[Be-kt-(3+ 5 )/2][ Be-kt-(3- 5 )/2] 

 
Setting d3W/dt3 = 0 produces the following equation: 
 

[Be-kt-(3+ 5 )/2][ Be-kt-(3- 5 )/2] = 0 

 
Solving this equation produced the following: 
 

Be-kt-(3+ 5 )/2 = 0 = >t1 = -ln[(3+ 5 )/(2B)]/k = > W1 = Ae-

(3+ 5 )/2 

 

Be-kt-(3- 5 )/2 = 0 = >t2 = -ln[(3- 5 )/(2B)]/k = > W2 = Ae-(3-

5 )/2 

 

The time interval distance △t between the two extreme 
values is written as follows: 
 

△t = t2-t1 = ln[(3+ 5 )/(3- 5 )]/k. 

 
 
(3) Logistic: Wt = A(1+Be-kt)-1 
 
Instantaneous growth rate (dW/dt) based on Logistic model 
can be written as follows: 
 
dW/dt = kWt(1-Wt /A) 
 
Growth acceleration (d2W/dt2) can be written as follows: 
 

d2W/dt2 = k2Wt(1-Wt /A) (1-2Wt /A) 
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d3W/dt3 = ABk2e-kt[Be-kt-(2+ 3 )][ Be-kt-(2- 3 )]/(1+Be-kt)4 

 
Setting d3W/dt3 = 0 produces the following equation: 
 

[Be-kt-(2+ 3 )][ Be-kt-(2- 3 )] = 0 

 
Solving this equation produced the following: 
 

Be-kt-(2+ 3 ) = 0 = >t1 = -ln[(2+ 3 )/B]/k = > W1 = A/(3+ 3 ) 

 

Be-kt-(2- 3 ) = 0 = >t2 = -ln[(2- 3 )/B]/k = > W2 = A/(3- 3 ) 

 

The time interval distance △t between the two extreme values is as 
follows: 
 

△t = t2-t1 = ln[(2+ 3 )/(2- 3 )]/k. 

 
 
(4) von Bertalanffy: Wt = A(1-Be-kt)3 
 
Instantaneous growth rate (dW/dt) based on von Bertalanffy model 
can be written as follows:  
 
dW/dt = 3kWt[(A/Wt)

1/3-1] 
 
Growth acceleration (d2W/dt2) can be written as follows: 
 
d2W/dt2 = 3ABk2e-kt(Wt/A)1/3(3 Be-kt-1) 
 

d3W/dt3 = 3ABk3e-kt[Be-kt-(4+ 7 )/9][ Be-kt-(4- 7 )/9] 

 
Setting d3W/dt3 = 0 produces the following equation: 
 

[Be-kt-(4+ 7 )/9][ Be-kt-(4- 7 )/9] = 0 

 
Solving this equation produces the following: 
 

Be-kt-(4+ 7 )/9 = 0 = >t1 = -ln[(4+ 7 )/(9B)]/k = > W1 = A/[1-(4+ 7
)/9]3 
 

Be-kt-(4- 7 )/9 = 0 = >t2 = -ln[(4- 7 )/(9B)]/k = > W2 = A/[1-(4- 7
)/9]3 
 
The time interval distance △t between the two extreme values can 
be written as follows: 
 

△t = t2-t1 = ln[(4+ 7 )/(4- 7 )]/k. 

 
These new formulas deduced are summarized in Table 2. 

 
 
RESULTS 
 
Parameters of non-linear growth models 
 
The model R

2
, MSE, A, B, k, m and AIC of the four 

compared models are shown in Table 3. The results 
showed that all the compared models had R

2
 with a 

narrow range of 0.11, but the R
2
 values were the highest 

in Chapman-Richards and lowest in von Bertalanffy 
model compared to other models.  Moreover,  the  results  

 
 
 
 
showed a wide range of MSE values among studied 
models but Gompertz model had the lowest, whereas 
Chapman-Richards model had the highest MSE value 
compared to their counterparts. The AIC value ranged 
from 65.1322 to 68.4522 and the Gompertz was ranked 
1st in term of the lowest AIC value. The AIC of the four 
models had same change trend as MSE. The parameter 
„A‟ values was the highest in the von Bertalanffy, but was 
the lowest in logistic model. The parameter „B‟ value was 
the highest in Logistic, but the lowest in Chapman-
Richards model. The parameter „k’ value was the highest 
in Logistic, but the lowest in von Bertalanffy.  
 
 
The growth intervals for turbot 
 
The non-linear growth models in the present study 
showed different growth intervals for the turbot fish strain 
(Table 4). Logistic model had the longest (13.63 month), 
whereas the Chapman Richards model had the shortest 
(7.58 month) slow growth interval distance compared to 
the other models. The longest (22.72 month) fast growth 
interval distance was noted in the von Bertalanffy model, 
whereas the shortest (10.53 month) was revealed in the 
Logistic model. Moreover, the asymptotic growth interval 
was the longest (30.8 month) in von Bertalanffy model, 
but the shortest in Chapman Richards model.   
 
 
DISCUSSION 
 
As typical sigmoid growth curves, the properties of 
Chapman-Richards, Gompertz, Logistic and von 
Bertalanffy models in the past few decades have been 
studied in detail and some property formulas were 
obtained from the first and second differentials of the 
models, that is, the instantaneous growth rates, the 
relative growth rate, and the growth acceleration. All 
instantaneous growth rates of the four models have a 
vertex (maximum value). These vertexes are the 
inflection points of the sigmoid curves [the inflection point 
coordinates of Chapman-Richards, Gompertz, Logistic 
and von Bertalanffy is (ln[B/(1-m)]/k, Am

1/(1-m)
), (lnB/k, 

A/e), (lnB/k, A/2) and (ln3B/k, 8A/27), respectively]. This 
indicates that the instantaneous growth rate has an 
inverted bell-shaped curve (Figure 1). The curve 
characteristics of the relative growth rates have already 
been reported and are always decreasing according to 
Minot‟s law (Figure 1) (Medawar, 1941). The growth 
accelerations of the four models all have two vertexes (a 
maximum and a minimum), which indicates that the 
growth accelerations have a transverse S-shaped curve 
(Figure 1). The transverse S-shaped curve of the growth 
acceleration shows that the two extreme points are the 
point of inflection of the instantaneous growth rate. In this 
way, the growth process can be divided into slow, fast 
and asymptotic periods using  these  two  points  (starting  
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Table 2. Properties of four nonlinear growth models (time). 
 

Type of model Chapman-Richards Logistic 

Slow-growth interval 
 












































 


12

42

ln
1

,0

2

m

mmB

k

m  













 


Bk

32
ln

1
,0  

Fast-growth interval 
   












































 




























 


12

42

ln
1

,
12

42

ln
1

22

m

mmB

km

mmB

k

mm  













 





BkBk

32
ln

1
,

32
ln

1  

Asymptotic growth interval 
 














































 

 ,
12

42

ln
1

2

m

mmB

k

m  

















 ,

32
ln

1

Bk

 

Fast-growth interval distance ln[(m+2+ mm 4
2
 )/( m+2- mm 4

2
 )]/k ln[(2+ 3 )/(2- 3 )]/k  

   

Type of model Gompertz von Bertalanffy 

Slow-growth interval 











 


Bk 2

53
ln

1
,0

 












 


Bk 9

74
ln

1
,0  

Fast-growth interval 











 





BkBk 2

53
ln

1
,

2

53
ln

1  












 





BkBk 9

74
ln

1
,

9

74
ln

1  

Asymptotic growth interval 















 ,

2

53
ln

1

Bk

 
















 ,

9

74
ln

1

Bk

 

Fast-growth interval distance ln[(3+ 5 )/(3- 5 )]/k  ln[(4+ 7 )/(4- 7 )]/k 

 
 
 

Table 3. The parameter values and goodness of fit of four nonlinear curve models of family.  
 

Model  Logistic Gompertz von Bertalanffy Chapman-Richards 

Coefficient of determination  (R
2
) 0.9906 0.9908 0.9898 0.9909 

Mean square error (MSE) 6574.1773 6421.8706 7127.1754 7436.3161 

A 2156.69 2788.11 3584.70 2788.24 

B 112.61 8.60 1.28 0.0013 

k  0.25 0.12 0.07 0.12 

m  / / / 0.9998 

Akaike‟s Information Criteria (AIC) 65.3431 65.1322 66.0700 68.4522 

 
 
 

Table 4. Properties of four nonlinear growth models for Turbot fish strain (month). 
 

Type of model Slow-growth interval Fast-growth interval Asymptotic growth interval Fast-growth interval distance 

Chapman-Richards (0, 7.58) (7.58, 23.62) (23.62, 0) 16.04 

Logistic (0, 13.63) (13.63, 24.16) (24.16, 0) 10.53 

Gompertz (0, 10.23) (10.23, 26.78) (26.78, 0) 16.55 

von Bertalanffy (0, 7.86) (7.86, 30.58) (30.58, 0) 22.72 

 
 
 
point and ending point). However, the property formulas 
from   three   differentials    have    not    been   previously 

deducted. To evaluate deeply the effects of selection of 
fast-growing   strain   of  turbot,  we   have   deducted  the  
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Figure 1. The curve shape characteristics of sigmoid growth 
curve (cumulative growth curve), instantaneous growth rate, 
relative growth rate and growth acceleration. The meaning and 
scale of coordinate axis, for the four curves, are different.  

 
 

 

mathematical formulas of the three special growth 
intervals and explored the growth characteristics of turbot 
using the formulas.  

The model selection was a daunting task, given the 
broad range of criteria for goodness of fit, as the 
coefficient of determination (R

2
), the mean squares errors 

(MSE), the loglikelihood (lnL) values, the AIC (Akaike, 
1974; Gbangboche et al., 2008), and the least average 
prediction error (APE) (Lambe et al., 2006; Gbangboche 
et al., 2008). The goodness of fit, in this study, was 
assessed using R

2
, MSE and AIC, and the model with the 

higher R
2
 and the lower MSE and AIC were selected as 

the optimal model (Akaike, 1974; Gbangboche et al., 
2008). All competing models had high R

2
 from 0.9898 to 

0.9909, suggesting overall good fits to the data. The MSE 
value ranged from 6421.8706 to 7436.3161 and the 
Gompertz was ranked 1st according to the lowest MSE 
value. The AIC value ranged from 65.1322 to 68.4522 
and the Gompertz was ranked 1st according to the lowest 
AIC value. Among the four models, although the 
Chapman-Richards model showed the highest R

2 

(0.9909), its MSE value was also the highest 
(7436.3161), which indicated that the Chapman-Richards 
model was not the best model to describe the growth 
data of turbot; by contrast, the Gompertz model showed 
the lowest MSE (6421.8706) and AIC (65.1322) and 
the second highest R

2 
value (0.9908) (almost equal to the 

first highest R
2
 of the Chapman-Richards model). Hence, 

the Gompertz model has been considered as the best fit 
according to MSE, AIC and R

2
 value and was optimal for 

the  description  of  turbot  growth  trajectories.  Research  

 
 
 
 
has shown that the Gompertz model, in fish population 
such as Spicara smaris and Tribolodon nakamurai, can 
be deemed as the best fit based on AIC lowest value 
(Tsangridis and Filippousis, 1994; Imai et al., 2002). The 
conclusion was consistent with the result of this study. 
Even so, it cannot be assumed that the Gompertz model 
could produce the goodness of fit in the other breeding 
farm when the environmental conditions change. There-
fore, the model parameters can be routinely re-adjusted, 
allowing even the possibility of testing all other nonlinear 
models (Gbangboche et al., 2008). The growth of turbot 
is influenced by rearing conditions, especially water 
temperature. In this study, during the larval period, water 
temperature is 18°C and during sub-adult and adult 
period are 13 to15°C. In the appropriative temperature 
range, turbot can show a rapid growth as temperature 
rises. But, the growth rate of turbot will decrease when 
the water temperature is too high or too low, for example, 
the water temperature of larval period is lower than 16°C 
or higher than 23°C and the water temperature of sub-
adult and adult period are lower than 10°C or higher 
22°C. Various nonlinear growth models have been 
proposed to explain the growth characteristics of turbot 
(Baer et al., 2011; Lugert et al., 2016). Baer et al. (2011) 
used three different growth models, the von Bertalanffy 
model, the Gompertz model and the Schnute model, to 
analyze the growth of turbot (Psetta maxima) in a 
commercial recirculation system. The results indicate that 
the Schnute model was the optimal model to simulate the 
growth data collected. In the present study, we were 
unable to determine whether the Schnute model was the 
optimal model, because the model was not used. But, in 
the paper of Baer et al. (2011), the Gompertz model was 
more suitable to simulate the growth data than the von 
Bertalanffy model according to AIC and sum of squared 
residuals (SSE) without considering the Schnute model. 
The conclusion, to some extent, was consistent with our 
research result. Lugert et al. (2016) used five nonlinear 
growth functions, the logistic model, the Gompertz model, 
the von Bertalanffy model, the Kanis and Schnute model, 
to model the collected growth data in a recirculation 
aquaculture system (RASs). The fitting weight showed 
that the Gompertz model gave the best results with the 
lowest residual standard error (RSE) and AIC among the 
applied five growth models and was considered to be the 
best model to simulate the weight collected. The 
conclusion was consistent with our research findings. 
Furthermore, the asymptotic values A of the Gompertz 
model are also very similar in two studies and are more 
realistic in biological terms; the asymptotic value A and 
the intrinsic growth rate k. 

The asymptotic body weight A was estimated as 
2156.69 g by the logistic model and 2788.11 g by the 
Gompertz model and 3584.70 g by the von Bertalanffy 
model and 2788.24 g by the Chapman-Richards model, 
and correspondingly the intrinsic growth rate k of the four 
models was 0.25, 0.12, 0.07 and 0.12, respectively.  



 
 
 
 
Obviously, the parameter A and k estimated by the 
Gompertz model were almost the same as the Chapman-
Richards model. On the whole, the larger the asymptotic 
body weight A (mature weight), the less the intrinsic 
growth rate k, the longer it tends to take to mature. 
Clearly, the A value from the logistic model was too low 
(2156.69 g) and was not consistent with the breeding 
goal for the body weight. The A value from the von 
Bertalanffy model was the highest (3584.70 g), but its k 
value was the lowest (0.07) and the individual will take a 
longer time to mature and was not consistent with the 
breeding objectives since prolonging breeding generation 
interval. Although the A and k from the Gompertz model 
were almost the same as the Chapman-Richards model, 
the Gompertz model was considered as the most suitable 
growth models to simulate the present growth data 
according to both MSE, AIC and R

2
 value

 
 and biological 

meaning. In addition to the asymptotic value A and the 
intrinsic growth rate k, the third parameter point of 
inflection is often used to partition the growth curve into 
two stages (Fitzhugh, 1976). To explore deeply the 
growth characteristics of turbot, we further investigated 
the curve property of growth models used in this paper 
and deducted the starting point and ending point 
formulas. And thus, the growth process can be divided 
into slow, fast and asymptotic periods using the two 
points (starting point and ending point) but not two stages 
based on point of inflection. In fact, the point of inflection, 
starting point and ending point of a growth curve is 
determined by the same parameters of the curve. In the 
present study, based on the optimal model selection, we 
have explored the growth characteristics of turbot using 
the Gompertz model. Three kinds of growth time intervals 
of the four models were quite different according to 
starting- and ending-point, and the corresponding fast-
growth time interval distance were radically different (The 
fast-growth time interval distances of Chapman-Richards, 
Logistic, Gompertz and von Bertalanffy models were 
16.04, 10.53, 16.55 and 22.72 months, respectively). In 
this study, the Gompertz model to was used to descript 
the growth trajectories of turbot based on the goodness 
of fit (R

2
, MSE and AIC), and decided that the fast-growth 

time interval of turbot and the fast-growth time interval 
distance were (10.23, 26.78) (unit: months) and 16.55 
months. The conclusion calculated by Gompertz model 
was more in accordant with the realistic growth 
characteristics of fast-growth turbot from selective 
breeding than by the other three models. 
 
 

Conclusion 
 
In this paper, the Gompertz model gave the best results 
with the lowest MSE ((6421.8706)) and AIC (65.1322) 
and the second highest R

2
 value (0.9908) (almost equal to 

the first highest R
2
 value) among the applied four growth 

models and was considered to be the best model to 
simulate the  weight  collected.  On  this  basis,  we  have  
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explored the growth characteristics of turbot using the 
Gompertz model selected and decided that the fast-
growth time interval of turbot and the fast-growth time 
interval distance were (10.23, 26.78) (unit: months) and 
16.55 months, respectively. 
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